Как ток идет в цепи – Электрики! Объясните мне несколько элементарных по физике вещей.. . Описал внутри…

Содержание

Как читать схемы. Напряжение и сила тока

Как читать схемы? В прошлой статье мы с вами рассмотрели, как выглядят обозначения основных радиоэлементов на схеме. В этой статье мы поговорим о таких понятиях, как электрический ток, напряжение и сила тока. Хотя я уже писал о них в самых первых статьях, но в этой статье попробуем все это сложить в одну кучу, чтобы вам было легче уловить суть дела.

Проводники электрического тока

Начнем с самого-самого начала. Как вы знаете, все схемы состоят из проводков или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводков соединял различные радиоэлементы и у меня получилась схема, которая усиливает звуковые частоты

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются печатными дорожками.

Как читать схемы. Напряжение и сила тока

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология). 

На другой стороне печатной платы уже располагаются радиоэлементы

Как читать схемы. Напряжение и сила тока

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев,  как торт из коржей:

Как читать схемы. Напряжение и сила тока

Прямо внутри них  есть дорожки, которые соединяются межслойно. Очень сильно экономится площадь на поверхностях печатной платы. Бум  SMD  технологий вызвал в свою очередь нужду в многослойных печатных платах.

Электрический ток

Думаю, вы  не раз слышали такое выражение: “по этому проводу течет ток”. Электронику проще объяснять как раз с точки зрения гидравлики. Раз ток течет, значит, в нашем случае, проводок – это шланг или труба для электрического тока. Получается, что так. А что такое электрический ток?

Электрический ток – это упорядоченное движение заряженных частиц, чаще всего электронов, в одном направлении. По аналогии с гидравликой, электроны – это молекулы воды. Электрический ток – поток воды. Думаю, этого пока будет достаточно. Одними словами сыт не будешь, поэтому давайте нарисуем рисунок, чтобы порадовать глаза:

В данный момент шланг валяется где-нибудь в огороде и в нем осталась вода. Шланг никуда не подключен, то есть молекулы воды в шланге находятся в неподвижном состоянии.

По аналогии с электроникой, медный проводок лежит на столе и никуда не подключен.

Но вот настал вечер. Надо полить помидоры и огурцы, иначе к зиме останетесь без закуски. Как только мы открываем кран, вода в шланге начинает движуху:

Теперь вопрос на засыпку: почему когда мы открыли краник, вода побежала по шлангу?  Создалось давление… молекулы что левее стали давить на молекулы что правее и движуха началась. Но кто толкал те молекулы, которые толкали молекулы? Это либо насос, либо вода в водобашне под воздействием гравитационной силы Земли.

В электронике электроны толкает так называемая ЭДС. В любой электрической схеме есть тот самый “насос”, который толкает электроны по проводкам и радиоэлементам. Он может находится в самой схеме, либо подключаться в схему извне. Как только электроны начинают движуху в проводке в одном направлении, то можно уже сказать, что в проводке стал течь электрический ток

.

Напряжение

А теперь представьте такую ситуацию. У нас есть водонасос, но шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Там пробка закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет приличная, то пробка вылетит со скоростью пули, либо давление порвет шланг, если пробка туго сидит в шланге.

Все то же самое можно сказать и про водобашню. Давление на дне башни зависит от того, сколько воды налито в башню. Если башня под завязку, то и давление на дне башни будет большое, и наоборот.

Как читать схемы. Напряжение и сила тока

А теперь прикиньте какое давление на дне океана, особенно в Марианской впадине 😉

Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать напряжение от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Как читать схемы. Напряжение и сила тока

Электрическое давление  – это еще не значит, что есть электрический ток. Для того, чтобы появился электрический ток должна быть движуха электронов в одном направлении, а они в данный момент тупо стоят на месте.  А раз движухи нету, то и нет электрического тока. Но то, что уже есть давление – это предпосылка к зарождению электрического тока.

Вы прямо сейчас можете создать давление воздуха в своем организме. Для этого достаточно набрать воздуха в легкие и закрыть рот. Потом выпустить воздух и надуть щеки, не открывая рот. В это время у вас на щеки молекулы воздуха будут оказывать давление. Чем больше вы выдыхаете воздуха, тем напряженнее стают ваши щеки от давления. Движуха идет из области высокого давления в область низкого давления. В ваших легких вы создали большое давление, а давление снаружи оказалось меньше. Поэтому-то щёчки и надулись.

С точки зрения электроники, на одном щупе блока питания высокое давление, а на другом низкое. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  – черным или синим. Тут типа давление минимальное (нулевое).

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – недостаточное.

Как читать схемы. Напряжение и сила токаКак читать схемы. Напряжение и сила тока

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но  напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Итак, одна составляющая для зарождения электрического тока у нас уже есть – это напряжение.

Вернемся снова к гидравлике.

Давление мы создали, но электрического тока до сих пор нету. Что надо сделать? Правильно, убрать пробку из шланга и дать водичке спокойно вытекать. Пошла движуха, значит, пошел электрический ток!

От какого слова образуется слово “ток”. Я думаю, от слова поТОК. Поток воды, поток энергии, поток света и тд, а поток электронов в проводке называется просто “электрическим током”. Значит, заставляя течь электроны, мы тем самым создаем электрический ток 😉

Теперь снова надуйте свои пухленькие щечки и пытайтесь создать внутри полости рта очень высокое давление. Что у нас произойдет? Ваши губки не выдержат и поток воздуха устремится изо рта в окружающее пространство. То есть вы создали в полости рта высокое давление, которое устремилось в область низкого давления, то есть наружу. Почти схожим образом вы создаете “ветер” из пукана, напрягая свой животик :-).

Ладно, давайте обобщим, все что мы тут пописали. ЭДС создает движуху электронов по проводку. Для того, чтобы движуха была, электроны должны куда-то направляться, желательно обратно к ЭДС источнику. В идеале, должно быть как-то так:

Как вы видите, труба у нас выходит из насосной станции и входит в насосную станцию. То есть контур трубы получается замкнутым. Пока работает насосная станция, у нас есть движуха воды. Как только насосная станция сдохнет, движуха воды прекратится. Также немаловажно чтобы труба не была тонкая в диаметре, иначе ее порвет, если насосная станция будет большой мощности.

По аналогии с электроникой получаем все то же самое. Во-первых, нужно чтобы контур был замкнутым, во вторых – чтобы был источник ЭДС, и в-третьих, чтобы провод выдерживал поток электронов.

Сила тока

Также нас интересует еще один немаловажный фактор – это какой объем воды у нас выльется из шланга за какое-то время.

Как думаете, с каким напором воды мы быстрее наполним ведерко?

С таким

Как читать схемы. Напряжение и сила тока

или с таким?

Как читать схемы. Напряжение и сила тока

или вот с таким?

Как читать схемы. Напряжение и сила тока

Понятное дело, что с последним. Почему так? Да потому что, ну пусть скажем за секунду, у нас вылитой из трубы воды будет больше, чем из шланга. А объем вылитой воды из зеленого шланга за секунду будет больше, чем из желтого, так как напор воды в желтом шланге очень слабый. И теперь еще один вопросик на посошок. Какой поток струи будет обладать бОльшей силой? Ясно дело, что струя, которая выходит из трубы. Такой струей можно и гидрогенераторы крутить.

Давайте допустим, что у нас  есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Так… теперь давайте все что мы тут пописали про водичку, применим в электронике. Проводки – это шланги или трубы, в зависимости от размера. Тонкий проводок – это тонкий в диаметре шланг, толстый проводок – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый проводок при одинаковом напряжении можно протащить больше электронов, чем тонкий.

И еще, в какой трубе сила потока электронов будет больше? Разумеется, через толстый проводок, так как количество электронов через поперечное сечение проводка за единицу времени будет проходить больше, чем в тонком проводке 😉 А количество электронов, которое проходит через поперечное сечение проводника за какой-то промежуток времени, называется силой тока. Я ведь говорил, что гидравлика и электроника очень взаимосвязаны ;-).

Не забываем, что электроны обладают зарядом, поэтому официальная терминология силы тока звучит так: сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время

. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения? Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится,  но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика. Второе – это поставить шланг большим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводку. Чем он больше в диаметре, тем больше он сможет протащить через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит  от того, на какую силу тока он рассчитан

Как читать схемы. Напряжение и сила тока

Как только сила тока через проводок превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в обрыве

Как читать схемы. Напряжение и сила тока

Заключение

Электрический ток в основном характеризуется такими параметрами, как напряжение и сила тока. Провода служат именно теми самыми “трубами и шлангами” для того, чтобы передавать электрический ток на расстояния. Они выбираются в зависимости от того, какая сила тока будет течь через них.

Например, вот такие медные “проводочки” используются для передачи бешеной силы тока на заводах, крупных фабриках, электросетях и тд. Называют их медными шинами.

Как читать схемы. Напряжение и сила тока

Как читать схемы. Напряжение и сила тока

На последней картинке можно увидеть предохранитель, который соединяет шины. Его номинал 500 Ампер. Можно сказать, что через сечение такой медной шины за 1 секунду может пробежать очень большой заряд, а точнее 500 Кулон.

А что было бы, если мы туда поставили какой-нибудь медный тонкий проводок? Я думаю, произошло бы что-то типа этого

Как читать схемы. Напряжение и сила тока 

 

Резюме

Электрический ток – это движение в одном направлении свободных электронов.

Свободные электроны у нас имеются в проводках, которые в основном сделаны из меди и алюминия.

Электрический ток характеризуется двумя параметрами: напряжением и силой тока.

Чтобы в проводке возник электрический ток, надо чтобы в одном конце проводка было избыточное давление, а в другом  – недостаточное.

Ток течет от плюса к минусу (хотя электроны бегут от минуса к плюсу)

Сила тока через проводок – это количество заряда, которое проходит через площадь “кружочка” (сечение проводка поперек) за одну секунду. Выражается в Амперах (Кулон/ Вольт).

Проводки, через которые будет проходить большая сила тока, делают толще, иначе тонкие провода нагреются и расплавятся, причинив вред окружающим предметам.

Каким образом течет электричество?

Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.

Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.

Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.

В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.

Вычисление падения напряжения

Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.

Электрический ток и поток электронов

Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка). Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.

Электрический ток в параллельной цепи

В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.

Вид цепи и напряжение

Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.

В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.

Электрический ток и электрическая цепь

Статическое электричество. Если желтый янтарь потереть шерстью или мехом, то янтарь приобретает свойство длительное время притягивать ,к себе волосы, листья, соломинки. Способность янтаря ,притягивать к себе другие вещества вызывается его зарядом. Под зарядом тел подразумевают электрический заряд. При определенных условиях заряд сохраняется на заряженных телах, поэтому его называют статическим электричеством.

Величины количества электричества заряженных тел и расстояния между ними оказывают влияние на их взаимодействие. Правила, которым подчиняются тела при взаимодействии, называют законом Кулона. Он формулируется так: сила, действующая между двумя заряженными телами, прямо пропорциональна количеству электричества на каждом из тел и обратно пропорциональна квадрату расстояния между зарядами.

Электрически заряженные тела, находясь на расстоянии друг от друга, испытывают действие определенной силы. Пространство, в котором действуют эти силы, называют электрическим силовым полем. Внутри электрического поля силы действуют в определенном направлении. Линии, по которым действуют электрические силы поля, называют силовыми. За их направление в любой точке поля принято направление, в котором будет двигаться в этом поле положительный заряд. Следовательно, электрическое поле изолированного отрицательного заряда направлено к заряду (рис. 1), а линии сил, действующих между положительным и отрицательным зарядами, направлены в сторону отрицательного заряда. Силовые линии одноименных зарядов отталкиваются друг от друга (рис. 2).

 

Рис. 1
Рис. 2

Электрический ток и направление движения электронов. При изучении законов электрического тока сначала было предположено, что электрический ток направлен от положительно к отрицательно заряженным телам. С помощью более поздних исследований было установлено, что электроны переходят от отрицательно заряженных к положительно заряженным или нейтральным телам.

Однако укоренилось первое положение, которое легло в основу всех электрических измерений и в электротехническую практику. Но, несмотря на это, в современных условиях действует правило, которое определяет электрический ток как поток электронов, направленный от минуса к плюсу.

Электрический потенциал. Действующие на тела силы стремятся привести их в такое положение, в котором потенциальная энергия тел будет наименьшей (например, пролитая вода стекает в самые низкие места, пар движется в трубе из точки с меньшей к точке с большей потенциальной энергией). Для сообщения потенциальной энергии воде ее можно поднять на некоторую высоту. Эти положения распространяются и на электрический ток.

Электрический потенциал можно создать, отняв или добавив к нейтральному телу электроны. В первом случае тело приобретает положительный заряд, т. е. потенциал тела возрастает (совершена работа по удалению электрона), во втором — отрицательный заряд и потенциал его будет отрицательным. Электричество перетекает от более высокого к более низкому потенциалу.

Разрядить тело от электрического заряда можно путем соединения его с землей, т. е. заземления тела. Электрические заряды тела вследствие их взаимного отталкивания стремятся равномерно распределиться на заряженном теле и земле. Однако вследствие того что земля несравнимо больше заряженного тела, все заряды с него уйдут в землю и тело станет нейтральным, т. е. электрически безопасным.

Электрическая цепь постоянного тока. Электрический ток, значение которого не изменяется во времени, называют постоянным. Источник электрического тока с присоединенными к нему линейными проводами и потребителем тока образуют замкнутую электрическую цепь, по которой протекает электрический ток. Простейшая электрическая цепь имеет источник и потребитель электрического тока и два соединяющих их линейных провода (рис. 3). В качестве источников постоянного электрического тока применяют аккумуляторы, генераторы — электрические машины, приводимые в движение механическими двигателями, гальванические элементы и ряд других устройств. Потребителями электрического тока могут быть электронагревательные приборы, сварочная дуга, осветительные лампочки и т.д.

Рис. 3

Конденсаторы. При одном и том же давлении в сосуде большего объема можно вместить большее количество газа. Некоторую аналогию можно пронести и с электрическим зарядом. Чем больше размеры проводника, тем больше его вместимость для электрических зарядов, т. е. больше его электрическая емкость.

Одиночные проводники обладают малой емкостью. Поэтому для образования запаса электрических зарядов применяют конденсаторы. Конденсатором называют устройство, которое при сравнительно малых размерах способно накапливать большие электрические заряды. В простейшем виде конденсатор состоит из двух металлических пластин, разделенных диэлектриком (воздухом, слюдой, парафинированной бумагой и т.п.). В зависимости от вида диэлектрика конденсатор называют воздушным, бумажным, слюдяным и т.п. Одна пластина конденсатора заряжается положительными зарядами, а другая — отрицательными. Сильное взаимное притяжение удерживает заряды, позволяя накопить в конденсаторе большое количество зарядов.

Емкость конденсатора зависит от площади его пластин. Конденсатор, у которого пластины имеют большую площадь, может вместить большее количество зарядов.

Основной единицей измерения электрической емкости служит фарада (ф). На практике применяют более мелкие единицы: микрофарада (1 мкф = 0,000 001 ф), пикофарада (1 пф = 0,000 001 мкф).

В технике конденсаторы используют в различных электрических и радиосхемах.

Электродвижущая сила источника тока. Напряжение. Если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить в сосуд с меньшим уровнем. Наливая воду в один из сосудов, можно добиться того, чтобы вода по трубке текла непрерывно. Аналогичная картина наблюдается в электрической цепи. На время прохождения электрического тока в цепи на полюсах источника тока необходимо поддерживать разность потенциалов.

Силу, которая поддерживает разность потенциалов, обеспечивая прохождение тока по электрической цепи, называют электродвижущей силой и условно обозначают э. д.с. Разность потенциалов, затрачиваемую на проведение тока через электрическую цепь, называют напряжением между концами электрической цели.

Напряжение создается источником тока. При разомкнутой цепи напряжение существует на полюсах или клеммах источника тока. Когда источник тока включен в цепь, напряжение появляется и на отдельных участках цепи, что и обусловливает ток в цепи. Нет напряжения, нет и тока в цепи.

Электрическое сопротивление. При возникновении в цепи электрического тока свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. Движению электронов препятствуют атомы и молекулы проводников, встречающихся на пути, т. е. электрическая цепь оказывает сопротивление прохождению электрического тока. Электрическим сопротивлением проводника называют свойство тела или среды превратить электрическую энергию в тепловую при прохождении по нему электрического тока.

Различные вещества имеют разное количество электронов и разное расположение атомов. Поэтому сопротивление проводника зависит от материала, из которого он изготовлен. Хорошими проводниками является серебро, медь, алюминий. Большим сопротивлением обладают никель, железо, уголь. Наряду с этим сопротивление зависит от длины и площади поперечного сечения проводника. Чем длиннее проводник при одном и том же поперечном сечении, тем большим обладает он сопротивлением, и наоборот: чем больше сечение проводника при одной и той же длине, тем меньше его сопротивление.

Нагрев увеличивает сопротивление большинства металлов и сплавов. Для чистых металлов это увеличение составляет около 4% на каждые 10° повышения температуры. Только некоторые специальные металлические сплавы (манганин, константан и др.) почти не меняют своего сопротивления с увеличением температуры.

Реостаты. Приборы, при помощи которых, меняя сопротивление, можно регулировать силу тока в цепи, называют реостатами. Реостаты бывают нескольких видов, например: реостат со скользящим контактом, рычажный реостат, ламповый и др.

Рис. 4

Реостат со скользящим контактом устроен следующим образом (рис. 4). Проволока из металла с высоким удельным сопротивлением намотана на цилиндр, сделанный из изолятора, к концам проволоки прикреплены клеммы для включения реостата в цепь. Сверху цилиндра на металлическом стержне прикреплен ползун, плотно касающийся витков проволоки. Реостат включают в цепь при помощи одной из клемм на проволоке реостата и клеммы на металлическом стержне ползуна. Передвигая ползун в ту или другую сторону, увеличивают или уменьшают длину включенной проволоки и тем самым изменяют сопротивление цепи.

Реостат рычажного типа, состоит из ряда проволочных спиралей, укрепленных на раме из изолятора. На одной стороне рамы концы спиралей соединены с рядом металлических контактов. Металлическая ручка, вращаясь вокруг оси, может плотно прижиматься к тому или другому контакту. В зависимости от положения ручки в цепь может включаться различное количество спиралей.

Измерение тока, напряжения и сопротивления. Опыты показывают, чем большее количество электричества протекает по проводнику в одно и то же время, тем сильнее действие тока. Поэтому электрический ток определяется количеством электричества, протекающего через поперечное сечение проводника в единицу времени. Количество электричества, протекающего через поперечное сечение проводника в 1 сек, называют силой электрического тока. За единицу силы тока принят 1 а, т. е. сила такого тока, при котором в 1 сек через поперечное сечение проводника проходит 1 кулон электричества. Ампер обозначается буквой а. Единица силы тока ампер названа так в честь французского ученого Ампера.

Английский физик Фарадей, изучая явление прохождения тока через жидкие проводники, установил, что весовое количество выделяющихся при этом веществ на электродах прямо пропорционально количеству прошедшего через раствор электричества. На основании этого была установлена единица количества электричества.

За единицу количества электричества принято такое количество электричества, при прохождении которого через раствор серебряной соли выделяется на электроде 1,118 мг серебра. Эта единица называется куланом.

Исходя из определения электрического тока можно определить его силу по формуле


где

I — сила тока в цепи;

Q — количество электричества, протекающего >в цени, в кулонах;

Т — время прохождения электричества в цепи в сек.

В технике имеется еще и такое понятие, как плотность тока.

Плотностью тока называют отношение величины тока к площади поперечного сечения проводника. Обычно площадь сечения проводников приводится в квадратных миллиметрах, поэтому плотность тока измеряют в а/мм2.

Рассмотрим электрическую цепь, состоящую из источника тока, проводников и электрической лампочки, соединенных последовательно. Сила тока на всех участках этой цепи одинакова, а значит и количество электричества, протекающего по проводам и волоску лампочки в одно и то же время, одинаковое. Однако количество энергии, выделяющейся на отдельных участках цепи, различно. В этом легко убедиться, если притронуться рукой к проводам, подводящим ток к ламлпочке,— они холодные, в то время как волосок лампочки раскален. Выделение различных количеств энергии на различных участках цепи вызывается тем, что на этих участках цепи существует различное напряжение.

Напряжение на данном участке цепи показывает, какое количество энергии будет выделиться на данном участке при прохождении по нему единицы количества электричества.

За единицу напряжения принимают такое напряжение, при котором на участке цепи выделяется 1 джоуль энергии (1 кг•м=9,8 джоуля), если по этому участку протекает 1 кулон электричества. Единицу напряжения называют вольтом и сокращенно обозначают буквой в. Единица напряжения «вольт» названа так в честь итальянского ученого Вольта.

Если на каком-либо участке цепи напряжение равно 1 в, это значит, что при прохождении каждого кулона электричества по этому участку выделяется 1 джоуль энергии.

При измерении высоких напряжений применяют единицу, называемую киловольтом и обозначаемую сокращенно кв. Киловольт в тысячу раз больше вольта: 1 кв=1000 в. Для измерения небольших напряжений применяют милливольт (мв) —единицу, в тысячу раз меньшую, чем вольт: 1 мв = 0,001 в.

Источник электрического тока, включенный в электрическую цель, расходует энергию на преодоление сопротивления цепи. Единицей сопротивления называют ом в честь немецкого ученого Ома, открывшего законы электрического тока; ом — электрическое сопротивление между двумя точками линейного проводника, в котором разность потенциалов в 1 в производит ток в 1 а. Электрическое сопротивление обозначается двумя буквами ом.

При измерении больших сопротивлений пользуются значительно большими единицами, чем ом: килоом (ком) и мегом (мгом). 1 ком =1000 ом, 1 мгом= 1 000 000 ом.

Свойства проводников в отношении их электрического сопротивления оценивают по удельному сопротивлению. Удельным сопротивлением называют сопротивление проводника длиной 1 м с поперечным сечением в 1 мм2. Удельное сопротивление измеряется тоже в омах.

Закон Ома. Если в электрическую цепь, состоящую из лампочки и амперметра, включить один большой гальванический элемент, можно заметить, что по цепи идет очень слабый ток и нить лампочки не накаливается. Как только гальванический элемент заменим свежей батарейкой от карманного фонаря, ток в цепи увеличивается и нить лампочки ярко накаливается. Измерив напряжение на концах цепи при включении элемента и батарейки, увидим, что при включении батарейки напряжение значительно больше.

Отсюда следует, что сила тока в проводнике увеличивается с увеличением напряжения на концах проводника. Включив в цепь вместо одной две лампочки последовательно, увеличиваем сопротивление цепи в два раза. Теперь мы видим, что сила тока в цепи уменьшилась. Изучая зависимость силы тока от сопротивления и напряжения, немецкий ученый Ом установил, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна сопротивлению проводника. Эта зависимость между силой тока, напряжением и сопротивлением носит название закона Ома, который является одним из основных законов электрического тока.

Закон Ома выражается следующей формулой:

где I — ток в а;

V — напряжение в в;

R — сопротивление в ом.

Закон Ома распространяется не только на dc. цепь, но и на любой ее участок. Ток на любом участке электрической цепи равен напряжению на концах этого участка, деленному на его сопротивление.

Последовательное соединение в электрической цепи. В большинстве случаев электрическая цепь состоит из нескольких потребителей тока (рис. 5). Соединение потребителей тока, при котором конец одного проводника соединен с началом другого, конец другого — с началом третьего и т.д., называют последовательным.

Рис. 5

Так как сопротивление прямо пропорционально длине проводника, сопротивление цепи равно сумме сопротивлений отдельных проводников, поскольку включение нескольких проводников увеличивает длину пути тока. Ток на отдельных участках цепи будет одинаковым. Поэтому падение напряжения на каждом участке будет пропорционально сопротивлению данного участка.

Параллельным соединением в электрической цепи называют такое соединение, когда начала всех проводников соединены в одной, а их концы — в другой точке (рис. 6). При параллельном соединении для прохождения электрического тока имеется несколько путей (рис. 6). Ток между параллельно соединенными потребителями распределяется обратно пропорционально сопротивлениям потребителей. Если отдельные потребители обладают одинаковым сопротивлением, ток у них будет одинаковый. Чем меньше сопротивление отдельного потребителя, тем больший ток пройдет через него.

Рис.6

Сумма токов отдельных участков в параллельной цепи равна полному току в точке разветвления цепи.

Если в последавательно соединенной цепи присоединение новых потребителей электрического тока увеличивает сопротивление цепи, при параллельном соединении оно уменьшается: подключенное новое сопротивление увеличивает общее сечение проводника, состоящее из суммы сечений проводников всех потребителей. А как известно, чем больше сечение проводника при постоянной его длине, тем меньше сопротивление.

Пренебрегая сопротивлением соединительных проводов, можно считать, что напряжение источника тока приложено к каждому потребителю параллельной цепи. Поэтому достоинством параллельного соединения является независимость работы каждого потребителя тока. Можно отключить любой потребитель, не прерывая прохождения тока по остальным. Изменив сопротивление одного из потребителей, изменим в его цепи ток. У остальных потребителей ток не изменится.

Рис. 7

Смешанное соединение в электрической цепи. Очень часто в электрических цепях встречается смешанное соединение. Смешанным соединением называют такое соединение, в котором имеется как последовательное, так и параллельное соединение потребителей электрического тока (рис. 7). Для определения сопротивления нескольких проводников, соединенных по смешанной схеме, находят сначала сопротивление параллельно или последовательно соединенных проводников, а затем заменяют их одним проводником с сопротивлением, равным найденному. Таким способом упрощают схему, приводя ее к одному проводнику, сопротивление которого равно общему сопротивлению сложной цепи.

Работа и мощность электрического тока. Электрический ток может производить работу. Способность тела производить работу называют энергией этого тела. Посредством электрических моторов ток приводит в движение электропоезда, станки. За счет энергии электрического тока совершается механическая работа. Если проводник, по которому проходит ток, нагревается, энергия тока превращается в теплоту. При различных проявлениях тока наблюдается превращение электрической энергии в другие виды энергии.

В замкнутой электрической цепи протекает ток, который представляет движение электрических зарядов. Для переноса зарядов в электрической цепи источник электрической энергии затрачивает определенное количество энергии или совершает работу, равную произведению напряжения цепи на перенесенное через цепь количество электричества.

Если по участку электрической цепи протекло Q кулонов электричества, а напряжение на нем равно V, то совершенная на данном участке цепи работа А будет равна:

А = QV дж.

При токе Ia в течение Т секунд через сечение проводника проходит IT = Q кулонов электричества. Следовательно, работа тока в при напряжении V в течение Т секунд будет равна:

A = IVT.

Работу тока принято оценивать по его мощности. Мощность тока численно равна работе, которую производит ток в 1 сек. Следовательно, мощность тока будет равна:

джоулей в 1 сек.

Единицей измерения мощности служит ватт (вт). Один ватт — мощность тока в 1 а при напряжении в 1 в. Следовательно, с увеличением тока и напряжения мощность увеличивается. Для определения мощности электрического тока необходимо напряжение в вольтах умножить на ток в амперах.

Наряду с ваттом для измерения мощности часто применяют киловатт (1 квт =1000 вт), гектоватт (1 гвт=100 вт), милливатт (1 мвт=0,001 вт) и микроватт (1 мквт= 0,000 001 вт).

Работу электрического тока можно определить, если его мощность умножить на время прохождения тока: мощность —это работа в 1 сек. За основную единицу работы принята ватт-секунда (вт•сек), т. е. работа тока мощностью 1 вт в течение 1 сек. Более крупными единицами являются ватт-час (1 вт•ч=3600 вт•сек), гектоватт-час (1 гвт•ч =100 вт•ч), киловатт-час (1 квт•ч= 1000 вт•ч).

Закон Ленца—Джоуля. Русский академик Ленц и английский физик Джоуль, независимо друг от друга, установили, что в процессе прохождения электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. Эту закономерность называют закомом Ленца — Джоуля и выражают формулой

Q = 0,24I2Rt,

де Q — количество теплоты в кал;

0,24 — коэффициент пропорциональности, обусловливающий, чтобы ток был выражен в а, напряжение в в, а сопротивление — в ом;

I — ток в а;

R — сопротивление проводника в ом;

t — время, в течение которого ток протекал по проводнику, в сек.

Электрическая дуга. Если сблизить концы двух проводников, присоединенных к источнику электрического тока, между ними образуется искра. Разведя концы, вместо искры получим электрическую дугу, создающую сильный и ослепительный свет. Если к концам проводников присоединить угольные стержни, между ними также возникнет электрическая дуга. Возникновение дуги объясняется следующим образом.

С повышением температуры угольных стержней увеличивается скорость движения электронов, находящихся в угле. При сильном нагреве скорость движения свободных электронов возрастает настолько, что при раздвижении углей электроны из стержней вылетают в межэлектродное пространство. В результате действия вылетевших электронов на нейтральные атомы и интенсивного излучения света нагретыми концами электродов воздух между электродами перестает быть электрически нейтральным, т. е. между концами раздвинутых электродов создается газовый промежуток, хорошо проводящий электрический ток, и возникает электрический разряд.

Способность тока создавать электрическую дугу с успехом используют при сварке. Заменив один из угольных электродов свариваемым изделием, получим электрическую дугу, горящую между этим изделием и вторым угольным электродом. Однако в настоящее время наибольшее применение получил способ сварки металлическим электродом. В этом случае вместо угольного электрода применяют металлический. Сварочная дуга горит между свариваемым изделием и металлическим электродом. После расплавления металлического электрода он заменяется новым.

Короткое замыкание. Аварийный режим работы электрической цепи, когда вследствие уменьшения ее сопротивления ток в ней резко увеличивается против нормального, называют коротким замыканием. Короткое замыкание получается, если в электрическую цепь включается проводник или прибор и т.п. с очень небольшим сопротивлением по сравнению с сопротивлением цепи. Вследствие небольшого сопротивления по цепи пойдет ток, намного превышающий тот, на который рассчитана цепь. Такой ток вызовет выделение большого количества тепла, что приведет к обугливанию и сгоранию изоляции проводов, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактов выключателей, ножей рубильников и т.п. Может быть поврежден даже источник электрического тока. Поэтому (ввиду опасных разрушительных последствий короткого замыкания необходимо соблюдать определенные условия при монтаже и эксплуатации электрических установок.

Плавкие предохранители. Для того чтобы избежать внезапного и опасного увеличения тока в электрической цепи при коротком замыкании, цепь защищают плавкими предохранителями. Предохранитель представляет собой легкоплавкую проволоку, включенную в цепь последовательно. При увеличении тока сверх определенной величины проволочка предохранителя нагревается и плавится, электрическая цепь автоматически разрывается и ток в ней прекращается. Плавкие вставки для разных сечений защищаемых проводов и для разных потребителей энергии берутся различные. Плавкие предохранители могут выполнить свою задачу при условии, что они правильно выбраны.

Рис. 8

По своей конструкции предохранители делят на пробочные (рис. 8,а), пластинчатые (рис. 8,б) и трубчатые (рис. 8,в), В пробочных предохранителях плавкая проволока помещается внутри фарфоровой пробки и укрепляется в ее основании, к которому подведены провода размыкаемой цепи. В пластинчатых предохранителях плавкая вставка с помощью наконечников и винтов укреплена на изолирующем основании. Провода размыкаемой цепи подводят к винтам. В трубчатых предохранителях плавкая часть помещена внутри легко-съемных фарфоровых трубок.

В цепях с большим током и напряжением плавкие предохранители применяют редко. В этих случаях устраивают другую автоматическую защиту.

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Формула Сила тока

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Средняя сила тока

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Средняя сила тока

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

Формула Плотность тока

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

Формула Сопротивление проводника

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

Формула Зависимость сопротивления проводника от температуры

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Обозначение диода

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Формула Закон Ома

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула Закономерности последовательного соединения

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n последовательно соединенных резисторов

2. Закономерности параллельного соединения:

Формула Закономерности параллельного соединения

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n параллельно соединенных резисторов

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Формула Электродвижущая сила источника тока (ЭДС)

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Формула Закон Ома для полной цепи

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Формула Падение напряжения во внешней цепи Напряжение на клеммах источника

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Формула Сила тока короткого замыкания

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Последовательное подключение ЭДС

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

Последовательное подключение ЭДС

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

Параллельное подключение ЭДС

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению…

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Формула Работа электрического тока Закон Джоуля-Ленца

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Формула Мощность электрического тока

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Формула Мощность, выделяемая во внешней цепи

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Формула Максимально возможная полезная мощность источника

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Формула Внутреннее сопротивление источника тока при равных мощностях

Мощность потерь или мощность внутри источника тока:

Формула Мощность внутри источника тока

Полная мощность, развиваемая источником тока:

Формула Полная мощность, развиваемая источником тока

КПД источника тока:

Формула КПД источника тока

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Формула Электролиз

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Формула Электрохимический эквивалент

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Формула Постоянная Фарадея

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Ответы@Mail.Ru: в каком направлении протекает ток в цепи

направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…

Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.

от плюса к минусу

принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..

Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот!!!

В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.

Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников. <img src=»//otvet.imgsmail.ru/download/265070448_436948acc5ab4e150d7ce3c5e7f7cd81_800.gif» data-lsrc=»//otvet.imgsmail.ru/download/265070448_436948acc5ab4e150d7ce3c5e7f7cd81_120x120.gif» data-big=»1″>

Электрический ток. Источники электрического тока

987. В грозу между тучами возникает молния. Является ли она электрическим током? Является ли электрическим током молния, возникшая между облаком и Землей?
Да, является. Заряди из области с большими потенциалом переходят в область с меньшим потенциалом.

988. В металлическом проводнике, с помощью которого разряжается электроскоп, возникает электрический ток. По проводнику, соединяющему полюсы гальванического элемента, тоже идет электрический ток. Есть ли разница между этими токами? В чем состоит это различие?
Разница только во времени протекания тока.

989. В мопеде от генератора тока к фаре проведен только один провод. Почему нет второго провода?
Роль второго провода играет рама мопеда.

990. На рисунке 92 изображена схема электрической цепи. Назовите элементы, из которых состоит данная электрическая цепь? Что нужно сделать, чтобы лампочка в цепи загорелась?
Ключ, лампочка, источник тока; нужно замкнуть ключ.

991. Из каких элементов состоит цепь на рисунке 93? Будет ли идти ток через сопротивление R, если ключи 1 и 2 разомкнуты? Будет ли идти ток и через какие элементы цепи, если замкнуть:
а) только ключ 1;         б) только ключ 2;         в) оба ключа?

Две лампы; ключ 1, ключ 2; сопротивление, источник тока. Если оба ключа разомкнуты, ток идти не будет. А) будет, резистор R и лампы 1; б) будет, резистор R т лампа 2; в) будет, через все элементы.

992. Из каких элементов состоит цепь на рисунке 94? Будет ли идти ток через лампочки, если замкнуть:
а) только ключ 1;
б) только ключ 2;
в) оба ключа одновременно?
Стоит ли в такой цепи иметь два ключа?

Две лампочки, ключ 1, ключ 2, источник тока.
А) – нет; б) – нет ; в) да , будет. Не стоит хватит одного ключа.

993. Какова цена деления шкалы вольтметра, изображенного на рисунке 95?

994. Начертите схему цепи, содержащей источник тока и две лампочки, каждую из которых можно включать отдельно.

Электрический ток. Источники электрического тока

 

995. В электрическую цепь включен реостат со скользящим контактом (рис. 96). Покажите стрелками, как идет ток в цепи и в реостате.

Электрический ток. Источники электрического тока

 

996. Через лампочку А (рис. 97) протекает в течение 5 мин 150 Кл электричества, а через лампочку В — за то же время 60 Кл. Определить силу тока в той и другой лампочке.
Какова будет сила тока в проводах D и С?

Электрический ток. Источники электрического тока

 

Электрики! Объясните мне несколько элементарных по физике вещей.. . Описал внутри…

Земля — это просто точка, относительно которой отсчитывается напряжение. Потому что напряжение ВСЕГДА измеряется МЕЖДУ двумя точками (узлами) . Вот тот узел, относительно которого удобно измерять напряжение для ВСЕЙ схемы, и называется «земля». Не зря ж синоним этого дела — «общий». Фаза — это не плюс. В обычной сети вообще нет плюса и минуса, потому что там переменный ток. Можно, с достаточной степенью правдоподобия, говорить, что фаза — это «не земля». Иногда, когда индивидуальные «однофазные» потребители — а это все квартирные подключения, кроме мощных, типа электроплиты, — подключаются к трёхфазной входной магистрали по схеме «звезда», фаза — это действительно фаза (одна из трёх, в каждой квартире своя) , а «ноль» — это нулевой провод трёхфазной сети. Если же однофазные потребители подключены к трёхфазной сети по схеме «треугольник», то оба провода в розетке эквивалентны. Они оба фаза. Поэтому ё**т, если за любой взяться. Минус — это «минус» в кавычках. Просто термин пошёл с эпохи постоянного тока, которая благополучно закончилась ещё в 19 веке. Так что это просто возвратный провод (ещё раз: в сетях переменного тока оба провода эквивалентны) . Просто для прохождения тока нужна замкнутая цепь. Вот «минус» и замыкает цепь — от «плюса» через нагрузку (или электрика, еслион почему-то решил заменить собой нагрузку… ) в «минус». Если нет возвратного провода, как его ни обзови, — ток не пойдёт. Но тут надо учитывать, что переменный ток может идти «через воздух». Потому что электрик, стоящий на полу и даже на резиновом коврике, — это всё равно ёмкость. То есть через него может идти емкостной ток (сущая вшивота, но всё же, всё же…) . ======================== «Минус создаётся на электростанции накачиванием провода электронами под давлением» Упал под стол….

Земля -это заземление. Корпус прибора должен быть заземлен, чтоб все наводки уходили в землю.. . В розетке переменный ток. поэтому + и — там меняются 50 или 60 раз в секунду (50 -60 герц частота промышленной сети) ( то на фазе + на нуле — ,то на оборот, изменятся по синусоидальному закону).. . Направление тока принято считать от + к — ,хотя на самом деле -ток в металле-это движение электронов, а они движутся от — к +.. Если дотронуться до фазы то током долбанет, если ноги соединены с землей. то есть если хорошая изоляция ( толстый резиновый коврик и ты дотронешься до фазы не сильно долбанет, но долбанет, так как образуется конденсатор между тобой и землей и поэтому чуть -чуть может долбануть.. . А если хорошо будешь соединен с землей ( например, как ты написал -ноги в воду) , то убьет по полной программе.. . Для чего нужен минус. . чтоб был ток необходимо создать разность потенциалов- на одном полюсе избыток электронов -это минус, на другом недостаток -это + .и если замкнуть цепь, то электроны побегут от — к +..То есть по одному проводу приходят электроны к прибору, по другому уходят обратно в источник.

Оччень много вопросов! Фаза-это не плюс. Это точно.

Фаза в электротехнике (разговорное) — провод, несущий напряжение плюс-положительный заряд минус-отрицательный заряд ноль-нету заряда в розетке 220 на фазу подается плюс и минус поочередно с частотой 50 колебаний в секунду. можно представлять ток как воду текущую по трубе по началу может будет проще. например застрявший поперек трубы презерватив будет как конденсатор который не пропускает постоянный ток (течение воды в одном направлении)

Начнём по порядку. Земля — защитный третий провод, соединённый с корпусом прибора. Присоединяется к контуру заземления. Делается для того, чтобы при попадании напряжения на корпус произошло короткое замыкание и сработала защита — предохранитель, автомат и т. п. и исключалась возможность поражения электрическим током. Фаза — это фаза. «Плюс» и «минус» есть у постоянного напряжения, у переменного — фаза и ноль. Между фазой и нулём напряжение — разница потенциалов — те самые 220 вольт. Считается, что постоянный ток течёт от плюса к минусу. При касании фазного провода всё зависит от сопротивления тела. Ток пойдёт по пути наименьшего сопротивления, обычно ток проходит через тело в землю. Если стоять на диэлектрическом коврике, удара можно избежать. Чтобы заставить работать электроприбор, надо создать напряжение — разность потенциалов. Для этого существуют электростанции, полученный ток по двум проводам — (фаза и ноль) — поступает в розетку. Если не будет второго провода, то не будет и той разности потенциалов.. . Как-то так…

Фаза — это провод, по которому приходит с электростанции переменный ток (меняет плюс на минус и наоборот 100 раз в секунду) . Ноль (иногда говорят «земля») — это провод, по которому ток возвращается на электростанцию. Да, фаза бьёт током, только если другая часть тела «занулена» или «заземлена». Минус создаётся на электростанции накачиванием провода электронами под давлением. Там же на другом проводе создаётся «плюс», путём отсасывания электронов со второго провода. Провода как бы меняются местами 100 раз в секунду 🙂

земля служит для защиты от поражения эл. током. фаза это фаза. она не может считаться ни плюсом, ни минусом. (ток переменный, меняет свое направление 50 раз в секунду, т. е. частота 50 Герц. ) до фазы дотрагиваться нельзя, наверняка долбанет. и в розетке, что у тебя дома стоит массы нет. там есть фаза, ноль и земля. обычно фаза белая, ноль голубой, земля полосатая -желтозеленая. ,

Фаза — это не плюс и не минус, ибо в сети переменный ток. Просто фаза — это не связанный с землей проводник. Ноль (то что вы назвали «минус») — это проводник, в котором напряжение ОТНОСИТЕЛЬНО ЗЕМЛИ принято считать равным нулю. «Земля», то есть заземление — это провод, напрямую заземленный, то есть грубо говоря вкопанный на некоторую глубину в землю. На нем потенциал относительно земли ОБЯЗАН быть нулевым. Зачем нужен ноль и земля? Ноль — это токоведущий провод, он не всегда наглухо связан с землей, и это нормально. Например, пьяный электрик может в подвале вашего дома перепутать провода, и пустить по нулевому проводу фазу а по фазному ноль. Ваши приборы этого скорее всего не заметят. Но расположение нуля и фазы в розетках изменится. Заземление же всегда стабильно сидит на земле. Этим оно и ценно. Оно страхует прибор от всяких неприятностей.

Отправить ответ

avatar
  Подписаться  
Уведомление о