Получение водорода и кислорода — урок. Химия, 8–9 класс.
Получение кислорода
В лаборатории кислород получают разложением перманганата калия при нагревании или разложением пероксида водорода в присутствии катализатора:
2KMnO4=tK2MnO4+MnO2+O2↑.
2h3O2=MnO22h3O+O2↑.
Собирают кислород вытеснением воды или вытеснением воздуха.
Прибор для получения кислорода из перманганата калия
и собирания вытеснением воды
Прибор для получения кислорода
из пероксида водорода и собирания
вытеснением воздуха
Обнаружить выделившийся кислород можно с помощью тлеющей лучинки. В сосуде с кислородом лучинка разгорается ярким пламенем.
Получение водорода
В лаборатории водород получают действием соляной или разбавленной серной кислоты на металлы (цинк, железо, алюминий).
Zn+2HCl=ZnCl2+h3↑,
Zn+h3SO4=ZnSO4+h3↑.
Собирают водород вытеснением воды или воздуха. Сосуд для водорода при вытеснении воздуха располагают дном вверх.
Доказать наличие водорода в пробирке можно, если поднести её к пламени спиртовки. Водород взрывается, и раздаётся характерный хлопок.
Урок 12. Водород и кислород – HIMI4KA
Водород
Водород — самый распространённый химический элемент во Вселенной. Именно он составляет основу горючего вещества Звёзд.
Водород — первый химический элемент Периодической системы Менделеева. Его атом имеет простейшее строение: вокруг элементарной частицы «протон» (ядро атома) вращается один-единственный электрон:
Природный водород состоит из трех изотопов: протий 1Н, дейтерий 2Н и тритий 3Н.
Задание 12.1. Укажите строение ядер атомов этих изотопов.
Имея на внешнем уровне один электрон, атом водорода может проявлять единственно возможную для него валентность I:
Вопрос. Образуется ли завершённый внешний уровень при приёме атомом водорода электронов?
Таким образом, атом водорода может и принимать, и отдавать один электрон, т. е. является типичным неметаллом. В любых соединениях атом водорода одновалентен.
Простое вещество «водород» Н2 — газ без цвета и запаха, очень лёгкий. Он плохо растворим в воде, но хорошо растворим во многих металлах. Так, один объём палладия Рd поглощает до 900 объёмов водорода.
Схема (1) показывает, что водород может быть и окислителем, и восстановителем, реагируя с активными металлами и многими неметаллами:
Задание 12.2. Определите, в каких реакциях водород является окислителем, а в каких — восстановителем. Обратите внимание, что молекула водорода состоит из двух атомов.
Смесь водорода и кислорода является «гремучим газом», поскольку при поджигании её происходит сильнейший взрыв, который унёс многие жизни. Поэтому опыты, в которых выделяется водород, нужно выполнять подальше от огня.
Чаще всего водород проявляет восстановительные свойства, что используется при получении чистых металлов из их оксидов*:
* Аналогичные свойства проявляет алюминий (см. урок 10 — алюминотермия).
Разнообразные реакции происходят между водородом и органическими соединениями. Так, за счёт присоединения водорода (гидрирование) жидкие жиры превращаются в твёрдые (подробнее урок 25).
Водород можно получить разными способами:
- Взаимодействием металлов с кислотами:
Задание 12.3. Составьте уравнения таких реакций для алюминия, меди и цинка с соляной кислотой. В каких случаях реакция не идет? Почему? В случае затруднения см. уроки 2.2 и 8.3;
- Взаимодействие активных металлов с водой:
Задание 12.4. Составьте уравнения таких реакций для натрия, бария, алюминия, железа, свинца. В каких случаях реакция не идёт? Почему? В случае затруднений см. урок 8.3.
В промышленных масштабах водород получают электролизом воды:
а также при пропускании паров воды через раскалённые железные опилки:
Водород — самый распространённый элемент Вселенной. Он составляет бОльшую часть массы звёзд и участвует в термоядерном синтезе — источнике энергии, которую эти звёзды излучают.
Кислород
Кислород — самый распространённый химический элемент нашей планеты: более половины атомов Земной коры приходится на кислород. Вещество кислород О2 составляет около 1/5 нашей атмосферы, а химический элемент кислород — 8/9 гидросферы (Мирового океана).
В Периодической системе Менделеева кислород имеет порядковый номер 8 и находится в VI группе второго периода. Поэтому строение атома кислорода следующее:
Имея на внешнем уровне 6 электронов, кислород является типичным неметаллом, т. е. присоединяет два электрона до завершения внешнего уровня:
Поэтому кислород в своих соединениях проявляет валентность II и степень окисления –2 (за исключением пероксидов).
Принимая электроны, атом кислорода проявляет свойства окислителя. Это свойство кислорода исключительно важно: процессы окисления происходят при дыхании, обмене веществ; процессы окисления происходят при горении простых и сложных веществ.
Горение — окисление простых и сложных веществ, которое сопровождается выделением света и теплоты. В атмосфере кислорода горят или окисляются почти все металлы и неметаллы. При этом образуются оксиды:
* Точнее, Fe3O4.
При горении в кислороде сложных веществ образуются оксиды химических элементов, входящих в состав исходного вещества. Только азот и галогены выделяются в виде простых веществ:
Вторая из этих реакций используется как источник тепла и энергии в быту и промышленности, так как метан CH4 входит в состав природного газа.
Кислород позволяет интенсифицировать многие промышленные и биологические процессы. В больших количествах кислород получают из воздуха, а также электролизом воды (как и водород). В небольших количествах его можно получить разложением сложных веществ:
Задание 12.5. Расставьте коэффициенты в приведенных здесь уравнениях реакций.
Вода
Воду нельзя ничем заменить — этим она отличается практически от всех других веществ, которые встречаются на нашей планете. Воду может заменить только сама вода. Без воды нет жизни: ведь жизнь на Земле возникла тогда, когда на ней появилась вода. Жизнь зародилась в воде, поскольку она является естественным универсальным растворителем. Она растворяет, а значит, измельчает все необходимые питательные вещества и обеспечивает ими клетки живых организмов. А в результате измельчения резко возрастает скорость химических и биохимических реакций. Более того, без предварительного растворения невозможно протекание 99,5 % (199 из каждых 200) реакций! (См. также урок 5.1.)
Известно, что взрослый человек в сутки должен получать 2,5–3 л воды, столько же выводится из организма: т. е. в организме человека существует водный баланс. Если он нарушается, человек может просто погибнуть. Например, потеря человеком всего 1–2 % воды вызывает жажду, а 5 % — повышает температуру тела вследствие нарушения терморегуляции: возникает сердцебиение, возникают галлюцинации. При потере 10 % и более воды в организме возникают такие изменения, которые уже могут быть необратимы. Человек погибнет от обезвоживания.
Вода — уникальное вещество. Её температура кипения должна составлять –80 °C (!), однако равна +100 °C. Почему? Потому что между полярными молекулами воды образуются водородные связи:
Поэтому и лёд, и снег — рыхлые, занимают больший объём, чем жидкая вода. В результате лёд поднимается на поверхность воды и предохраняет обитателей водоёмов от вымерзания. Свежевыпавший снег содержит много воздуха и является прекрасным теплоизолятором. Если снег покрыл землю толстым слоем, то и животные и растения спасены от самых суровых морозов.
Кроме того, вода имеет высокую теплоёмкость и является своеобразным аккумулятором тепла. Поэтому на побережьях морей и океанов климат мягкий, а хорошо политые растения меньше страдают от заморозков, чем сухие.
Без воды в принципе невозможен гидролиз, химическая реакция, которая обязательно сопровождает усвоение белков, жиров и углеводов, которые являются обязательными компонентами нашей пищи. В результате гидролиза эти сложные органические вещества распадаются до низкомолекулярных веществ, которые, собственно, и усваиваются живым организмом (подробнее см. уроки 25–27). Процессы гидролиза были нами рассмотрены в уроке 6. Вода реагирует со многими металлами и неметаллами, оксидами, солями.
Задание 12.6. Составьте уравнения реакций:
- натрий + вода →
- хлор + вода →
- оксид кальция + вода →
- оксид серы (IV) + вода →
- хлорид цинка + вода →
- силикат натрия + вода →
Изменяется ли при этом реакция среды (рН)?
Вода является продуктом многих реакций. Например, в реакции нейтрализации и во многих ОВР обязательно образуется вода.
Задание 12.7. Составьте уравнения таких реакций.
Выводы
Водород — самый распространённый химический элемент во Вселенной, а кислород — самый распространённый химический элемент на Земле. Эти вещества проявляют противоположные свойства: водород — восстановитель, а кислород — окислитель. Поэтому они легко реагируют друг с другом, образуя самое удивительное и самое распространённое на Земле вещество — воду.
Разработан новый метод извлечения водорода из воды, работающий в 30 раз быстрее традиционного электролиза
Ученые из университета Глазго (University of Glasgow, UoG) разработали новый метод расщепления воды на кислород и водород, который представляет собой топливо для источников экологически чистой энергии, таких, как водородные топливные элементы. Но самое интересное заключается в том, что этот новый процесс не только более безопасен, но и способен обеспечить в 30 раз большую производительность по водороду, нежели другие существующие на сегодняшний день методы. И столь привлекательные показатели нового процесса позволяют рассматривать его в качестве решения вопроса хранения и транспортировки энергии, получаемой из возобновляемых источников, которая может храниться в виде водорода сколь угодно длительное время.
В природе вода расщепляется на составные части под воздействием солнечного света в результате процесса фотосинтеза. Выделяющийся при этом водород, вступая в реакцию с углекислым газом из атмосферы, образует цепочки органических соединений, из которых формируются ткани растущего растения. Получающийся при этом кислород является побочным продуктом и выбрасывается в окружающую среду, что дает возможность дышать всему живому на нашей планете. Процесс электрического расщепления воды, используемый для искусственного получения водорода, более энергоемок и опасен, нежели процесс естественного фотосинтеза. При проведении традиционного процесса электролиза (proton exchange membrane electrolyze, PEME) существует высокая вероятность смешивания водорода и кислорода, образующих взрывоопасный гремучий газ, и при этом требуются существенные дополнительные затраты энергии, идущей на разделение газов и очитку водорода от остаточных следов кислорода.
Процесс, разработанный исследовательской группой профессора Ли Кронина (Lee Cronin), лишен большинства вышеописанных недостатков традиционных процессов электролиза. В этом процессе не используются дорогостоящие катализаторы на базе драгоценных или редкоземельных металлов, эту роль выполняет жидкая «губка», так называемый окислительно-восстановительный посредник (redox mediator). Эта губка полностью поглощает выделяющийся свободный водород и образует полностью безопасное водородосодержащее неорганическое соединение. В ходе этого процесса выделяется лишь чистый свободный кислород, который без проблем сбрасывается в атмосферу.
Раствор окислительно-восстановительный посредника, химический состав которого по понятным причинам держится в тайне, изначально имеет синий цвет. При подаче на электроды устройства-электролизера электрического тока посредник начинает поглощать выделяющийся водород и его цвет, по мере насыщения, начинает сдвигаться к желтому цвету. А при полном насыщении посредника водородом он практически теряет каталитические свойства, что приводит к автоматическому прекращению процесса электролиза. Высвобождается связанный посредником водород достаточно просто, для этого требуется лишь поместить в раствор насыщенного посредника специальный катализатор. При этом скорость выделения чистого водорода в 30 раз превышает скорость выделения водорода в процессе традиционного PEME-электролиза.
Следует отметить, что получаемый в результате описанного выше процесса водород можно хранить и транспортировать в абсолютно безопасном виде, в виде концентрированного раствора насыщенного вещества-посредника. Также достаточно просто выделять связанный посредником водород и точно регулировать его количество, опуская в раствор катализатор, имеющий определенную площадь. К сожалению, некоторые характеристики, такие, как долговечность вещества-посредника, самопроизвольное выделение связанного водорода и т.п., вышеописанных процессов еще не до конца установлены и это требует проведения дополнительных исследований.
Профессор Кронин оценивает, что для доведения разработанных его группой технологий до уровня практического использования может потребоваться еще несколько лет исследований. И сейчас эта группа ищет заинтересованные организации, которые готовы вложить свои средства в эту перспективную разработку.
Свойства водорода — урок. Химия, 8–9 класс.
Физические свойства
Водород имеет молекулярное строение. Его молекула h3 состоит из двух атомов, соединённых ковалентной неполярной связью.
При обычных условиях водород — газ без цвета, запаха и вкуса. Это самое лёгкое вещество на Земле. Его плотность равна примерно \(0,9\) г/дм³. Водород в \(14,5\) раз легче воздуха.
В воде водород растворяется плохо (примерно \(2\) объёма на \(100\) объёмов воды), но может поглощаться некоторыми металлами. Например, \(1\) объём палладия может растворить до \(900\) объёмов водорода.
Температура кипения водорода низкая. Она равна \(–253\) °С. Ниже температура кипения только у гелия.
Молекулы водорода благодаря своей малой массе и размерам могут проникать сквозь стенки сосуда, в котором он содержится. Заполненный водородом шарик через некоторое время сдувается. При температуре \(300\)–\(600\) °С водород способен диффундировать сквозь стенки стеклянного или металлического сосуда.
Химические свойства
При комнатной температуре химическая активность водорода низкая. Она значительно повышается при нагревании.
1. Взаимодействие с простыми веществами-неметаллами (кроме фосфора, кремния, инертных газов).
- Водород реагирует с кислородом. При этом образуется вода:
2h3+O2=t2h3O.
Смесь водорода с кислородом или с воздухом взрывоопасна.
- При освещении или нагревании идёт реакция с хлором, и образуется хлороводород:
h3+Cl2=hν2HCl.
Подобным образом водород реагирует и с другими галогенами: фтором, бромом, иодом.
- Если водород пропускать над нагретой серой, то образуется сероводород:
h3+S=th3S.
- В присутствии катализатора при повышенном давлении водород реагирует с азотом с образованием аммиака:
N2+3h3=t,p,k2Nh4.
Обрати внимание!
В реакциях с неметаллами водород является восстановителем.
2. Взаимодействие с простыми веществами-металлами.
При нагревании водород реагирует со щелочными и щелочноземельными металлами с образованием гидридов:
2Na+h3=t2NaH,
Ca+h3=tCah3.
Обрати внимание!
В реакциях с металлами водород является окислителем.
3. Взаимодействие со сложными веществами.
- Водород способен реагировать с оксидами металлов (кроме оксидов щелочных и щелочноземельных металлов, бериллия, магния, алюминия):
WO3+3h3=tW+3h3O,
CuO+h3=tCu+h3O.
- Водород реагирует с угарным газом с образованием метилового спирта:
CO+2h3→Ch4OH.
- Водород вступает в реакции со многими органическими веществами.
Источники:
Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 137 с.