Как сделать из 14 вольт 12: Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

Содержание

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.  Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт.

То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.

 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей.

Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.  Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима.

Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А.

Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.

д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.

  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

Блок питания. Блок питания Как сделать из 12 вольт 3.7 вольта

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.

Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Или такие:

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Как сделать из 12 вольт 3.7 вольта. Как получить нестандартное напряжение. Повышающий преобразователь напряжения

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:
  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.

Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.1. Первая 0,7 Ом.

2. Вторая 1,3 Ом.

3. Третья 6,2 Ом.

Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства

Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.

Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.

Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).

Для удобства провода на 220 вольт берем с «крокодилами».

Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.

Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.

Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.

Наше устройство готово.Совет.Увеличить мощность преобразователя можно установив транзистор на радиатор.Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

kavmaster.ru

Светодиод 3 вольта

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

le-diod.ru

Модуль питания DC-DC, расширяющий возможности платы Arduino Pro mini.Я решил уменьшить габариты и стоимость своей домашней метеостанции на GY-BMP280-3.3 и Ds18b20.

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»


Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:Схема модуля с микросхемой AMS1117-3.3:
Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.
Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.
В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».
Даташит на микросхему AMS1117А:Удачных покупок!

Стоимость: ~23

Подробнее на Aliexpress

usamodelkina.ru

как сделать в авто с 12 вольт на 3 вольта?

погасить сопротивлением. Вначале переменным резистором, затем, замерив полученное, можно вставлять постоянное.

Схема электродвигатель-генератор.

Поставить стабилизатор на 3 вольта импортную кренку

Я бы просто спаял простейший стабилизатор напряжения: мощный проходной транзистор (например, КТ-805), стабилитрон (если не найдёте на нужное напряжение, то ставите любой другой, делитель и повторитель на транзисторе меньшей мощности) , резистор и парочка электролитических конденсаторов. (Вот типовая схема, электролитические конденсаторы не показаны) . А можно идти по другому пути: в компьютерных магазинах продают преобразователи, втыкаемые в гнездо прикуривателя, на выходе — различные напряжения, как больше, так и меньше 12 вольт (такие приборы используют, например, для питания нетбуков от бортсети) . Не знаю, правда, бывает ли на выходе 3 вольта.

touch.otvet.mail.ru

Делаем DC-DC преобразователь 12>3 Вольт своими руками

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт. Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки, на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.

После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.

Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.

Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Читайте так-же:
Преобразователь напряжения с 12 В на 220 В / 50 Гц
Повышающий преобразователь напряжения.
Питание цифрового фотоаппарата от внешнего аккумулятора
Автомобильное зарядное usb

acule.ru


Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства, но в этом случае радиолюбитель испытывает определенные затруднения в выборе нужной схемы с низким значением напряжения источника питания. Для примера, при повторении схем, описанных в , необходимо использовать 53 радиодетали в варианте на микросхемах или 72 радиодетали при транзисторном исполнении. Оптимальнее применить упрощенную схему . У этой схемы очевидные преимущества — один активный элемент (микросхема К157УД2), малое количество используемых деталей, достаточно хорошие характеристики. Но есть один существенный и вроде бы непреодолимый для низковольтного плейера недостаток: высокое напряжение питания микросхемы (в данном усилителе 9В). Из создавшегося положения есть выход — использовать преобразователь первичного напряжения питания плейера, обычно 3 В, во вторичное, более высокое, от которого уже и питать усилитель. В таком варианте для конструкции потребуются всего 10 элементов для преобразователя и 21 для усилителя.

Разработанный вариант преобразователя питания усилителя воспроизведения плейера (питание коллекторного электродвигателя осуществляется непосредственно от источника тока) имеет следующие технические характеристики:

Выходное напряжение, В, при выходном токе 15 мА и входном напряжении 2-3 В……………..7 — 10

Коэффициент пульсаций вторичного напряжения, %, не более……………………………………………0,001

Частота преобразования, кГц……………………………………………………………………………………………100…200

КПД, %, не менее………………………………………………………………………………………………………………… 55

Габариты, мм…………………………………………………………………………………………………………………..14х10х10

Преобразователь напряжения построен по схеме двухтактного генератора (рис. 1), что позволило получить достаточно высокий КПД. Роль переключателей выполняют транзисторы VТ1 и VТ2, которые поочередно открываются и закрываются подобно транзисторам симметричного мультивибратора. Фазировка их работы осуществлена соответствующим включением коллекторных и базовых обмоток трансформатора Т1. Делитель напряжения R2R1 обеспечивает запуск преобразователя. При включении напряжения питания падение напряжение на резисторе R2 (порядка 0,7 В) плюсом приложено к базам транзисторов и открывает их. Вследствие разброса параметров транзисторов токи коллекторов (и токи в коллекторных обмотках трансформатора Т1) не могут быть совершенно одинаковыми, а увеличение тока в одном из плеч генератора приводит к появлению положительной обратной связи на базу данного транзистора и, как следствие, лавинообразному нарастанию тока до его насыщения. При уменьшении скорости нарастания тока в коллекторной обмотке противоЭДС создает положительную связь на базу транзистора другого плеча, ток коллектора в первом плече спадает и лавинообразно увеличивается в цепи коллектора и обмотке другого транзистора. Таким образом, в магни-топроводе трансформатора наводится переменный во времени магнитный поток, который будет создавать во вторичной обмотке (выводы 7-8) ЭДС. Диодный мост VD1 — VD4 переменное напряжение преобразует в пульсирующее, а его сглаживание осуществляется элементами цепи питания усилителя воспроизведения. В устройстве преобразователя конденсатор С1 повышает надежность процесса самовозбуждения.

В конструкции применены самые распространенные транзисторы КТ315, причем можно взять транзисторы с любым буквенным индексом и параметром h 21Э >50. Однако не следует выбирать транзисторы с слишком большим h 21Э, так как при этом падает экономичность устройства. Использование других транзисторов (кроме КТ373Г) нежелательно, так как напряжение насыщения перехода коллектор-эмиттер рекомендованных транзисторов составляет всего 0,4 В, и они обладают небольшими габаритами. Резисторы и конденсатор любые малогабаритные. Тарнсформатор выполнен на кольцевом магнитопроводе К7Х4Х2 из феррита марок 600НН, 400НН. Коллекторная обмотка намотана в два провода (диаметром 0,2 мм) и содержит 11 витков, а базовая (тоже в два провода диаметром 0,13 мм) имеет 17 витков. Вторичная (выходная) обмотка содержит 51 виток провода диаметром 0,13 мм. Намотка производится внавал проводом ПЭВ или ПЭЛ. Вместо диодов КД522Б можно использовать германиевые малогабаритные диоды, при соответствующем изменении числа витков трансформатора. Это даже приведет к повышению КПД преобразователя на 10-15 %. Если в преобразователе применить двухполупериод-ную схему выпрямления с выводом от средней точки вторичной обмотки, то это позволит уменьшить число диодов на два и дополнительно повысить КПД, так как последовательно с нагрузкой (усилителем) будет включен один выпрямляющий диод вместо двух. При этом необходимо произвести перерасчет преобразователя.

Монтаж преобразователя — любой, его детали можно расположить на одной плате с деталями усилителя или оформить в виде отдельного блока. В авторской конструкции был использован второй вариант (рис. 2). Детали преобразователя склеены между собой в объемную конструкцию, состоящую из трех слоев. Слой первый — конденсатор С1 и резисторы R1, R2. Второй — трансформатор и диодный мост, спаянный из VD1- VD4. Третий — транзисторы VТ1, VТ2, спаянные между собой выводами эмиттеров. Перед установкой транзисторов для уменьшения габаритов блока их следует сточить с боков до длины 7 мм. Выводы трансформатора припаяны прямо к выводам деталей. Остальные соединения сделаны тонкими проводниками. После этого следует припаять входные и выходные проводники и проверить работоспособность блока. При использовании исправных элементов и правильно выполненном монтаже конструкция сразу заработает. Если этого не произошло, то надо проверить правильность подключения обмоток трансформатора. После этого всю конструкцию следует залить эпоксидной смолой. Полностью изготовленный и проверенный на работоспособность блок помещают в коробочку из тонкой бумаги, предварительно в ней сделать отверстия для выводов и заполнить объем компаундом.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Как понять, сколько еще протянет аккумулятор в автомобиле — Российская газета

Признаки аккумулятора, приходящего в негодность, хорошо известны. Машина заводится далеко не с первого раза или лишь после длительного звукового аккомпанемента стартера (более двух секунд). Самый крайний вариант — когда вам вообще не удается завести машину — при запуске вы видите короткое подмигивание «приборки», слышите опять-таки кряхтение стартера, но мотор в итоге так и не схватывает. Одновременно на «приборке» может зажечься индикатор разрядки аккумулятора (красный значок батареи). Как понять, что проблема кроется именно в подсевшей или вышедшей из строя АКБ?

Смотрим в АКБ и борткомпьютер

Проще и быстрее всего выяснить состояние АКБ, заглянув в ее индикаторный глазок. Через такую «бойницу» опытный водитель определит и плотность электролита, и его уровень.

Однако такие глазки имеются далеко не на всех аккумуляторах. Поэтому, оценив целостность АКБ (на корпусе не должно быть трещин и подтеков, а клеммы надежно закреплены), погружаемся в меню борткомпьютера.

В большинстве моделей допуски указываются в вольтах (бывает также в процентах). Данные можно снимать как при работающем, так и выключенном двигателе. Если машина не завелась, актуален последний случай — напряжение при таком раскладе должно быть в пределах 12,5-12,8 В, что сигнализирует об уровне заряда 90 — 100%. Если напряжение батареи менее 12 вольт, уровень ее заряда упал больше чем на 50 %, и АКБ необходимо срочно зарядить. Ну а если это значение снижено до 10,5 -11,5 В, вероятность, что вы заведетесь, ничтожно мала.

Вооружитесь тестерами

Если бортовой компьютер в вашем автомобиле не показывает напряжение, или вообще не входит в оснащение (бывает и так), приобретите мультиметр — компактное и недорогое устройство с дисплеем, которое показывает напряжение в бортовой сети. Включаем в мультиметре режим измерения напряжения (диапазон 20 Вольт).

Прикладываем черный щуп устройства к «минусу» аккумулятора, красный щуп, соответственно, — к плюсу и снимаем показания с дисплея мультиметра. При работающем моторе напряжение должно быть примерно 14,0-14,4 В.

При неработающем, повторимся, 12,5-12,8 В. Причем, проверяя напряжение при работающем моторе, вы получаете и еще одну важную информацию — идет зарядка от генератора или нет. Если напряжение после пуска двигателя стало даже меньше, чем было изначально, с генератором проблемы, или он приказал долго жить.

Как эксплуатация машины влияет на долговечность АКБ

Жизнь аккумуляторной батареи напрямую зависит от особенностей эксплуатации автомобиля, и если говорить в общих чертах, для АКБ плохо и когда вы ездите очень много (режим такси), и очень мало (возрастные и начинающие водители, водители-подснежники, водители, совершающие очень короткие поездки). В первом случае батарея постоянно заряжается, соответственно, резко снижается ее ресурс, во втором — генератор заряжает аккумулятор лишь эпизодически, что также негативно сказывается на здоровье АКБ.

Другие неблагоприятные сценарии — повышенные нагрузки и глубокие разряды АКБ. К примеру — когда на аккумулятор завязано множество потребителей или когда вы регулярно даете «прикурить» соседу по гаражу. Или, скажем, вы забываете выключить фары, часто слушаете музыку при выключенном моторе, высаживая АКБ.

Зимняя эксплуатация — еще одно «зло». Холодные энергозатратные запуски мотора по утрам, движение в пробках со всеми включенными потребителями (фары, дворники, обогревы стекол и сидений) точно не продлевают жизнь АКБ. Наконец, аккумулятор может запросто быть убит поврежденными участками проводки или неисправным генератором. В последнем случае даже слабое натяжение ремня генератора может резко снизить ресурс батареи, поскольку напрямую влияет на силу тока зарядки.

Как продлить жизнь АКБ

Помимо поддержания исправного технического состояния всех узлов автомобиля, крайне важна правильная эксплуатация машины в зимний период. Среди прочего следует отказаться от езды на короткие дистанции (АКБ потратит больше энергии, чем успеет восполнить), не мучить аккумулятор в момент запуска машины на холоде (допускается крутить стартер не более 10-15 секунд), а идеальным вариантом будет не держать автомобиль на морозе, а, скажем, арендовать теплый гараж.

Внимание следует уделить также такой, казалось бы, рутинной процедуре, как удалению налета с клемм АКБ. Окислы, подтеки электролита и следы коррозии напрямую влияют на способность батареи проводить ток. В обслуживаемых батареях нужно также следить за плотностью и уровнем электролита, доливая нужное количество дистиллированной воды и электролита. Раствор имеют оптимальную плотность (1.27 г/см3), которая измеряется специальным прибором — ареометром (денсиметром).

И, наконец, избегайте простоя аккумулятора. Даже если вы долго не эксплуатируете машину (например, зимой), регулярно заводите двигатель и давайте ему проработать примерно полчаса. Как вариант, зимой можно снять аккумулятор и зарядить его дома или в гараже. Однако следует помнить, что современные автомобили не любят даже краткосрочного удаления АКБ, поскольку в таком случае слетают различные настройки мультимедиа, акустики и других бортовых систем.

Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) ?

 В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ.

Закон Ома при понижении напряжения

 Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома. Закон описывает зависимость падения напряжения, тока от сопротивления.
Сам закон весьма понятен и схож с представлением таких физических событий как протекание жидкости по трубопроводу. Где жидкость, а вернее ее расход это ток, а ее давление это напряжение. Ну и само собой любые изменения сечения или препятствия в трубе для потока, это будет сопротивлением. Итого получается, что сопротивление «душит» давление, когда из трубы под давлением, могут просто капать капли, и тут же падает и расход. Давление и расход величины весьма зависящие друг от друга, как ток и напряжение. В общем если все записать формулой, то получается так:

R=U/I; То есть давление (U) прямо пропорционально сопротивлению в трубе (R), но если расход (I) будет большой, то значит сопротивления как такового нет… И увеличенный расход должен показывать на пониженное сопротивление.

 Весьма туманно, но объективно! Осталось сказать, что закон то этот впрочем, был получен эмпирическим путем, то есть окончательные факторы его изменения весьма не определены.
Теперь вооружившись теоретическими знаниями, продолжим наш путь в познании того, как же снизить нам напряжение.

Как понизить напряжение с 12 на 5 вольт с помощью резистора

 Самое простое это взять и использовать нестабилизированную схему. То есть когда напряжение просто понизим за счет сопротивления и все. Рассказывать о таком принципе особо нечего, просто считаем по формуле выше и все. Приведу пример. Скажем снижаем с 12 вольт до 5.

R=U/I. С напряжением понятно, однако смотрите, у нас недостаточно данных! Ничего не известно о «расходе», о токе потребления. То есть если вы решите посчитать сопротивление для понижения напряжения, то обязательно надо знать, сколько же «хочет кушать» наша нагрузка.

Эту величину вам необходимо будет посмотреть на приборе, который вы собираетесь питать или в инструкции к нему. Примем условно ток потребления 50 мА=0,05 А. Осталось также еще заметить, что по этой формуле мы подберем сопротивление, которое будет полностью гасить напряжение, а нам надо оставить 5 вольт, то 12-5=7 вольт подставляем в формулу.
R= 7/0,05=140 Ом нужно сопротивление, чтобы после из 12 вольт получить 5, с током на нагрузке в 50 мА.
 Осталось упомянуть о не менее важном! О том, что любое гашение энергии, а в данном случае напряжение, связано с рассеиваемой мощностью, то есть наш резистор должен будет «выдержать» то тепло, которое будет рассеивать. Мощность резистора считается по формуле.
P=U*I. Получаем. P=7*0,05=0,35 Вт должна быть мощность резистора. Не менее. Вот теперь курс расчет для резистора можно считать завершенным.

Как понизить напряжение с 12 на 5 вольт с помощью микросхемы

 Ничего принципиально не меняется и в этом случае. Если сравнивать этот вариант понижения через микросхему, с вариантом использующим резистор. По факту здесь все один в один, разве что добавляются полезные «интеллектуальные» особенности подстройки внутреннего сопротивления микросхемы исходя из тока потребления. То есть, как мы поняли из абзаца выше, в зависимости от тока потребления, расчетное сопротивление должно «плавать». Именно это и происходит в микросхеме, когда сопротивление подстраивается под нагрузку таким образом, что на выходе микросхемы всегда одно и тоже напряжение питания! Ну и плюсом идут такие «полезные плюшки» как защита от перегрева и короткого замыкания. Что касательно микросхем, так называемых стабилизаторов напряжения на 5 вольт, то это могут быть: LM7805, КРЕН142ЕН5А. Подключение тоже весьма простое.

Само собой для эффективной работы микросхемы ставим ее на радиатор. Ток стабилизации ограничен 1,5 -2 А.
Вот такие вот принципы понижения напряжения с 12 на 5 вольт. Теперь один раз их поняв, вы сможете легко рассчитать какое сопротивление надо поставить или как подобрать микросхему, чтобы получить любое другое более низкое напряжение.
Осталось сказать пару слов о ШИМ.

 Широко импульсная модуляция весьма перспективный и самое главное высокоэффективный метод питания нагрузки, но опять же со своими подводными камнями. Вся суть ШИМ сводится к тому, чтобы выдавать импульсами такое напряжение питание, которое суммарно с моментами отсутствия напряжения будет давать мощность и среднее напряжение достаточное для работы нагрузки. И здесь могут быть проблемы, если подключить источник питания от одного устройства к другому. Ну, самые простые проблемы это отсутствие тех характеристик, которые заявлены. Возможны помехи, неустойчивая работа. В худшем случае ШИМ источник питания может и вовсе сжечь прибор, под которые не предназначен изначально!

Как получить нестандартное напряжение — Практическая электроника

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это  такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты  с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди?  Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, усилители  и тд.

Но, увы, наш мир не идеален. Иногда просто  ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания.  Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его.  Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Регулятор напряжения на LM317T


Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно здесь )

Интегральный стабилизатор и стабилитрон


На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!

Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:

Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать здесь.

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт.  8 Вольт – уже нестандартный ряд напряжения ;-).  Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений ;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:

Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.

Теперь берем стабилитрон на Uстабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.

Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает!  Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

[quads id=1]

Интегральный стабилизатор и диод


Есть  также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта?  Именно этим свойством диода и воспользуемся ;-).

Итак, схему  в студию!

Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.

Итак, что на выходе?

Почти 5.7 Вольт ;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:

На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Вот такими простыми способами можно получить нестандартное напряжение.

на 12, 14 или 18 вольт, схема, импульсный или трансформаторный

Автор Акум Эксперт На чтение 14 мин Просмотров 25к. Опубликовано Обновлено

Автономный электроинструмент — это, конечно, очень удобно. Но, во-первых, аккумулятора обычно не хватает для проведения всех работ, во-вторых, при выходе батареи из строя приходится покупать новую, цена которой составляет 80 % от цены того же шуруповёрта. В этой статье мы изготовим сетевой блок питания для аккумуляторного шуруповёрта, который выручит в обоих случаях — ведь нередко на месте проведения работ есть розетка.

Общие сведения о питании и мощности шуруповёртов

Сначала рассмотрим электрическую составляющую аккумуляторного шуруповёрта. Инструмент представляет собой низковольтный двигатель постоянного тока с редуктором, который получает питание от аккумулятора. Обороты патрона регулируются при помощи планетарной системы редуктора и электронного ШИМ-узла, совмещённого с кнопкой включения. В зависимости от класса и мощности инструмента, он может питаться напряжением 12 В, 14 В или 18 В.

Один из вариантов электрической схемы шуруповёрта 

В качестве батареи питания используется набор никель-кадмиевых или литиевых аккумуляторов. Последние дороже, но с лучшими характеристиками при небольших габаритах. Что касается потребляемого от батареи тока, он зависит от мощности применяемого двигателя и может достигать 7–10 А для простых бытовых моделей и 30–40 А — для профессиональных.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Ток, потребляемый шуруповёртом, конечно, непостоянный и зависит от нагрузки. В момент пуска и при затягивании шурупа он максимален, на холостом ходу и лёгком вворачивании может уменьшаться в разы.

Использование светодиодного драйвера

Для 12-вольтового инструмента такой драйвер — самый простой вариант, хотя и не самый дешёвый. Единственное условие — мощность драйвера должна быть на 10–15 % больше мощности инструмента. В противном случае блок питания выйдет в защиту уже при пуске инструмента, а если запустит его, то не позволит развить достаточную мощность для затягивания шурупа.

Если, к примеру, 12-вольтовый шуруповёрт потребляет ток в 10 А, то мощность блока питания должна быть хотя бы 130 Вт. Для 30-амперного инструмента понадобится уже 400-ваттный блок питания. Найти такой прибор, конечно, не проблема, но стоимость его может превышать стоимость самого шуруповёрта.

Драйвер для светодиодной ленты самый простой, но не самый дешёвый 

Как переделать шуруповёрт под такой блок питания? Если штатная батарея выходит из строя, то мы её просто разбираем, вынимаем аккумуляторы, а к клеммам подачи напряжения на инструмент припаиваем провода, подключенные к выходным зажимам драйвера, обязательно соблюдая полярность. Сам драйвер подключаем к сети через входные клеммы — и переделка окончена. Вставляем «батарею» в шуруповёрт — и пользуемся.

Если аккумулятор исправен, то его, конечно, разрушать не надо. Просто разбираем шуруповёрт и подпаиваем колодку питания к питающим клеммам самого инструмента. Колодку, естественно, выводим наружу, провод питания оснащаем ответной частью разъёма. Соединили разъём — работаем от сети. Отключили БП, установили батарею — и у нас автономный инструмент.

Разъём поможет удобно хранить и транспортировать шуруповёрт с сетевым питанием и оперативно отключить БП для штатного режима работы от АКБ

Важно! 10 А — приличный ток, поэтому сечение проводов должно быть достаточно большим, а их длина как можно меньше (в разумных пределах). В противном случае на питающих проводах будет большое падение напряжения, и шуруповёрт не разовьёт нужную мощность.

Переделка электронного трансформатора

Неплохой и достаточно компактный блок питания можно сделать из так называемого электронного трансформатора (ЭТ), предназначенного для питания низковольтных галогенных ламп.

Электронный трансформатор для питания 12-вольтовых галогенных ламп

Но чтобы использовать трансформатор совместно с шуруповёртом, его (блок) необходимо доработать. Взглянем на классическую схему простейшего ЭТ.

Электрическая схема электронного трансформатора

Это простейший импульсный понижающий источник питания, собранный по двухтактной схеме. Выходное напряжение снимается со вторичной обмотки выходного трансформатора. Схема, приведённая на рисунке, конечно, не единственная. Есть приборы проще, есть сложнее. Есть со стабилизацией выходного напряжения, системой плавного пуска и защитой от короткого замыкания. Но то, что нас интересует, является неизменной частью любого электронного трансформатора. Так, в чем трудность?

Проблема заключается в том, что выходное напряжение подобных БП переменное с частотой десятки килогерц, да ещё и промодулированное частотой 50 Гц. Оно годится для питания ламп накаливания, но не подходит для шуруповёрта. Значит, его нужно выпрямить и сгладить. Для этого используем диод VD1 и два сглаживающих конденсатора — С1 и С2, подключив их по схеме, приведённой ниже.

Схема доработанного электронного трансформатора

Лампа Н1 служит нагрузочной, когда шуруповёрт отключён. Она необходима для старта преобразователя — без нагрузки он просто не запустится. Высоковольтный электролитический конденсатор можно взять из БП для компьютера или любого другого устройства, скажем, из телевизора с импульсным блоком питания. Он находится в корпусе электронного трансформатора. Диод и конденсатор помещают в корпус инструмента, а лампу устанавливают так, чтобы она ещё и рабочее место освещала — убила, как говорится, сразу двух зайцев. Такая лампа будет много удобнее штатной подсветки, которая включается только вместе с инструментом. Вслепую целишься в темноте, потом запускаешь шуруповёрт и смотришь, куда попал.

Диод КД2960 представляет собой быстродействующий выпрямительный диод, рассчитанный на ток 20 А и выдерживающий обратное напряжение 1200 В. Его зарубежный аналог — 20ETS12. Заменить этот диод обычным выпрямительным не получится — у него слишком низкое быстродействие, и на частоте в десятки килогерц он будет больше греться, чем выпрямлять.

Но замена есть. Вполне подходит диод Шоттки, выдерживающий ток 15–20 А и обратное напряжение не ниже 25 В. Найти такие диоды можно в блоках питания ПК. Там они служат для этих же целей. Диод, конечно, нужно поставить на теплоотвод.

Лампочка миниатюрная. Её можно найти в советских новогодних гирляндах или использовать две на 6,3 В, включённые последовательно. Собираем выпрямитель, размещаем его в корпусе инструмента, выводим через проделанное отверстие провода, подпаиваем одну часть разъёма. Вторую подпаиваем к проводам от трансформатора — и доработка закончена. Поскольку напряжение на выходе электронного трансформатора переменное, полярность подключения проводов от ЭТ к выпрямителю можно не соблюдать.

Как указывалось выше, существуют трансформаторы, обеспечивающие плавный пуск галогенных ламп. Подойдут ли они нам? Вполне. Как только мы подключим ЭТ к сети, он запустится и в течение 1–3 секунд выйдет на рабочий режим — это будет хорошо заметно по плавному разгоранию лампы Н1. После этого инструментом можно пользоваться без проблем.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Важно! Выбирая электронный трансформатор без защиты от перегрузки, необходимо обеспечить запас его мощности в 30–40 %. В противном случае блок либо не будет «тянуть» инструмент, либо (что более вероятно) просто сгорит.

Другие варианты импульсных блоков питания

Какие ещё есть варианты питания 12-вольтового шуруповёрта? Первое, что приходит на ум, — . Прелесть решения заключается в том, что, в отличие от предложенных драйверов и электронных трансформаторов, подобные блоки питания могут быть и на 15, и на 19 В. То есть подобрав соответствующий БП, можно питать им инструмент на 14 и 18 В.

К сожалению, такой вариант работать не будет, поскольку блоки питания от ноутбука не смогут обеспечить необходимым током даже самый простой и маломощный шуруповёрт. Максимум, что можно от них получить, — 4–5 А. Десятиамперных БП этого типа просто не существует.

Этот достаточно мощный БП для 19-вольтового ноутбука выдаст ток не более 4,75 А 

Использование универсальных БП

Какие у нас ещё есть варианты? Можно использовать для питания шуруповёрта так называемые универсальные блоки питания. На фото, приведённом ниже, БП выдает сразу несколько напряжений и подходит для питания как 12-вольтового, так и 18-вольтового инструмента мощностью до 120 Ватт.

 

Мощный универсальный импульсный блок питания

Но тут опять всё упирается в цену. Стоимость такого БП окажется выше цены на сам инструмент, а вдобавок мы получаем за эти деньги кучу переходников, которые будут валяться без дела.

Самодельный блок питания для шуруповёрта

Если мы имеем знания по электронике, то сможем собрать импульсный блок питания для шуруповёрта своими руками — соответствующих схем много. В качестве примера рассмотрим относительно простую конструкцию.

Схема самодельного импульсного блока питания для шуруповёрта

Как она работает? Сетевое напряжение выпрямляется диодным мостом, собранным на диодах VD1–VD4, сглаживается конденсатором С1 и поступает на мощный двухтактный автогенератор, собранный на полевых транзисторах VT2, VT3 и трансформаторе Т1, обеспечивающим вместе с обмоткой 2 трансформатора Т2 автогенератору положительную обратную связь.

Цепь, собранная на транзисторе VT1, обеспечивает начальный запуск генератора и после этого в процессе не участвует — её блокирует диод VD8. Нагрузкой автогенератора служит понижающий трансформатор Т2. Пониженное напряжение с его обмотки 3 выпрямляется мостом VD7, сглаживается конденсатором С5 и подаётся на инструмент. Ёмкость конденсатора выбрана достаточно большая для обеспечения высокого пускового тока шуруповёрта.

Т1 намотан на ферритовом кольце типоразмера 12х8х3. Все обмотки одинаковы и имеют по 20 витков провода ПЭВ 0.33. Т2 намотан на кольце 40х25х11. Обмотка 1 имеет 100 витков провода ПЭВ 0.54. Обмотка 2 — 9 витков провода ПЭВ 0.33, обмотка 3 — 13 витков провода ПЭВ 0.96. Феррит бывает марки 1000НМ, 2000НМ или 3000НМ. Диодный мост VD4 можно собрать на четырёх быстродействующих диодах, выдерживающих ток 10 А. Транзисторы VT2 и VT3 необходимо установить на радиаторы.

Полезно! Предлагаемый блок питания рассчитан на выходное напряжение 18 В. Если необходимо получить другое напряжение, достаточно изменить количество витков обмотки 3 трансформатора Т2.

Использование БП от компьютера

Ну и закончим разговор об импульсных блоках питания для работы с шуруповёртом 12 В. Да, он будет великоват, но зато купить такой блок, конечно, БУ можно недорого, а переделка очень проста. Правда, питать он сможет только 12-вольтовый инструмент. При желании, конечно, можно переделать БП компьютера и на 18 В, но переделка достаточно сложна и потребует глубоких знаний в электронике. Перед покупкой БП смотрим, выдаст ли он необходимый нам ток по шине 12 В. (Все выдаваемые им токи указаны прямо на корпусе).

Этот БП в состоянии выдать 11 А по 12-вольтовой шине, 1 и 13 А — по шине 2

Как видим на фото, выдаст и даже с запасом — если соединить шины параллельно, можно получить ток в 24 А. Можно было бы взять устройство и слабее, но что есть, то есть. Вскрываем прибор, вынимаем плату и выпаиваем все , оставив лишь зелёный (включение БП), два чёрных, два жёлтых (шина 1+12 В) и красный (+5 В).

Такой пучок проводов нам просто не нужен, лишние выпаиваем

Полезно! Если мы хотим увеличить мощность, соединив 12-вольтовые шины параллельно, то оставляем и два жёлто-чёрных провода — шина 2 + 12 В.

Блок питания с выпаянными лишними проводами

Соединяем чёрный с чёрным, жёлтый с жёлтым. По два мы оставили для увеличения общего их сечения и меньшего падения напряжения. Теперь зелёный впаиваем на место любого из выпаянных чёрных. Этим мы дадим команду на безусловное включение блока питания при подаче на него сетевого напряжения.

Остался красный. Зачем он нужен? Дело в том, что некоторые БП контролируют наличие нагрузки на шине +5 В. Без нагрузки они просто сразу выходят в защиту. Итак, подключаем наш доработанный источник к сети и измеряем напряжение между чёрными и жёлтыми проводами. Есть 12 В?

Подключаем к этим же проводам автомобильную лампочку. Напряжение пропало? Блоку питания нужна базовая нагрузка. Между чёрными и красным проводами подключаем небольшую нагрузку — ту же 12-вольтовую лампочку от автомобильных габаритов. Если БП не отключается, то нагрузка не нужна, и красный провод можно выпаять. Осталось собрать БП, а к чёрным и жёлтым проводам припаять колодку — к ней будет подключаться инструмент. Чёрный провод будет минусом, жёлтый — плюсом питания.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Важно! Разъём для подключения инструмента необходимо использовать с ключом, исключающим неправильное подключение и переполюсовку. В противном случае мы просто выведем шуруповёрт из строя, подав на электронный регулятор скорости вращения напряжение обратной полярности.

В этой конструкции для подключения шуруповёрта используется встроенное в БП гнездо, служившее ранее для питания монитора

Вот и всё, подключаем шуруповёрт к БП, включаем шнур питания источника в сеть, щёлкаем выключателем (если он есть) и работаем.

Если такого выключателя нет, то блок питания запустится сразу после подключения к розетке 

Схема трансформаторного блока питания шуруповёрта

Напоследок сделаем своими руками трансформаторный блок питания для шуруповёрта 12, 14 или 18 В. Такой источник, конечно, будет достаточно громоздким, но прелесть конструкции заключается в её простоте. С повторением схемы справится и начинающий радиотехник, имеющий лишь общие знания по электротехнике.

Для этого самодельного блока питания понадобится трансформатор, способный выдать необходимый нам ток при напряжении 12–13 В (для 12-вольтового инструмента), 14–16 В (для 14-вольтового) или 18–20 В для 18-вольтового инструмента. Ещё придётся найти 4 мощных выпрямительных диода и несколько электролитических конденсаторов.

Если у нас шуруповёрт на 12 вольт, потребляющий ток до 10 А (большинство бытовых), то можно взять унифицированный анодно-накальный трансформатор ТАН-138-127/220-50 (ТАН-138 220-50), имеющий 2 обмотки по 6,3 В при токе 10 А. Весит он, правда, более 6 кг.

Обмотка

Напряжение, В

Номинальный ток, А

1–2, 4–5

110

3,9/2,3

2–3, 5–6

7

3,9/2,3

7–8

355

0,285

16–17

355

0,285

9–10

200

0,25

18–19

200

0,25

11–12

25

0,285

20–21

25

0,285

13–14 (15)

5 (6,3)

10

22–23 (24)

5 (6,3)

10

Назначение выводов обмоток унифицированного трансформатора ТАН-138-127/220-50

Ещё один вариант — накальный трансформатор ТН-61-127/220-50 (ТН-61 220-50). Он сможет обеспечить ток 8 А при напряжении 12,6 В (две обмотки) или 18,9 В (3 обмотки). Весит он хоть и поменьше, но тоже немало — 3 кг.

Обмотка

Напряжение, В

Номинальный ток, А

1–1а, 4–4а

3,2

1,66/0,95

1–1б, 4–4б

6,3

1,66/0,95

1–2, 4–5

110

1,66/0.95

1–3, 4–6

127

1,66/0,95

4–8

6,3

6,1

9–10

6,3

8

11–12 (13)

5 (6,3)

8

14–15 (16)

5 (6,3)

8

Назначение выводов обмоток унифицированного трансформатора ТН-61-127/220-50

Если мы обладаем соответствующими знаниями и навыками, то для изготовления БП можно использовать любой разборный сетевой трансформатор мощностью 200–250 Вт. Разбираем, сматываем все вторичные обмотки, оставив лишь сетевую, и вместо них наматываем одну вторичную на нужные напряжение и ток.

Если в нашем распоряжении есть трансформатор с тороидальным сердечником, то лучше предпочесть его. Перематывать сложнее, но, во-первых, его не нужно разбирать, значит, не будет проблем с гудением после сборки. Во-вторых, габариты такого трансформатора при той же мощности намного меньше.

При желании в магазине можно найти и готовый трансформатор на нужные напряжение и ток

Какие нужны диоды? Подойдут любые выпрямительные, выдерживающие ток 10–20 А и обратное напряжение не ниже 30–40 В. Конденсаторы электролитические на напряжение не ниже 25 В (для 12-вольтового блока питания) и один бумажный неполярный с ёмкостью 1 мкФ на рабочее напряжение не ниже 400 В. Впрочем, без последнего можно обойтись. А теперь взглянем на схему.

Схема трансформаторного блока питания для шуруповёрта

Сетевое напряжение поступает на трансформатор Tr1, понижается до необходимой величины, выпрямляется диодным мостом VD1–VD4 и по проводам подаётся на инструмент, в рукоять или отсек, из которого удалены неисправные аккумуляторы, установлены конденсаторы С3–С5. Они являются накопителями энергии и обеспечивают высокий пусковой ток во время включения шуруповёрта.

Конденсатор С1, включённый параллельно сетевой обмотке трансформатора, уменьшает реактивную составляющую индуктивной нагрузки (трансформатора) и несколько увеличивает КПД устройства. Как указывалось выше, без него можно обойтись. Собирая прибор, не забываем установить диоды на радиаторы, электрически не соединённые друг с другом. Если радиатор общий (к примеру, металлический корпус или шасси блока питания), то диоды на него устанавливаем через слюдяные изолирующие прокладки.

Важно! Соединяя блок питания и шуруповёрт, следует строго соблюдать полярность. В противном случае конденсаторы С3–С4 просто взорвутся, а электронный регулятор оборотов инструмента выйдет из строя. Здесь удобно использовать разъёмы с ключами, не допускающими неправильное соединение вилки с розеткой.

Вот мы и выяснили, как запитать аккумуляторный шуруповёрт от сети. Теперь сможем подобрать подходящий для этих целей блок питания или изготовить его самостоятельно.

Спасибо, помогло!27Не помогло1

LX — 14 В в системе 12 В

Underwriting Laboratories (UL), независимая лаборатория по испытаниям безопасности для всего электрического оборудования, позволяет производителям низковольтных трансформаторов, таким как FX, производить трансформаторы с выходным напряжением до 15 В для компенсации напряжения. падение через систему. Падение напряжения — это потеря электрического давления от источника (трансформатора) к осветительным приборам в любой данной цепи. При очень длинных участках цепи нередко она теряет от 3 до 4 вольт.

Основная цель — минимизировать падение напряжения путем установки питающего кабеля подходящего размера (исходный участок) в каждую зону и убедиться, что каждое приспособление на каждом участке кабеля получает напряжение от 10,5 до 11,5 В переменного тока или от 10 до 15 В переменного тока для Светодиодные светильники. Чтобы поддерживать 10,5–11,5 В на последнем приспособлении (для светильников накаливания) в цепи (последнее приспособление на иллюстрации гирляндной цепи ниже), установщик мог выбрать использование отвода 14 В на трансформаторе. Из-за падения напряжения цепь может потерять 3 вольта (или более) от трансформатора до последнего прибора.Единственный способ, которым последний прибор получит 11 вольт, — это использовать отвод 14 вольт на трансформаторе. Если система была установлена ​​последовательно (рисунок гирляндной цепи ниже) и первый прибор в цепи находится рядом с трансформатором, он вполне может получать 14+ вольт, поэтому он перегорает с высокой частотой!

Метод последовательного подключения (рекомендуется для светодиодных систем):

К сожалению, если схема была установлена, как показано на схеме выше, для светильников накаливания, первый прибор всегда будет получать больше напряжения, чем последний прибор в цепи.Следовательно, первое приспособление обычно сгорает намного быстрее, чем должно… особенно если цепь была подключена к отводу 14 вольт. Решением этого сценария является изменение схемы подключения, как показано ниже. «Тройник», соединяющий цепь, уравновешивает нагрузку по напряжению намного лучше, чем метод гирляндной цепи. Метод гирляндной цепи хорошо работает для светодиодных светильников, чтобы поддерживать на них 10-15 вольт переменного тока.

Метод тройника (рекомендуется для систем накаливания):

Нельзя ли просто переместить кабель к ответвлению на 11 вольт?

Да, это вариант.Однако теперь первый прибор будет получать правильное напряжение … но последний прибор будет получать 8 вольт или меньше, в результате чего прибор будет производить очень тусклый световой поток.

Как обслуживать аккумуляторы — Магазин аккумуляторов глубокого разряда

ОСНОВЫ БАТАРЕЙ
* Важные элементы Выделенные / цветные

Перво-наперво. Аккумулятор на 12 В — это не аккумулятор на 12 В. Двенадцать вольт — это всего лишь номинальный, удобный термин, используемый для отличия одной батареи от другой.Полностью заряженная 12-вольтовая батарея, которой позволено «отдохнуть» в течение нескольких часов (или дней) без снятия нагрузки (или зарядки на нее), уравновесит свой заряд и измеряет около 12,6 вольт между клеммами.

Когда батарея показывает только 12 вольт в вышеуказанных условиях, она почти полностью разряжена. Фактически, если напряжение покоя батареи составляет всего 12,0–12,1, это означает, что остается только 20–25% ее полезной энергии. Он либо кончился, либо он прошел глубокий цикл, и аккумулятор может быть подвергнут глубокому циклу только ограниченное количество раз, прежде чем он действительно разрядится.

12-вольтовые батареи поставляют полезную энергию только в ограниченном диапазоне — от более 14 вольт (при полной зарядке и отключении) до 10,5 вольт при использовании / под нагрузкой (когда свет тусклый, насосы стонут, а изображение на телеэкране становится мельче). Никакая 12-вольтовая батарея не будет оставаться при напряжении выше 14 вольт более секунды, если она не заряжается. Нижний предел составляет 10,5 вольт (используется при тестировании) и явно неудовлетворителен для практического использования. Опытные автомобилисты стараются использовать не более 20–50% энергии, доступной в аккумуляторе, перед подзарядкой.Это означает, что они никогда не позволяют напряжению покоя опускаться ниже 12,5. Они никогда не используют более 50% перед подзарядкой (напряжение покоя 12,3 В), за исключением чрезвычайных ситуаций. Они знают, что если напряжение покоя когда-либо достигнет 12,1, у них будет глубокая разрядка в течение одного цикла, и что батарея годна только для такого количества циклов (от 20 в автомобильной батарее до 180 в батарее для гольф-кары, с типичным RV / морской аккумулятор годен не более чем на 30).

Вт = Вольт x А Пример: 60 Вт = 12 В x А и 60 ÷ 12 = 5 ампер

НАПРЯЖЕНИЕ ЗАРЯДКИ АККУМУЛЯТОРА
Напряжение зарядки отличается.Еще несколько основ: если вы читаете статьи о том, как течет электричество, вы увидите сравнения того, как течет вода. В определенной степени это нормально, но вода также течет под действием силы тяжести. Электричество нет, его нужно «проталкивать» (точно так же, как воду иногда нужно откачивать).

На одном конце провода должно быть больше «сока», чем нужно на выходе, иначе электричество не пойдет. Провод, по которому вы прокачиваете электричество, и соединения в линиях сопротивляются потоку. Вы должны преодолеть это. Точно так же батареи обладают естественным сопротивлением брать заряд из-за их химического состава.Вы должны подать в аккумулятор больше электричества, чем хотелось бы, иначе он не будет полностью заряжен. Чтобы зарядить стандартную 12-вольтовую батарею, вы должны довести ее до 14 вольт (величина зависит от типа батареи). .

При проверке батарей (в состоянии покоя) используйте эти «ориентиры напряжения».

12,6 В = 100%
12,5 В = 70%
12,3 В = 50%
11,4 В = 20%

Типичный аккумулятор с мокрым аккумулятором (свинцовые пластины в смеси серной кислоты и воды) необходимо зарядить до примерно 14.+ вольт, чтобы правильно распределить эти забавные мелочи, называемые электронами, по пластинам. Как только это будет сделано, аккумулятор может отдохнуть. При этом электроны распределяются и в конечном итоге уравновешиваются на уровне 12,6 вольт (более или менее, в зависимости от типа батареи и ее состояния). Это ваша отправная точка.

БОЛЬШЕ УСИЛИТЕЛЯ И НАПРЯЖЕНИЯ
Как упоминалось ранее, перед зарядкой необходимо снизить напряжение аккумулятора примерно до 12,3 В примерно до . Очевидно, дело не только в этом.Амперы — это мера фактической доступной мощности. Обычно они переводятся в ампер-часы (АЧ). Думайте об этом как о количестве (номинальной) 12-вольтовой мощности, которую вы можете потреблять от батареи в течение определенного времени. Это не просто три десятых вольта. Это 12 (номинальное) вольт в течение определенного времени. Три десятых — это не более чем разница в измерениях — как разница между тремя четвертями бака с бензином и половиной бака.

Рассматривайте напряжение как две вещи: во-первых, силу, которая толкает электроны — во-вторых, как удобное измерение.

Посмотрите на амперы как на две вещи: во-первых, количество энергии (например, галлон газа) — во-вторых, как удобное измерение. Из (опять же номинального, не забывайте) 12-вольтовой ванны энергии вы можете извлечь столько ампер энергии.

Имейте в виду, что законы физики не позволяют вам получить от чего-то больше, чем вы вкладываете в это! Имейте в виду, что отходы (эти провода, содержимое батареи и т. Д.) Мешают вам вынуть столько, сколько вы вложили. Имейте в виду, что вам придется потреблять примерно на 10% больше электроэнергии, чем вы потребляете (высокий школьная физика).Аккумуляторный банк подобен «денежному» банку или текущему счету: если вы постоянно берете больше, чем кладете, у вас рано или поздно возникнут проблемы.

ПОДРОБНЕЕ О ЗАРЯДКЕ АККУМУЛЯТОРОВ
Не все батареи одинаковы. Стандартные аккумуляторные батареи с жидкими элементами можно заряжать до 14 + вольт (обычно 14,3, но зависит от производителя). Гелевые батареи и другие герметичные батареи никогда не следует заряжать до напряжения более 14,1 В (опять же, это может варьироваться в зависимости от производителя). И эти цифры относятся только к случаю, когда зарядное устройство будет отключено при достижении этих уровней (как в случае с генератором, солнечной системой, портативным зарядным устройством или генератором переменного тока двигателя).Когда напряжение падает (обычно до 12,6–13,3), зарядка начинается снова вручную или с помощью автоматического регулятора. Также обратите внимание: максимальное напряжение зарядки, указанное производителем для гелей, является постоянным, а не прерывистым. Это означает, что кратковременные перенапряжения перед отключением регулятора допустимы.

Продолжительная зарядка, при которой батареи «плавают» при постоянной зарядке (как в преобразователе RV или с помощью автоматического портативного зарядного устройства), не должна выполняться при температуре более 13.8 вольт (а 13,65 продлевает срок службы батарей). Предполагается, что аккумуляторы будут «заряжены» до разумного уровня, не недозаряжая или не перезаряжая их (предполагается, что вы «восполните их», управляя автомобилем). К сожалению, многие дешевые зарядные устройства и преобразователи для жилых автофургонов плохо регулируются. Чрезмерная зарядка быстро разрушает батареи. Недозаряд также разрушает батареи, но более незаметно, поскольку батарея расслаивается и больше не поддерживает заряд. Фактически, батарея RV на 100 ампер / час становится батареей на 10 ампер / час после постоянной недостаточной зарядки.Он будет считывать полное напряжение, но как только на него будет возложена небольшая нагрузка, оно упадет до нуля. Жители автофургонов, которые остаются подключенными к электросети в течение длительного времени, часто никогда не узнают, что это произошло, пока они не отключатся от сети, потому что трансформатор преобразователя также подает питание непосредственно на цепи автофургона, пока он заряжает аккумулятор — или пытается это сделать.

ВЫРАВНИВАНИЕ АККУМУЛЯТОРА
Иногда выравнивающий заряд может исправить описанную выше ситуацию. НО, никогда не пытайтесь выровнять действительно герметичный влажный аккумулятор, гелевый аккумулятор или аккумулятор AGM! При этом нужно быть очень осторожным! Аккумулятор переходит в «газ» (пузырьки в элементах, выделяется газообразный водород).Он не должен быть резким, брызгать кислотой, просто пузыриться от легкого до быстрого, но это требует осторожности. Обычно это делается путем подключения ручного зарядного устройства, затем повышения напряжения до 14,1 или 14,3 и, вместо того, чтобы останавливаться, как обычно, поддерживая его на этом уровне примерно при 5-амперном заряде в течение трех-шести часов (до тех пор, пока напряжение не достигнет 14,5–14,3 мА). 15). Сделайте это, сняв крышки со стандартной батареи, чтобы вы могли видеть, что происходит. Для одного из этих уравнительных зарядов обычно обычно около трех часов.

Соблюдайте меры предосторожности, используйте защитные очки, хорошо вентилируйте и т. Д.

Некоторые производители аккумуляторов рекомендуют выполнять выравнивание таким образом каждые три месяца (или после 5 глубоких циклов). Я думаю, что износ 12-вольтной батареи из-за выравнивания часто приносит больше вреда, чем он того стоит.

Батареи, которые держат на уровне 13,8 или около того в течение длительного времени, становятся ленивыми и им там нравится. Им тоже нужна некоторая «уравновешенность». К счастью, не так резко, как указано выше. Если вы едете время от времени, генератор вашего двигателя должен делать это (при условии, что регулятор настроен правильно). То же самое и с солнечной электрической системой или хорошим, хорошо регулируемым независимым зарядным устройством.По крайней мере, время от времени используйте ручное зарядное устройство, когда оно припарковано и подключено к сети, но просто доведите напряжение до 14 + (в зависимости от ситуации) и остановитесь на этом.

Аккумулятор для тележки для гольфа
Шестивольтовые аккумуляторы для тяжелых условий эксплуатации (например, для гольф-каров и т. Д.) Отличаются. Их тяжелые пластины и другие конструктивные особенности позволяют проводить периодическое выравнивание. Я рекомендую такую ​​же скорость зарядки 5 ампер в течение трех-шести часов (пока напряжение не достигнет максимального значения 16,5) каждые шесть месяцев или около того. Это бывает по-разному, некоторые люди делают это ежемесячно (что может означать другую проблему).

СКОРОСТЬ ЗАРЯДА / РАЗРЯДА АККУМУЛЯТОРА
В справочниках по аккумуляторным батареям есть ссылки на правильную скорость зарядки. C / 10, C / 20 и т. Д. Иногда это может сбивать с толку. Что вам нужно знать, так это то, что это означает «время», необходимое для полной зарядки «разряженной» батареи при определенной мощности. Например: батарея 105 Ач полностью перезарядится (полностью разряженная) примерно за 10 часов при примерно 10 амперах заряда (C / 10) или примерно за 20 часов при 5 амперах заряда (C / 20). Более высокие скорости зарядки, такие как C / 5 или C / 8, не следует использовать с большинством аккумуляторов, потому что высокая сила тока, необходимая для такой быстрой зарядки, повреждает аккумулятор.C / 5 на разряженной батарее 105 Ач требует более двадцати ампер. (Это достаточная причина держаться подальше от устройств быстрой зарядки на заправочных станциях, где огромное количество ампер разряжает вашу батарею, когда они «заряжают» (разрушают) ее за 20 минут. И когда вы покупаете батарею с полки, не делайте этого. Не позволяйте парню «поставить его на зарядное устройство всего на несколько минут», иначе он выйдет из строя еще до того, как вы его начнете использовать. что пошло не так сначала.Конвертер работает? Напряжение слишком высокое? Слишком низко? Это связано с аккумулятором? Перегорел предохранитель? Обрыв провода? Контакты грубый? Включите или выключите выключатель на домике на колесах (в зависимости от того, что подходит — и неправильное положение является распространенной ошибкой среди домов на колесах)? Сколько раз вы выполняли глубокий цикл? Короткое замыкание в системе? Были на связи давно? Автомобильный регулятор / генератор в порядке? (Подробнее позже.)

Для измерения, измерения, тестирования и устранения неполадок требуется всего несколько инструментов и базовые знания. Во многом это здравый смысл, не требующий инструментов.Никогда не полагайтесь на красный / желтый / зеленый идиотский счетчик, установленный в большинстве домов на колесах. Приобретите цифровой измеритель. Вам понадобится цифровой измеритель для точного считывания напряжения батареи с точностью до десятых долей вольта. У вас также должен быть аналоговый (игольчатый) измеритель. Вы не можете определить разницу между напряжениями батарей с помощью аналоговых датчиков с большой точностью, но они в некоторых отношениях лучше (потому что легче увидеть быстрые изменения), чем цифровые измерители для считывания колебаний. (Намного больше позже.)

Приобретите 12-вольтовую лампу для поиска и устранения неисправностей / контрольную лампу в любом автомобильном магазине по дешевке или сделайте свою собственную.(Измерители покажут напряжение, даже если в проводе осталась только одна жила. Контрольные лампы не загорятся, если провода недостаточно для переноса нагрузки.)

Купите приличный ареометр, если у вас есть батареи с жидкими элементами и вы можете удалить их. шапки. Не покупайте дешевку с цветными плавающими шарами. Узнайте, как читать ареометр.

Тестирование батарей
Может быть выполнено несколькими способами: Самый точный метод измерения — это использование ареометра для измерения удельного веса и D.C. вольтметр, чтобы получить напряжение батареи.
Качественный тестер нагрузки может быть хорошей покупкой, если вам нужно проверить герметичные 12-вольтные батареи.
Для любого из этих методов необходимо сначала полностью зарядить аккумулятор, а затем удалить поверхностный заряд. Если аккумулятор просидел хотя бы несколько часов (я предпочитаю не менее 12 часов), можно начинать тестирование. Для снятия поверхностного заряда аккумулятор необходимо разрядить в течение нескольких минут. Использование фары (дальний свет) сделает свое дело. После выключения света вы готовы проверить аккумулятор.

2

5

2

5

Состояние зарядки Удельный вес Напряжение
12 В 6 В
6 В

12,7

6,3
75% 1,225 12,4 6.2
50% 1.190 12,2 6,1
25%
25%

5 9025

В разряженном состоянии 1,120 11,9 6,0

Удельный вес: Полная зарядка SG будет работать примерно с 1.260 в автомобильном аккумуляторе до примерно 1,275 в гольф-каре. Высокий удельный вес (больше кислоты) позволяет потреблять больше сока (тока), но только до определенного предела; потом батарея портится — быстро. Пластины для тележек для гольфа созданы для того, чтобы справиться с этим, RV / Marine в некоторой степени, автомобильные — нет. Не пытайтесь получить больше AH, добавляя кислоту (или уксус вместо дистиллированной воды), батарея просто разрядится раньше.

ПОДРОБНЕЕ О УДЕЛЬНОЙ ТЯЖЕСТИ — и проверка напряжения покоя
Если у вас есть стандартные батареи, приобретите хороший ареометр (не тот, в котором есть цветные плавающие шарики).Внутри него должна быть трубка с четко обозначенными шагами удельного веса и встроенный термометр с диаграммой температурной коррекции. Маловероятно, что новый аккумулятор, даже недавно заряженный, обеспечит более 80% своей номинальной мощности. Вы получите больше после того, как его использовали и несколько раз зарядили — если только он не неисправен. В любом случае проверьте SG, чтобы установить «базовое» значение.

Особо ищите различия между ячейками. Разница в 0,050 между любыми означает возможную проблему. Это после того, как он зарядится и немного пузырится, чтобы тщательно перемешать химикаты.Если это новая батарея и такое случается, заберите ее обратно. Если старый, планируйте заменить его в ближайшее время. Вероятно, в нем есть расслоенная / закороченная ячейка. Изначально нет необходимости проверять SG до тех пор, пока аккумулятор не достигнет примерно 70% полного заряда и не начнет слегка пузыриться / выделять газ (а не кипит, как в кофейнике). Затем каждый час снимайте показания и записывайте их. Когда три последовательных показания одинаковы, аккумулятор заряжен настолько, насколько это возможно. Запишите показания для каждой ячейки и батареи. Отключите аккумулятор от любого заряда или нагрузки и оставьте его на ночь (лучше 24 часа).Проверить SG еще раз. Показания могут быть немного ниже, но должны быть постоянными. Запишите их в качестве нового базового уровня: ваши нормальные значения при полном заряде и состоянии покоя.

Сделайте это снова через две недели или месяц использования. Показания могут быть немного выше, но, опять же, должны быть последовательными. Если аккумуляторы постоянно перезаряжались или недозаряжались, это будет отображаться здесь. Вы должны были убедиться, что зарядное устройство было правильно настроено, прежде чем начинать все это, но если вы получите ненормальные показания, проверьте, что ваше зарядное устройство регулируется правильно (см. Ниже).Если вам нужно добавить воды так скоро, вы почти наверняка перезаряжаете. После того, как вы выполнили вышеуказанные тесты, вам не нужно делать это чаще двух раз в год, если вы не обнаружите проблему. Уровень воды следует проверять примерно раз в месяц. В идеале не нужно добавлять воду чаще двух-четырех раз в год. Более того, вероятно, указывает на перезарядку.

Использование ареометра без беспорядка

Вставьте его в ячейку так, чтобы он просто лежал на поверхности пластин.Несколько раз впрысните и выдохните — осторожно, не брызгайте. Затем заполняйте до тех пор, пока внутренняя трубка не всплывет. Слишком мало, и он будет лежать на дне ареометра. Слишком много, и он попадет в самый верх. В любом случае вы получите ложные показания. Не вынимайте предмет из ячейки, чтобы прочитать его, вы просто капнете кислотой. Прочтите и запишите. Считывайте на уровне жидкости, а не на небольшом изгибе в месте соприкосновения жидкости с внутренней трубкой. (Перед тем как перейти в следующую камеру, не забудьте снова влить кислоту.) Отметьте температуру на термометре и исправьте показания, как показано. Обратите внимание, что все показания для батареи должны быть в пределах 0,050 друг от друга. Имейте в виду, что у вас может быть дешевый или неисправный ареометр. У El cheapos есть бумажная шкала SG в трубке, которая скользит вверх и вниз.

Нагрузочное тестирование — это еще один способ тестирования батареи. Нагрузочный тест снимает ток с батареи так же, как при запуске двигателя. Тестер нагрузки можно купить в большинстве магазинов автозапчастей. Некоторые производители аккумуляторов маркируют свои аккумуляторы с помощью амперной нагрузки для тестирования.Это число обычно составляет 1/2 рейтинга CCA. Например, батарея 500CCA будет тестировать под нагрузкой 250 ампер в течение 15 секунд. Нагрузочный тест может быть выполнен только в том случае, если аккумулятор почти полностью заряжен или полностью заряжен.

Показания ареометра не должны отличаться более чем на 0,05 разницы между ячейками.

Цифровые вольтметры

должны показывать напряжение, указанное в этом документе. Напряжение герметичного AGM и гелевого аккумулятора (полностью заряженного) будет немного выше в диапазоне от 12,8 до 12,9. Если у вас есть показания напряжения в 10.Диапазон 5 вольт на заряженной батарее, что обычно указывает на короткое замыкание элемента.

Если у вас есть влажный элемент, не требующий обслуживания, единственными способами проверки являются вольтметр и испытание под нагрузкой. Любая из необслуживаемых батарей со встроенным ареометром (черное / зеленое окошко) покажет вам состояние 1 элемента из 6. Вы можете получить хорошие показания для 1 элемента, но у вас возникнут проблемы с другими элементами в аккумуляторе.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание имеет первостепенное значение. Грязь на батарее обеспечивает проход между полюсами.Это «короткое». Большинство людей никогда не замечает этого, но он постоянно использует энергию. Вам не нужно поливать пищевую соду. Часто достаточно просто спрея и протереть бытовым чистящим средством.

  • Развивается коррозия. Иногда вы этого даже не видите. Разберите контакты и очистите их. (Сейчас вы можете использовать пищевую соду, но не позволяйте ей попадать в клетки.) Делается один или два раза в год, это быстро и легко.
  • Перед тем, как собрать все вместе, смажьте все поверхности (тонким слоем) силиконовой диэлектрической смазкой.Это до, а не после. Вы ничего не добьетесь, размазав смазку поверх коррозии.
  • Никогда не используйте красный аэрозоль для аккумуляторов. Это только усугубляет ситуацию. Красные / зеленые фетровые, некоррозионные шайбы в порядке.
  • Этикетка или цветовой код кабеля и концов проводов. Составьте схему. Если вы этого не сделаете, вы просто ошибетесь.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ ОБ АККУМУЛЯТОРАХ (В БОЛЬШИНСТВЕ ГЕЛЕВЫХ ЭЛЕМЕНТОВ и AGM)
Применяются многие из тех же материалов: Все батареи необходимо обслуживать. Все батареи необходимо держать заряженными — , но не перезаряженными или недозаряженными. Для всех необходимы чистые соединения и хороший прочный кабель и провод подходящего размера. Ни один из аккумуляторов не должен подвергаться регулярной глубокой разрядке. Самое главное, зарядка должна хорошо регулироваться.

И вот здесь начинает проявляться серьезная разница между гелями, AGM и обычными жидкостными батареями.

  • Мокрые элементы (заливные) батареи: Подвешенные пластины, обычно с некоторыми формами сепараторов (чтобы пластины не касались друг друга) погружаются в жидкий электролит.Их можно заряжать, как стартерную батарею, что значительно упрощает работу.
  • Гелевые батареи : пластины подвешены в густом гелеобразном электролите, который обеспечивает стабильность и устраняет пустоты или «воздушные карманы» на пластинах. Лучшие гели — от East Penn Mfg. (под «SeaGel», «Prevailer» и другими ярлыками — но где-то появится название East Penn). Спортсмены имеют легкий вес. Гели редко заряжаются до напряжения более 14,1 В при начальной (полной) зарядке и 13,8 (13,8 В).65 лучше) в качестве «плавающего» заряда (см. Ниже).
  • Батареи AGM (Absorbed Glass Mat): плотное волокнистое покрытие между пластинами и жидким электролитом обеспечивает
    характеристики, аналогичные гелевым батареям, но они гораздо более надежны, поскольку они были разработаны для использования в самолетах и ​​вездеходах. Лучшие AGM — это те, которые производит «Конкорд» (обычно под лейблом «Линия жизни», но Конкорд где-то появится). AGM (как и гели) очень чувствительны к перезарядке. Для первоначального (объемного) заряда рекомендуется 14,38 Вольт, а для начального заряда — 13 Вольт.38 как «плавающий» заряд.

Плюсы и минусы:

Стандартные старые залитые батареи дешевы (изначально). Они сделают свою работу (тележки для гольфа или аналогичные вещи лучше, чем вещи для автофургонов / морских судов). См. Примечания в другом месте. Они будут выпускать газ и жидкость, но ее можно пополнить дистиллированной водой. Они требуют ухода лота .

Гели и AGM могут работать лучше и служить дольше, НО также требуют особого ухода. Изначально они довольно дорогие (но мои шесть гелей уже десятый год, как новые, а их стоимость ниже, чем у стандартных батарей). Однако они заряжены очень тщательно, и для этого требуется дорогостоящее зарядное устройство / регулятор. Гели и AGM не нуждаются в большом уходе и чистке (кроме быстрого спрея и протирания бытовым чистящим средством), ЕСЛИ вы не сделаете что-то глупое и не перезарядите их. Они не проливают кислоту, очень устойчивы к ударам, не пропускают газ (каламбур), если серьезно не заряжены, имеют ОЧЕНЬ низкую скорость саморазряда (хорошо, когда жилой автофургон находится на хранении) и имеют очень долгий срок службы.

Я использовал батарейки для гольф-мобилей, обычные батарейки и гели.Как я повторю более подробно в другом месте, тележки для гольфа и аналогичные аккумуляторы, с учетом всех обстоятельств, являются лучшим решением. Если бы мне пришлось заменить батареи сегодня (они находятся в жилом отсеке в небольшом доме на колесах), я бы выбрал AGM. В большем доме на колесах я бы поехал с батареями для гольф-мобилей или вилочных погрузчиков.

Никогда не заряжайте аккумулятор gel до напряжения более 14,1 В (или до напряжения, превышающего указанное производителем) до того, как регулятор отключит зарядное устройство, за исключением очень коротких периодов времени.Затем, поскольку батарея «плавает» (держится на зарядном устройстве с подачей заряда, чтобы поддерживать его на разумном уровне), она никогда не должна превышать 13,8 вольт (лучше, для длительного срока службы — максимум 13,65 вольт). Опять же, вы не держите аккумулятор постоянно. Иногда вы доводите его до 14. + (это EZ с солнечным регулятором или более качественным зарядным устройством, которое будет часто и автоматически выполнять задачи регулирования. (Подробнее позже)) AGM заряжаются одинаково, только с другим напряжением.

На самом деле было бы глупо держать (плавать) любую батарею при постоянном заряде более 14 вольт. Вы бы просто износили его раньше времени, и он все время извергал бы кислоту, создавая беспорядок. Но с обычной батареей с мокрыми ячейками со съемными крышками вы можете добавить воды и очистить от коррозии. С гелем или любым другим (действительно) герметичным аккумулятором нельзя добавлять воду. Все, что вы можете сделать, это посмотреть, как разряжается батарея.

Гелевые батареи и AGM имеют крышки, но никогда не пытается их снять. Во-первых, вы нарушите гарантию. Во-вторых, вы загрязните внутреннюю часть. Когда он умирает раньше, дилер / завод узнает, что вы это сделали, и аннулирует гарантию. Кроме того, если вы перезарядите гелевый или AGM аккумулятор, завод тоже может это обнаружить. Опять же, никаких гарантий.

ТЕМПЕРАТУРА
Температура важна при зарядке любых батарей. По-настоящему горячая батарея (например, если они лежат в дешевом пластиковом ящике) будет перезаряжаться намного раньше, чем указанные выше напряжения.Хранение аккумуляторов «в помещении» помогает поддерживать их примерно при идеальной температуре (от 68 до 77ºF). На самом деле высокая температура становится настоящей проблемой только тогда, когда аккумулятор «плавает». Поплавок на 13,8 В может легко превратиться в поплавок из 14+ целых пучков при 90 °. Температура также может быть проблемой зимой, поскольку батареи пытаются замерзнуть, а их емкость в ампер-часах снижается более чем на 30%.

ПОДРОБНЕЕ О РЕГУЛИРОВАНИИ ЗАРЯДКИ
Есть только несколько преобразователей / комбинированных зарядных устройств для жилых автофургонов, которые стоит иметь.Большинство из них делают абсолютно паршивую работу, и вы не имеете ни малейшего представления, какое сильное напряжение (или его отсутствие) идет на ваши батареи. Некоторые преобразователи / зарядные устройства работают. Проверьте свою независимо от того, какую батарею вы используете. При работающем устройстве и достаточно хорошо заряженной батарее и не намного большей нагрузке на батарею, чем усилитель телевизионной антенны и мозг рефрижератора (рефрижераторы RV с печатной платой все время используют 12 вольт, просто для работы с платой) , подключите цифровой вольтметр к клеммам «домашней» аккумуляторной батареи.Оставьте его на некоторое время и посмотрите, держит ли он батареи примерно до 13,8 вольт. (Или это их зарядка до чего-то нелепого?) (Или это вообще зарядка?) В некоторых, даже в меньшем количестве, RV используется отдельное зарядное устройство (не как часть преобразователя). Как правило, они довольно хорошие (и дорогие). Но проверьте их так же. Совсем не редко можно найти стандартные зарядные устройства для жилых автофургонов с плавающими батареями на 14,3 В или выше. Лучшие зарядные устройства регулируются в две, три или четыре ступени. Во-первых, при достаточном спросе они полностью заряжаются до 14.+ вольт (регулируется вами). Во-вторых, они возвращаются к «плавающему» заряду около 13,8 (который в хороших зарядных устройствах снова регулируется). Некоторые из них имеют третью ступень «выравнивания», автоматическую или ручную, которая также должна быть регулируемой. (Есть также некоторые четырехступенчатые зарядные устройства.)

Если вы хотите использовать гелевые или AGM-аккумуляторы, у вас должен быть хороший, надежный, регулируемый пользователем регулятор и зарядное устройство. Лучший способ заряжать батареи — использовать солнечную электрическую систему. (Опять же, проверьте сначала и последнее с помощью «RV Solar Electric» выше.) Солнечная система (если у нее есть регулируемый пользователем регулятор) позволит вам установить отсечку заряда на желаемом уровне вольт. Обычно, когда солнечная система достигает этого, она отключается и падает примерно до 13,1 вольт перед возобновлением работы (некоторые солнечные регуляторы вернутся к плавающему напряжению). Это дает батареям «отдых» и предохраняет их от перезарядки. (И, конечно же, ночью солнечные системы ничего не делают, так что здесь тоже можно хорошо отдохнуть.) В качестве резерва вы можете использовать генератор или коммерческую энергию. Убедитесь, что ваш генератор (если у него есть прямая зарядная розетка на 12 В постоянного тока) настроен на регулировку при правильном напряжении! Если он просто заряжается через преобразователь, вы проверили это выше, но перепроверьте это при работающем генераторе.Сделайте то же самое с независимым зарядным устройством. Доступны многие другие.

Deep Cycling
Давайте рассмотрим кое-что здесь: разумеется, не следует выполнять глубокий цикл батареи ежедневно. Если это так, то максимальный срок службы любой батареи будет равен доступному количеству циклов, и ни одна батарея не прослужит более 6–9 месяцев. В идеале вам нужна батарея (батареи), которая обеспечит необходимую мощность без циклической перезарядки (истощения после полной зарядки) более чем на 20-50% перед подзарядкой.(Если у вас есть батарея на 100 Ач, и вы берете из нее не более 20 Ач перед подзарядкой, она может прослужить дольше, чем вы.) К сожалению, это нереально, но вы можете взять до 50% заряда батареи перед подзарядкой и все же получить долгую жизнь. Простая арифметика — сколько АЧ использовалось по сравнению с тем, сколько АЧ доступно, подскажет вам, сколько батарей необходимо. Имейте в виду, что вы не должны ожидать, кроме 80% рейтинга производителя. Таким образом, аккумулятор на 105 Ач на самом деле составляет около 84 Ач. МАКСИМУМ! Никакая батарея не даст вам номинальной мощности в реальной жизни! Их рейтинг снижен до 10.5 вольт. К тому времени свет становится тусклым, а изображение на телеэкране — тусклым. Удельный вес около 1.200 или напряжение от 12,25 до 12,3 означает, что батарея разряжена примерно на 50%. К тому времени, когда оно упадет до 11,8 или 12 вольт, оно почти разрядится.

Ампер-часы и емкость аккумулятора
Что такое «Ампер-часы»? Ампер-часы — это количество тока в «амперах», умноженное на количество часов, в течение которых он может обеспечить этот ток.
Пример: батарея на 100 ампер-часов может обеспечить 10 ампер в течение 10 часов или 20 ампер в течение 5 часов.
Один ампер на 100 часов или любая комбинация должна позволить вам оценить батареи, но это не работает. (Это логарифмическая, а не линейная прогрессия.) Кроме того, емкость в AH зависит от нескольких вещей: размера, количества / типа электролита, толщины пластины и т. Д. Вы не хотите исследовать всю эту чушь. Ключевыми интересами для нас являются:

Скорость разряда: Обычно 20 часов для автомобилей, 6 для гольфмобилей и 8 для автофургонов / морских судов. Гольф-кар на 180 Ач технически даст вам 30 ампер в течение 6 часов, но не 60 ампер в течение трех часов.(Имеет отношение к таким вещам, как нагрев с такой высокой скоростью из-за того, что требуется экстремальное химическое воздействие — вещи, с которыми не стоит шутить.) Тем не менее, он проработает один ампер примерно на 105 часов, что приятно знать. Не читайте просто АХ. Прочтите таблицы при сравнении батарей.

Удельный вес: SG при полной зарядке будет работать от примерно 1,260 в автомобильном аккумуляторе до примерно 1,275 в гольф-мобиле. Высокий удельный вес (больше кислоты) позволяет потреблять больше сока (тока), но только до определенного предела; потом батарея портится — быстро.Пластины для тележек для гольфа созданы для того, чтобы справиться с этим, RV / Marine в некоторой степени, автомобильные — нет. Не пытайтесь получить больше AH, добавляя кислоту (или уксус вместо дистиллированной воды), батарея просто разрядится раньше.

Температура: Батареи рассчитаны на максимальную температуру 77 ° F. При более высоких температурах они производят больше, но умирают раньше. При более низких температурах они гаснут меньше, но служат дольше (если вы не дадите им замерзнуть).

КАБЕЛИ И СОЕДИНЕНИЯ

Очень важно связать систему вместе.Нет смысла тратить много денег на аккумуляторы и зарядные устройства и разбирать их на скудный хлам. Большие аккумуляторные кабели можно приобрести в San Diego Battery Wholesale. Также доступен заказной кабель вашей длины с клеммами, подходящими для вашего автомобиля.

ДОЗИРУЮЩИЕ БАТАРЕИ
Если у вас есть необслуживаемые (не требующие обслуживания) батареи, вы не сможете получить удовольствие от ареометра. Даже если вы можете использовать ареометр, вам не нужно (или вы хотите) делать это чаще, чем пару раз в год.Используйте таблицу (см. Ниже), чтобы точно контролировать состояние заряда. При снятии показаний SG измеряйте одновременно и напряжение. Имейте в виду, что если аккумулятор заряжается, напряжение будет примерно на ½ — 1 вольт выше фактического. Обратите внимание, что напряжения на диаграммах (позже) отличаются друг от друга всего на 0,05. Вы не можете прочитать это точно на аналоговом (циферблатном / стрелочном) измерителе. Вам нужен цифровой счетчик. Вам не нужно тратить более 200 долларов на профессиональную модель. Смотрите рекламу недорогих счетчиков в журналах по электронике.Вам понадобится 3½-разрядный измеритель (с точностью до двух знаков после запятой) и получите его с измерением тока не менее 10 ампер (лучше 20). В настоящее время наиболее выгодной сделкой является бренд Metex № M3800 3½ разряда на 20 ампер по цене 40 долларов от: JAMECO. (См. «Источники».) Все автомобилисты в любом случае нуждаются в одном из них.

При проверке батарей (в состоянии покоя) используйте эти «ориентиры напряжения».

12,6 вольт = 100%
12,5 вольт = 70%
12,3 вольт = 50%
11,4 вольт = 20%

БОЛЬШЕ О ПОДЗАРЯДКЕ И ПЕРЕЗАРЯДЕ
«Недостаточная» приводит к расслоению.«Over» просто ест тарелки. Используйте регулятор, чтобы предотвратить перезарядку. Когда вы думаете, что батарея заряжена, слишком высокий SG означает перегрузку. Слишком низкий — значит ниже. Сравните с точной проверкой напряжения. Добавлять воду нужно всего несколько раз в год. Больше означает, что аккумулятор слишком сильно выделяет газ. По ощущению тепла батарейного отсека (лучше пластмассы) уже не скажешь. Вы должны вложить в батарею примерно на 10% больше энергии, чем вы извлекаете (больше физики в средней школе — каждый раз, когда энергия трансформируется, должна быть некоторая потеря).«Старому» аккумулятору может потребоваться больше. Сравните, сколько вы вкладываете с тем, что вы берете, и соответствующим образом рассчитайте размер своей системы.

ПОДКЛЮЧЕНИЕ АККУМУЛЯТОРОВ ПАРАЛЛЕЛЬНО, ПОСЛЕДОВАТЕЛЬНО и ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНО

Это действительно просто, но удивительно, сколько RVers все это облажается!

Последовательно увеличиваются вольты; усилители остались прежними.
Параллельно усилки увеличиваются; вольт остаются прежними.

Параллельно: вы подключаете (+) одного 12vbat к (+) другого.Подключите (-) одного к (-) другого. Тогда у вас все еще будет 12-вольтная летучая мышь, но с большей емкостью в ампер-часах. Теперь это обычная летучая мышь на 12 В, за исключением того, что она находится не в одной «коробке», а в двух.

В серии: Если вы подключите две батареи на 12 В последовательно, у вас будет 24 В. Очевидно, это не то, что нужно делать, если у вас нет преобразователя шины или нестандартной установки, которая использует 24 вольта. Тем не менее, многие автомобили на колесах используют 6-вольтовые батареи (обычно для тележек для гольфа). Например, два последовательно соединенных 105Ач 6В все равно будут = 105Ач, но при номинальном напряжении 12В.

Последовательное подключение:
Для упрощения визуализации. Начните с простой блок-схемы. Две батареи по 6 В.
На левой ракетке поместите (-) на левом конце, поместите (+) на правом конце.
На правой битой, поместите (-) на левый конец, поместите (+) на правый конец.
Проведите линию от (+) на левой битой к соседней (-) на правой битой.

Теперь это обычная летучая мышь на 12 В, за исключением того, что вместо того, чтобы находиться в одной «коробке» со всеми элементами, последовательно соединенными внутри, она находится в двух коробках, соединенных кабелем.Это все еще одна 12-вольтовая летучая мышь электрически, так что НАЧНИТЕ ДУМАЙТЕ об этом ТАК и не запутайте себя, думая о ней как о летучей мыши 1 и 2.

На данный момент у вас есть две неиспользуемые стойки биты — просто как обычная бита на 12 вольт; один минус, который идет на землю шасси, и один вывод, который идет к обычному разъединителю / источнику питания 12 В и т. д.

Последовательность / Параллель:
Просто повторите описанный выше этап последовательного подключения еще с двумя 6-вольтовыми батареями, и вы получите две 12-вольтовые батареи. Думайте об этом, а не о четырех батареях на 6 В! Теперь у вас есть два (-) неиспользуемых поста.Соедините их вместе (как при параллельном подключении двух обычных батарей на 12 В). Повторите эти действия для двух неиспользуемых (+) столбов.

Это действительно очень просто. Проблема многих людей заключается в том, что они думают, что это очень сложно. Это не.

Единственный раз, когда вы думаете о батареях как о четырех батареях на 6 В, — это когда вы отключаете их для обслуживания и очистки. А затем только для того, чтобы быть абсолютно уверенным, что вы не облажаетесь, собирая их снова.
Для этого очень важно четко обозначить штыри и концы кабелей!

% заряда Стандартный аккумулятор
Типичный удельный вес
(после температурной коррекции)
Стандартный аккумулятор
, эквивалент
В покое
Гелевый аккумулятор
, эквивалентный
100% 1.От 260 (авто) до 1.280 (промышленный) 12.60-12.75 12.90-13.00
95% 1.255 12.60-12.70

23 12.80

23 12,80

90% 1,250 (Подставка SG для стандартной батареи RV.) 12,60-12,65 12,70
85% 1.245 (То же, что и выше. Нет смысла быть слишком разборчивым.) 12.60
80% 1,235-1,240 (Мы стараемся не производить разряд ниже этой точки.) 12,50 -12,55 12,60
75% 1,225-1,230 (1,230 = минимальный удельный вес заряженного аккумулятора) 12,50

23 70% 1.220 (Все, что ниже 1,220, «плохо» заряжено.)

12,45 12,50
65% 1,215 12,40

%

1.205 12.35 12.40
55% 1.200 12.30

2

190-1,195 (Старайтесь никогда не разряжать ниже этой точки.) 12,25 12,35
45% 1,185 12.20
1,180 12,15-12,20 12,25
25% 1,160-1,170 (Опасно низкий заряд; аккумулятор поврежден.) 12.10-12.15
20% 1.150 (В этот момент элементы умирают. Пока аккумулятор.) 11.80-12.00 12.15

УСТРАНЕНИЕ НЕПОЛАДОК

Домашняя батарея: Цель состоит в том, чтобы определить, в порядке ли батарея сама по себе, и, в ее роли «домашней» батареи, как вы можете ее проверить, домашнюю проводку и зарядку схема.

Ситуация: Вы заряжаете аккумулятор от одного из нескольких источников. Все работает нормально; но без видимой причины и внезапно нет электричества. Не начинайте просто разбирать все на части! Посмотрите вокруг в поисках очевидного. Аккумулятор все еще там? Все в одном куске? (Удар молнии поблизости может сорвать верхнюю часть.) Подключены ли кабели? Однажды я провел час, блуждая с вольтметром, и обнаружил, что просто отключил отрицательный кабель.

Шаги:
Подключите вольтметр к батарее. Он должен показывать некоторое приемлемое напряжение, даже если он хорошо разряжен (если он не мертв). Если напряжение в норме и если все в порядке, попробуйте переместить / скрутить зажимы основного кабеля на батарее. Часто даже на аккуратной батарее между штырем и разъемом образуется тонкая пленка коррозии (которую вы не видите). Хотя коррозия нарастает очень постепенно, ее эффект может произойти внезапно.

  • Затем, особенно если соединения грубые, поместите кончик вертикальной отвертки с плоским лезвием на круговое соединение стойки и зажима и хорошенько наденьте его кулаком (не молотком).
  • Проделайте то же самое с другим постом. Если проблема заключается в плохом соединении, то вышеупомянутое должно позволить течь хотя бы небольшому количеству электричества — достаточно, чтобы указать на проблему. Если все вышеперечисленное помогает, разобрать вещи и почистить их.
  • Если описанное выше не помогает, сначала отсоедините источник зарядки, затем отсоедините аккумулятор (вы также можете снять его). Перед тем, как начать возиться с аккумулятором, подсоедините пару перемычек от заведомо исправного аккумулятора к кабелям жилого автофургона.
  • Сначала подсоедините (+) кабель. Если вы не позволяете свободному концу чего-то касаться, искр не должно быть, потому что электричеству некуда идти (пока).
  • Затем подсоедините (-) кабель к «исправной» батарее. (Опять же, не должно быть искр, если вы не облажаетесь.)
  • Наконец, прикрепите последний (-) конец к кабелю RV (если неисправный аккумулятор был удален, искры на этом последнем соединении не должны ничего повредить Это кажется окольным путем, но для этого есть причина.
  • Если в вашем доме сейчас электричество, значит, у вас разряжена батарея. Возможно плохой аккумулятор, но не обязательно. Опять же, прежде чем начинать возиться с «плохой» батареей, нужно проверить систему зарядки. Идея здесь — выяснить, почему разрядился аккумулятор.
  • Включите нагрузку (лампу или что-то еще), чтобы снять поверхностный заряд с вашей «хорошей» временной батареи. В зависимости от того, какое у вас зарядное устройство, вам может потребоваться разрядить батарею примерно до 13 В или меньше, чтобы регулятор позволил возобновить зарядку.Продолжайте измерять напряжение. Когда зарядка возобновится, она увеличится.
  • Если напряжение не увеличивается, возможно, ваш источник зарядки (преобразователь, генератор, солнечная система) не работает или поток прерывается.

Сделайте сначала тупые проверки:

  • Преобразователь работает? Включен или выключен переключатель «kill» на некоторых домах на колесах? Маловероятно, потому что тогда потеря должна была быть постепенной, а не внезапной. Хотя это возможно.
  • И возможно, у вас плохой аккумулятор И плохая система зарядки.Преобразователи RV со встроенными зарядными устройствами действительно могут вас запутать. У этих устройств есть два выхода: один подает 12 В напрямую от трансформатора к большинству домашних цепей. Другой идет от зарядного устройства к аккумулятору. Если вы были подключены к электросети, главный трансформатор мог работать, а зарядное устройство не работало. Кроме того, может быть выключен аварийный выключатель или перегорел предохранитель зарядного устройства. (Сначала проверьте глупости.)
  • Поместите вольтметр на конец батареи, пока вы это делаете.Довольно часто небольшие манипуляции сразу все проясняют. Если нет, вернитесь к источнику зарядной системы с помощью вольтметра. Есть ли напряжение на выходе зарядного устройства? На выходе к клемме аккумулятора на солнечных батареях или солнечном регуляторе?
  • Еще раз внимательно проверьте предохранители. Вы не можете определить, неисправен ли предохранитель, посмотрев на него, вам нужно измерить его с помощью тестовой лампы. Помните, что измеритель может показывать «хорошо», если есть лишь небольшой контакт, но контрольная лампа не будет работать, если ее недостаточно для выдерживания нагрузки.
  • Если и это не помогло, возможно, вам придется проверить источник зарядки без подключенного аккумулятора. С преобразователем RV это легко, но если вы используете солнечную систему или ветрогенератор, возможно, вы не сможете (некоторые из них могут быть серьезно повреждены при работе без нагрузки). RTFM (Прочтите F ****** Руководство)! Наша цель при проверке источника (с подключенной батареей или без нее) — увидеть, есть ли там что-нибудь.

Если напряжение по-прежнему отсутствует, запускается обременительный процесс проверки всей системы.

  • Делайте это логически. Сначала пройдите до источника. Отключите генератор, солнечные батареи, что угодно, от системы. Теперь вы можете измерять их в процессе работы, ничего не повредив (кроме некоторых ветрозащитных устройств). Если зарядное устройство работает, вы знаете, что у вас есть два длинных куска провода (+) и (-) с проблемой. Не игнорируйте провод (-). Это так же необходимо, как и (+). При необходимости подключите зарядное устройство и аккумулятор.
  • Перейдите к какой-нибудь логической точке на полпути с вашим вольтметром.Так или иначе, вы получите напряжение (если только вы не пропустили что-то в источнике). Продолжайте в том же духе, примерно на полпути (каждый раз на мертвой стороне). Если вы не облажаетесь, вы скоро решите проблему всего на нескольких футах провода. Если что-то не осталось неподключенным или провод был перерезан, обычно проблема заключается в соединении или предохранителе.
  • Посмотрите на вещи, потяните за провода, чтобы убедиться, что они действительно прикреплены. Вот где обнаруживаются плохие обжатые соединения. (Я потратил час, помогая кому-то отследить таким образом солнечную систему.Все обжатые клеммы разваливались у меня в руках. Обжимал их обычными плоскогубцами.) Ищите коррозию на клеммах, как и на проводах аккумулятора. Помните, что то, что преобразователь гудит, не означает, что зарядное устройство работает. Если вы работаете с солнечной системой, никогда не пытайтесь надевать перемычку на солнечную батарею (+) и батарею (+), чтобы обойти регулятор — вы ее поджарите. Однако, если вы отсоедините эти провода от регулятора, вы можете соединить их вместе.

Все вышеперечисленное можно сделать с помощью вольтметра или контрольной лампы.Фактически, контрольная лампа лучше работает при проверке целостности цепи, потому что вольтметр может показывать мощность, если только одна жилка провода все еще подключена, в то время как контрольная лампа не загорается, если в ней нет цепи, достаточно тяжелой для нагрузки.

ЧТОБЫ ПРОВЕРИТЬ АККУМУЛЯТОР САМОСТОЯТЕЛЬНО — БОЛЬШЕ НА ПОСТОЯННОМ НАПРЯЖЕНИИ

Это можно проверить с помощью ареометра, но аккумулятор может считывать нормально и оставаться неисправным. Вот хороший способ проверить аккумулятор. Это требует времени, но оно того стоит. :

  • Зарядите его полностью, желательно с помощью хорошего зарядного устройства или независимого автомобильного зарядного устройства с ручным управлением (оно вам в любом случае понадобится на всякий случай).Это может занять некоторое время, если он глубоко разряжен (мертв).
  • Измерьте напряжение. Оно должно быть достаточно высоким — более 13 вольт, а лучше 14. +. Отключите зарядное устройство. Оставьте аккумулятор (ни к чему не подключенный) не менее 6 часов. Лучше ночевка или 24 часа.
  • Снова измерить напряжение. Оно должно быть 12,6 вольт. Если нет, то даже если он 12,5, все кончено или идет. Если он читает 12,6, это все еще может быть плохим.
  • В магазине аккумуляторных батарей можно проверить это с помощью тестера переменной нагрузки.Вы тоже можете. Если батарея относится к типу, по крайней мере, так называемого RV / Marine емкостью 100 Ач, она должна запускать большинство двигателей в приличную погоду. Подключите к нему вольтметр. Если он не запускается, запустите его. Запустите двигатель на хороших высоких холостых оборотах (от 1500 до 2000 об / мин).
  • Если напряжение поднимается до 14 вольт всего за 4 или 5 минут, значит, у вас плохой аккумулятор. Из-за того, на чем мы не будем останавливаться, емкость АГ была сильно снижена (расслоение, глубокие разряды и т. Д.). У вас есть батарея емкостью около 10 Ач вместо 100 Ач.Тестирование проходит нормально, потому что у него есть некоторая емкость (лампа может проработать несколько часов), но ее недостаточно. Эта распространенная проблема часто сводит людей с ума. Проверяет нормально, просто долго не протянет.
  • Тот же тест работает с автомобильными аккумуляторами. Тестирование проходит нормально, но двигатель не заводится.

ИЗОЛЯТОРЫ АККУМУЛЯТОРА

Почти у всех есть один. Большинство людей никогда не обращают на них внимания. Я делаю. И я отдал свой на переключатель на приборной панели, чтобы избежать [многих] проблем, которые они могут вызвать.Большинство изоляторов автоматически отправляют заряд аккумуляторам. Я не хочу этого делать. Обычно моя солнечная система держит «домашние» батареи заряженными. Бывают случаи, когда в плохую погоду мне нужно подзарядить аккумуляторы, поэтому в дороге я нажимаю выключатель, который идет к линии зарядки, в которой размещаются аккумуляторы, и генератор двигателя заряжает их обычным способом. Дешевый вольтметр на приборной панели информирует меня, когда нужно выключить зарядку.

DC to DC Converter Учебное пособие


Преобразователи постоянного тока преобразуют мощность от одного источника постоянного напряжения в другое постоянное напряжение, хотя иногда на выходе бывает такое же напряжение.Обычно это регулируемые устройства, принимающие возможно изменяющееся входное напряжение и обеспечение стабильного регулируемого выходного напряжения до до предела расчетного тока (силы тока). Блоки переключения режимов полагаются на микропроцессоры. для высокого коэффициента полезного действия, а также меньших потерь и тепла. Конвертеры обычно используются для обеспечения электрической шумоизоляции или преобразования напряжения, или обеспечения стабильный уровень напряжения для чувствительного к напряжению оборудования. Преобразователи постоянного тока доступны для повышающих и понижающих приложений, а также изолированных и неизолированных конструкций.

Устройства переключения режимов, которые ChargingChargers.com предлагает, имеют преимущества по сравнению с линейными. конструкции. Эффективность переключения может быть выше, чем у линейного блока, что приводит к меньшему потери энергии при передаче, что означает меньшее количество тепла, меньшие компоненты и меньшее вопросы терморегулирования. Линейные типы могут использоваться в интегрированных конструкциях (встроенных в), и может быть дешевле в этом приложении, но режим переключения почти полностью заменены линейные блоки питания в большинстве ситуаций.

Понижающие преобразователи постоянного тока

Понижающие преобразователи постоянного тока в постоянный называются понижающими преобразователями. Типичный пример: быть преобразователем 24 в 12 вольт, имеющим диапазон входного постоянного напряжения от 20 до 30 вольт постоянного тока и выходное напряжение 13,8 вольт постоянного тока (В постоянного тока) при, скажем, 12 ампер (максимум). Вход Напряжение может быть просто некоторым доступным системным напряжением в этом диапазоне или 24-вольтовой батареей. система с колебаниями напряжения из-за степени заряда аккумулятора.Выход регулируется микропроцессором при 13,8 В постоянного тока в этом случае, что является типичным напряжением холостого хода для система батарей постоянного тока на 12 В и обычно приемлемый вход для устройства «12 В постоянного тока».


Некоторые примеры соотношений напряжений
ВХОД ВЫХОД
9-18 В постоянного тока 12,5 В постоянного тока
20-35 В постоянного тока 12,5 В постоянного тока
30-608 В постоянного тока 12.5 В постоянного тока
60–120 В постоянного тока 12,5 В постоянного тока
9–18 В постоянного тока 24 В постоянного тока
20-35 В постоянного тока 24 В постоянного тока
30-45
60–120 В постоянного тока 24 В постоянного тока

Понижающие преобразователи постоянного тока очевидно используются в военных, жилых домах или на море с системным напряжением постоянного тока 24 вольт, и требуется регулируемый источник постоянного тока на 12 вольт для радиосвязи, сонара, эхолота, компьютеров и, конечно, аудио или видеооборудование для развлечений.

Дисбаланс аккумуляторов и преобразователи постоянного тока

Почему бы не использовать ответвитель на 12 В, если система (например, 24 В) состоит из последовательное соединение низковольтных батарей (например, двух по 12 вольт)? Батареи может (вероятно) стать несбалансированным по статусу напряжения / заряда. В параллельной конфигурации (положительный подключен к положительному, отрицательный к отрицательному), батареи уравняют со временем и установятся на обычном напряжении.При последовательном подключении выравнивание состояние напряжения / заряда не является естественным состоянием. Система и любое зарядное устройство участвует, видит комбинированное выходное напряжение, и зарядное устройство пытается поднять напряжение до его уставки, которая указывает на полную зарядку, путем нажатия тока для выполнения это. Незадействованная батарея, которая изначально имеет более высокое напряжение, достигнет его « полное напряжение заряда » быстрее, но ток все еще проходит через зарядное устройство стремится поднять суммарное напряжение двух аккумуляторов до такого же полного заряда уровень.В крайних случаях может произойти газообразование и перезарядка.

Преобразователь постоянного тока в равной степени потребляет от родительского напряжения и обеспечивает регулируемое выходное напряжение. Аккумулятор остается сбалансированным, обеспечивая надлежащий заряд. цикл и максимальное время автономной работы.

Повышающие преобразователи постоянного тока

Повышающие преобразователи постоянного тока в постоянный называются повышающими преобразователями. Типичный пример: быть преобразователем с 12 вольт на 24 вольт, имеющим диапазон входного постоянного напряжения от 11 до 15 вольт постоянного тока и выходное напряжение 24 вольт постоянного тока (В постоянного тока) при, скажем, 5 ампер (максимум).Приложение может быть частью военной техники, разработанной для системы 24 В, используемой в система на 12 вольт.

Преобразователи с изоляцией и без изоляции

Неизолированные преобразователи имеют общий минус и обычно очень подходят для типичное электронное приложение (радио, стерео, сонар и т. д.). Определенная безопасность Требованиям или опасным приложениям может потребоваться изоляция входа и выхода. В изолированные преобразователи соответственно дороже неизолированных преобразователей.

Размер преобразователя

Преобразователи постоянного тока рассчитаны на мощность в ваттах, а некоторые также имеют защиту от импульсных перенапряжений. Большинство устройств, используемых в приложениях постоянного тока, указывают свое потребление в ваттах или амперах. Устройства с двигателями или компрессорами, или при использовании конденсаторных пусковых цепей, может потребоваться скачок напряжения учет мощности. Большая часть электроники (радио, DVD, гидролокатор, GPS и т. Д.) Не работает. Для преобразования ватт и ампер можно использовать следующие основные электрические формулы:

P = E x I Мощность = Вольт, умноженное на ток
или
Ватт = Вольт x Ампер
Ампер = Ватт / Вольт
Вольт = Ватт / Ампер

Итак, учитывая любые два значения выше, вы можете рассчитать третье.Например, у вас есть стереосистема мощностью 60 Вт, рассчитанная на 12-вольтовую систему. Делим 60 ватт на 12 вольт дает потребляемый ток 5 ампер. Если вам дан только текущий розыгрыш, и вам нужно рассчитать мощность преобразователя постоянного тока в ваттах, вы можете умножить амперы на напряжение системы, дающее ватт. Для 5-амперной розетки и 12-вольтового стерео выше у вас есть 5 ампер х 12 вольт = 60 ватт.

Не пропустите другие наши уроки!

Домой | Учебники | Конвертеры

Что делать, если в вашей батарее слишком высокое напряжение? — Мворганизация.org

Что делать, если в вашей батарее слишком высокое напряжение?

Для передачи энергии в батарею создается более высокое напряжение около 14 вольт. Напряжение выше 15 вольт указывает на неисправность регулятора напряжения системы зарядки или связанных цепей. Если он будет слишком большим, это может привести к повреждению электрической системы и / или аккумулятора.

Можно ли заряжать аккумулятор более высоким напряжением?

Автомобильный аккумулятор можно безопасно заряжать при высоком напряжении, пока он не полностью заряжен.Эти более высокие напряжения позволяют заряжать аккумулятор быстрее. Но если вы хотите оставить аккумулятор в зарядном устройстве, чтобы зарядить его, обычно используется напряжение холостого хода от 13,6 до 13,8 В.

Что произойдет, если скорость зарядки аккумулятора слишком высока?

Если батарея заряжается со слишком высокой скоростью, только часть тока используется для химических действий, которыми заряжается батарея. Баланс тока разлагает воду электролита на водород и кислород, вызывая газообразование.

Можно ли заряжать аккумулятор 12 В более высоким напряжением?

Нормальное выходное напряжение батареи выше этого значения. Автомобильному аккумулятору на 12 В для зарядки требуется не менее 14 вольт или около того. Для зарядки аккумулятора можно использовать источник 100 В.

Какое максимальное напряжение для зарядки аккумулятора 12 В?

Батареи, которые используются в циклическом режиме глубокого разряда, можно заряжать до 2,45 В на элемент (14,7 В для аккумулятора 12 В), чтобы получить максимальную скорость заряда, пока напряжение падает до плавающего напряжения при зарядке. полный.

Какое напряжение может выдерживать аккумулятор?

Полностью заряженный аккумулятор обычно показывает показание вольтметра от 12,6 до 12,8 вольт. Если ваш вольтметр показывает напряжение где-то между 12,4 и 12,8, это означает, что ваша батарея в хорошем состоянии. Любое напряжение выше 12,9 вольт является хорошим индикатором чрезмерного напряжения вашей батареи.

Достаточно ли 12,2 вольт для запуска автомобиля?

Этот диапазон напряжения означает, что аккумулятор в хорошем состоянии для запуска автомобиля.Если измеренное значение меньше 12,2 В, напряжение покоя аккумулятора слабое, а это означает, что, скорее всего, его необходимо зарядить или заменить.

Какое напряжение слишком низкое для автомобильного аккумулятора на 12 вольт?

12,0 В или ниже — При напряжении 12,0 В аккумулятор считается полностью разряженным или «разряженным», и его следует зарядить как можно скорее. Срок службы вашей батареи сильно снизится, если она будет оставаться в этом диапазоне напряжений в течение продолжительных периодов времени.

Подходит ли 13 вольт для автомобильного аккумулятора?

Когда аккумулятор не заряжается и не передает заряд на нагрузку, это практическое правило.Для свинцово-кислотной батареи на 12 вольт напряжение, измеренное между этими двумя точками, должно быть в пределах от 11 до 13 вольт. Чем ближе напряжение к 13 вольт, тем ближе аккумулятор к полной зарядке.

Как долго 12-вольтный аккумулятор должен держать заряд?

Большинство автомобильных аккумуляторов, которые находятся в хорошем состоянии, прослужат не менее двух недель без необходимости заводить автомобиль и ездить для его подзарядки, согласно AA. Но если вы не собираетесь водить машину какое-то время по какой-либо причине, вам все равно следует запускать ее раз в неделю, чтобы подзарядить аккумулятор на 12 В.

Что должна показывать полностью заряженная батарея глубокого разряда на 12 В?

Напряжение на полностью заряженной батарее будет составлять от 2,12 до 2,15 В на элемент или 12,7 В для 12-вольтной батареи.

Как далеко можно разрядить аккумулятор глубокого разряда?

Большинство аккумуляторов глубокого разряда рассчитаны на глубину разряда 50%, но некоторые могут выдерживать до 80% разряда.

Сколько вольт должно быть у аккумулятора глубокого разряда?

Зарядка — затопленные типы Аккумуляторы глубокого разряда при езде на велосипеде требуют напряжения перезарядки 2.От 43 до 2,45 вольт на элемент.

Как часто следует заряжать аккумулятор глубокого разряда?

Эта дополнительная плата помогает поддерживать баланс всех ячеек. Активно используемые батареи следует выравнивать один раз в месяц. Зарядное устройство с ручным таймером должно продлить время зарядки примерно на 3 часа.

Как долго аккумулятор глубокого разряда должен держать заряд?

Стандартный и наиболее широко принятый расчетный период для батарей глубокого разряда составляет 20 часов. Это значит, что батарея разрядилась до 10.5 вольт в течение 20 часов при измерении общего количества потребляемых ампер-часов.

Есть ли разница между глубоким циклом и морской батареей?

Особенности конструкции судовой батареи

Deep Cycle Одним из ключевых отличий является пластина батареи: она имеет меньшее количество толстых пластин, что позволяет батарее обеспечивать непрерывную выходную мощность в течение длительных периодов времени. Батареи глубокого цикла можно полностью разряжать и перезаряжать много раз, в отличие от аккумуляторов, работающих при старте.

Проверка аккумуляторной батареи и системы зарядки

Проверка аккумуляторной батареи и системы зарядки

UP

Тест системы медленного запуска

Свинцово-кислотный батарея имеет определенные определенный характеристики, чем облегчить оценить здоровье зарядки система без вымысла тестовое снаряжение.На самом деле испытание в автомобиле лучше, чем снятие деталей. Я надеюсь это помогает людям не тратить деньги на запчасти. Вот как мы можем проверить система зарядки с несколько простых кусочков оборудования. По сути, вам просто понадобится контрольная лампа и небольшой контрольный прибор.

У меня есть полная схема Мустанга 1989 года здесь Схема электропроводки Ford Mustang 1989 года выпуска

Генератор

Генератор преобразует механический энергия в электроэнергия. В генераторе переменного тока неизбежны потери мощности.Некоторые потери механические, в первую очередь нагрев подшипников генератора и приводного ремня. Это также электрические потери. На диодах немного падает напряжение, это заставляет диоды становиться горячий. Обмотки и внутренняя проводка генератора переменного тока имеют сопротивление, и это вызывает потерю мощности и нагрев. Изменяющееся магнитное поле также вызывает некоторые потери. Помните, что большая часть нагрузки генератора на Коленчатый вал поступает от электрической нагрузки, потребляемой генератором переменного тока.

Вопреки мифам и тому, во что нас убеждают отделы маркетинга и продавцы, используя под приводом система шкивов делает нет высвободите мощность во время гонок.На самом деле он может делать наоборот! Это освобождает увеличивает мощность на холостом ходу, но нагружает систему сильнее, когда вы увеличиваете двигатель, поскольку генератор пытается догнать недостающий заряд аккумулятора!

Когда частота вращения вала генератора снижается, регулятор напряжения поднимает ток возбуждения. Регулятор, пока вал вращается достаточно быстро, увеличивает ток возбуждения и крутящий момент шкива до тех пор, пока генератор обратный рисунок точно та же мощность двигателя лошадиные силы это потреблял бы поворот при нормальном скорости! Как на самом деле, поскольку эффективность часто падает с уменьшенным ротором скорости, генератор иногда тянет еще мощность двигателя и работать горячее с понижающая передача система шкивов, чем со стандартными скоростями вала!

Единственный способ надежно и существенно уменьшить сопротивление генератора повернуть генератор выключен, пока гонки, хотя поворотные огни и электрические аксессуары выключение во время гонок конечно помогает.Помните, что когда автомобиль запуск генератор пытается поставлять всю нагрузку энергия. В разумно максимальный двигатель скорости, обычно от 1500 об / мин до красная черта с тяжелым нагрузки, и от холостого хода до красная линия со светом электрический аксессуар нагрузки, аккумулятор просто идет на езды. На самом деле он ничего не делает, кроме ожидания падения генератора ниже рабочих скоростей. А аккумулятор будет потреблять только заметную мощность двигателя когда батарея низкий заряд и недостающий заряд сейчас пополняется.Батарея, когда она заряжена, на самом деле является просто электрическим аккумулятором.

НИКОГДА не тяните кабель аккумулятора к проверить генератор. Этот очень грубый тест метод был немного нормально, когда мы была машина с вакуумной трубкой радиоприемники и точечные зажигания, но это очень плохо идея сейчас. В аккумулятор стабилизируется электрические система и загружает генератор предотвращение высокого пика напряжения или скачки напряжения как генератор регулирует магнитный поток для производства такое же среднее напряжение при разном течении требования.Если вы измените двигатель вверх и вытащить батарею кабель, напряжение генератора может увеличиваться до 100 вольт или выше перед плашки генератора потока достаточно, чтобы принести напряжение обратно до 14 вольт или так. Это может убить компьютер машины и другие дорогие электрические компоненты. Я видел, как дуют фары когда парень открыл батарею переключиться в то время как двигатель был реверсирован вверх. Если ты слышишь кто-нибудь говорит кто-то это способ проверить генератор в современный автомобиль, остановка их!

ТЕСТИРОВАНИЕ ГЕНЕРАТОРА — это хорошо или плохо?

Для зарядки аккумулятор, напряжение генератора выход должен превышать минимум зарядка Напряжение.Этот минимальное зарядное напряжение 13,8 вольт постоянного тока батарея клеммы, либо на выходе генератора. Один свинцово-кислотный элемент начинает заряжаться что-либо более 2,25 вольт. С 12 вольт аккумулятор имеет шесть ячеек, любой 12-вольтовой свинцово-кислотной батарее минимум 13,8 вольт до начало заряжать. Этот напряжение будет достаточно, чтобы полностью заряжать или поддерживать аккумулятор на мелкая зарядка, но время зарядки будет быть очень длинным — 13,8 вольт.

Чтобы полностью зарядить в разумные сроки, генератор вывод должен быть 14.От 2 до 14,5 В как измерено прямо через батарейные посты. Напряжение зарядки выше 14,5 вольт, аккумуляторы имеют значительно повышенную тенденцию к выделению чрезмерных кислотных паров, газообразный водород и разъедать предметы вокруг батареи. Клемма аккумулятора напряжение зарядки должно быть менее 14,7 В для предотвращения чрезмерного выделения газов. Зарядные напряжения превышают 14,7 вольт могут привести к преждевременной сушке аккумулятор из-за кипячения электролита, и увеличивают риск взрыв водородного газа аккумуляторной батареи.

В этом случае зарядка батареи напряжение 14.61 вольт с двигатель на высоких холостых оборотах. 14,4 вольт — это порог газообразования. Батарея выше будет немного газа, но недостаточно, чтобы быть вредны, а аккумулятор получит быстрая полная зарядка восстановление после начиная. 14,8 будет начать беспокоиться (Там может быть жидкость или коррозия на батарее) и 15 вольт будет настоящая озабоченность, но 14,6 нормально. Меньше чем 14,3 будет «слабый» генератор или регулятор. Значительно меньше чем 14,2 в посте холостой ход плохая проводка, плохой генератор или регулятор, или плохой соединение или предохранитель ссылка.При работе с нормальной медленной крейсерской частотой вращения двигателя напряжение на клеммы аккумулятора должны оставаться выше 14,3 вольт даже с полной нагрузкой, вроде фары, обогреватель воздуходувка и все остальное, Бег. Если это система была в восстановленный 1966 GT купе, я бы вероятно, измените регулятор для уменьшения максимальный генератор Напряжение. Это бы не допустить ухудшение металл вокруг аккумулятор от чрезмерная зарядка пары. В моем повседневном водителе все нормально, пока я смотрю аккумулятор на предмет продувки. кислотные отложения.

Если вы измерили напряжение батареи, и оно где-то выше 14,2 В и ниже более 14,8 вольт, когда автомобиль работает на малых крейсерских оборотах двигателя и на максимальных оборотах. нагрузки, у вас уже есть генератор большего размера, чем вам нужно. Если напряжение выше 14,2 при максимальных нагрузках на крейсерских оборотах, покупая больший генератор или новый генератор — пустая трата времени и денег.

Поверните мотор выключен без нагрузки (фары и т. д. все выключены) и прочтите напряжение батареи.

При просто заглушенном двигателе аккумулятор напряжение должно быть 13.От 2 вольт до 13,8 вольт. Точное напряжение зависит от батареи, как ты быстро прочитаешь это, и состояние заряд батареи. Это напряжение не так уж и важно потому что аккумулятор будет медленно и устойчиво довольствоваться новое напряжение, которое указывает на истинное состояние аккумулятор заряжен, но напряжение, измеренное прямо при выключении двигателя, очень четкое. индикатор если генератор или система зарядки заряжаются. Если напряжение выше 13,2, аккумулятор только что заряжался.

Итак, что произойдет, если ваша батарея все время разряжается, но генератор кажется хороший?

Измерение электрического утечка в системе текущий

Для проверки электрической системы на утечку нежелательной нагрузки мощность, выключите все в машине.Делай так же, как ты поступаешь, когда парковка автомобиля на ночь. убедитесь, что все освещение и аксессуары выключены.

Снимите отрицательный провод и проверить текущий розыгрыш со всеми электрическими загружается с помощью тестовый свет. (Я сделал тестовую лампу из старой лампы заднего фонаря.)

Тусклое свечение в световая нить указывает на текущая проблема слива. В в этот момент я делаю не хочу подключить измеритель тока в проверить утечку потому что короткий может повредить тестовый метр! Если небольшой ясная контрольная лампа как это не свет, тогда это в целом безопасно для непосредственно измерять ток слить с помощью тестового метра.

Измерение Паразитный ток Слив

Со всеми электрические нагрузки выключены подключить счетчик, на низких амперах шкала около 1 ампер или около того, в серия с аккумулятор отрицательный опубликовать в земля. Положительный измерительный провод подключается к шасси автомобиля, и отрицательный провод измерителя к отрицательный пост аккумулятор.

А хорошая электрика разряд батареи системы

Это измеряется по шкале 20 мА.Шкала мА показывает в тысячных долях ампер. Мой Мустанг LX 1989 года, после того, как я изменил плохой генератор диод, сейчас имеет около 1,73 мА разряд батареи. Этот слив все из компьютер EEC-IV объем памяти. Другой радиоприемники и разные компьютеры могли иметь другой режим ожидания стоки, а также аксессуары, такие как часы, но нет случай должен «на ночь выключить» утечку превышают 25 мА или около того. 100 мА как оставив небольшой свет в салоне включен!

Стерео My Kenwood потребляет 1,5 мА, когда связаны.если ты есть цифровые часы что остается будильник, или другой загрузить этот ток будет выше. В 75 мА, утечка может взломать аккумулятор жизнь нечасто управляемые автомобили. мА — это миллиамперы или одна тысячная ампер.

Указанный выше измеритель имеет шкалу 20 мА и показывает 1,73 мА. То есть ничего такого. Заряда батареи хватило бы на месяцы сидения.

Плохой аккумулятор паразитный сток

Если контрольная лампа горит, ты захочешь найти провод заряжаем аккумулятор.Сначала убедитесь, что все свет выключен. Ты может сделать это кто-то открытый и закрой вещи с огни, как багажник и наблюдение для определения большого изменение нагрузки. Ты должен увидеть определенное изменение нагрузки при закрытии дверей с огнями, как перчатка отсек.

Подключите тест свет последовательно с отрицательный пост, и начать тянуть подачи проволоки. В сначала проверить это тяжелая зарядка провод от генератор. А плохой или негерметичный диод в генераторе переменного тока очень распространенный источник ночной батареи осушать.

Подключите провода один за раз, чтобы увидеть что за свинец рисует Текущий. В моем случае это было провод генератора! Хотя генератор был зарядка нормально, это также истощал батарея. Мой проблема была плохой диод генератора. Может быть множество других проблемы, как плохие регулятор напряжения или застрявшее реле контакт.

Скачать проводку диаграмма

Я скачал это из Сайт Т. Мосса , г. что я нахожу много полезнее, чем другие источники.Том Мосс делает все возможное, чтобы помогать людям, и он действительно хороший парень. AutoZone и другие есть немного бесплатно схемы тоже.

T.Moss’s диаграмма (ссылка выше) показал мне тяжелый темно-зеленый провод от мое стартерное реле вызывая мою «проблему слива» пошел прямо к моему выход генератора автомобиля. В моем случае один из диоды (маленькие черные «стрелки») в моей машине генератор был плохой. Эта текущая потеря также заставила меня генератор слегка теплый на ощупь, даже когда сидишь выключен на несколько часов.

Другой Полезные напряжения

Напряжение аккумулятора может быть выше 12,6 В сразу после зарядки.

Разомкнутая цепь Напряжение 12 В аккумулятор после машина выключена на один час Родственник заряд
12,6 В 100%
12,4 В 75%
12,2 В 50%
12.1 В 25%
Менее 12 вольт Мертвый

Любой открытый терминал напряжение ниже 12 вольт считается полная разрядка или разряженная батарея.

Стартеры иногда могут хорошо проверить себя вне машины, но могут быть и плохими. Одна общая проблема с дешево построенными или неисправными стартерами — это потеря пускового момента в горячем состоянии. Этот обычно происходит из-за того, что утюг теряет способность удерживать магнитный поток (пусковой ток резко возрастает, когда он горячий), или из-за того, что провод занижены и повышается сопротивление (пусковой ток падает при нагревании), или стартер заклинивает (также вызывая большой ток).

Лучший способ проверить стартер — измерить напряжение и ток .

Для проверки стартера и проводки простым счетчиком:

  • Закрепите плюсовой провод расходомера на питании стартера. провод идущий в стартер
  • Закрепите черный отрицательный провод измерителя на БЛОК ДВИГАТЕЛЯ
  • Убедитесь, что на измерителе есть напряжение, и установите его на шкала наименьшего напряжения, показывающая не менее 15 вольт. Другими словами, если на вашем счетчике 2.Шкала 5 В, 25 В и 250 В используйте Шкала 25 вольт. Шкала 25 вольт — это ближайшая шкала к 15 вольт, но не ниже 15 вольт.
  • Прикрепив счетчик к стартеру, следите за счетчиком, проворачивая двигатель.

Убедитесь, что аккумулятор в хорошем состоянии. Выше приведена таблица напряжений для аккумулятора. плата. Напряжение на клеммах батареи без нагрузки (все выключено) должно быть не менее 12,6 вольт и 13,8 вольт.

Если напряжение запуска стартера опускается ниже 9-10 вольт, у вас проблема со стартерным током, двигатель заземление, или аккумулятор.

Измерьте поперек батареи, исследуя клеммы аккумулятора (НЕ клеммы, которые крепятся к клеммам, а воткнуты непосредственно в выводные столбы выходят из АКБ), и посмотрите сколько АКБ падает при проворачивании. Если он падает, и вы уверены, что генератор работает, возьмите аккумулятор в магазин автомобильных запчастей, который тестирует аккумуляторы. В отличие от стартеров, проверить аккумуляторы ОЧЕНЬ просто и очень просто. надежный.

Если аккумулятор остается на стойках и напряжение стартера упало, возможно, у вас Плохой провод стартера, провод заземления или другая проблема с проводкой.Если батарейный столб напряжение проверяется нормально, но у стартера происходит ненормальное проседание, вероятно, у вас проблема со стартером. Вам необходимо проверить пусковой ток.

Дешевые или плохо изготовленные стартеры обнаруживаются в основном, когда стартер очень сильно поврежден. горячий. Очень часто стартеры не могут быть точно протестированы на стенде, потому что они часто может потерпеть неудачу только когда очень жарко. Я вижу очень мало тракторов, легковых и грузовых автомобилей, которые заводятся нормально, когда холодно и не проворачивайте при горячем, что есть проблемы кроме стартера! Мой дизельный трактор был сукой заводиться в жаркую погоду, но заводился, как мечта, когда холодно, и это было стартером.У моего трактора тоже нет жаток. Просто нагрева блока было достаточно, чтобы стартер выключился. У меня был такой же опыт с автомобилями. Когда холодно, то начало работать и тест хорошее! Маргинальные стартеры могут иметь достаточно мощности, чтобы запускаются правильно, когда система холодная, и выходят из строя, когда она горячая.

Неисправные генераторы или аккумуляторы обычно обнаруживаются, когда машина очень холодная, но и генераторы, и аккумуляторы можно надежно проверить, чтобы убедиться в их исправности.

Установка генератора большего размера не устранит неисправный стартер, батарею или плохая проводка.

Переход на светодиодный Предупреждение

Является ли 13,4 В слишком высоким для устройств, требующих 12 В? — Оборудование

Замерил напряжение холостого хода от АКБ. Я предположил, что раз уж он регулируется, то не прогибается. … — Майкл

Нет, батарея не регулируется, дает хорошее стабильное напряжение, но не регулируется. В зависимости от технологии, заряда и нагрузки аккумулятор на 12 В может медленно изменяться от более 13 В до менее 10 В.Стабилизированный источник питания использует контур обратной связи для контроля и регулирования выходного напряжения, которое удерживает его на уровне определенного напряжения независимо от нагрузки (при условии, что нагрузка остается в пределах возможностей источника питания)

Поскольку напряжение батареи 12 В может немного отличаться, практически все продукты, совместимые с 12 В, могут работать в разумном диапазоне напряжений. Источники питания, предназначенные для замены 12-вольтовой батареи на напряжение 13+ Вольт … даже регулируемые, не редкость.

Несмотря на то, что большинство продуктов допускают этот диапазон напряжений, некоторые из них могут оказаться немного чувствительными к более высоким напряжениям. Эта «чувствительность» чаще всего объясняется тем фактом, что регуляторы низкого напряжения, присутствующие в большинстве электронных схем, будут немного нагреваться при питании от 13-14 В, а не 11-12 В. Как правило, я обнаружил, что единственными устройствами, которые действительно чувствительны к входному напряжению, являются камеры, особенно старые модели, которые могут отображать немного больше шума при чтении, когда они работают немного теплее.Крепления, концентраторы, ПК и т. Д. Обычно не очень чувствительны к немного более высоким напряжениям. Следует остерегаться источников питания и устройств, создающих электрические помехи. Так что немного более высокие напряжения, как правило, подходят, если уровни напряжения не сильно меняются. Более высокие изменения частоты (шум) больше беспокоят любое устройство.

Если вы хотите обеспечить истинное напряжение 12 В, а также изолировать одну нагрузку от другой (иногда полезно, если у вас есть электрически шумные устройства, такие как некоторые крепления и некоторые контроллеры полосы росы), вы можете использовать один из популярных регуляторов 12 В, упомянутых выше Деннисом (часто обычно называемые продуктами понижения / повышения).Они довольно недорогие и доступны в различных номинальных значениях силы тока. Некоторые из них доступны с переменным выходным напряжением (так что вы можете установить именно то, что хотите), а другие полностью фиксированы на 12 В. Довольно просто (с небольшим опытом работы с резкой, обжимом и, возможно, пайкой) подключить эти маленькие регуляторы в линию к силовым кабелям.

Отредактировал mclewis1, 27 июня 2020 г. — 19:36.

Что вам говорят показания вольтметра — The Mercury News

Q Надеюсь, вы сможете раскрыть тайну из вольтметра моего внедорожника.В моих предыдущих машинах вместо датчиков всегда были красные огни. Датчики давления и температуры масла довольно просты для понимания, но вольтметр меня ставит в тупик. Он имеет «хороший» диапазон от 10 до 16 вольт с красными линиями выше и ниже этих точек. Думал аккум всегда должен быть 12 вольт. Кажется, большую часть времени он составляет около 15 вольт. Это нормально?

Педро Торрес
Сан-Хосе
A Ваш вольтметр контролирует напряжение в системе. При работающем двигателе напряжение в системе отличается от напряжения аккумуляторной батареи примерно на два вольта.Автомобильные аккумуляторы содержат шесть ячеек, способных выдавать 2,1 В каждый при полной зарядке, в результате чего на клеммах аккумулятора имеется 12,6 Вольт. Аккумуляторная батарея необходима для запуска двигателя, управления аксессуарами во время стоянки и в качестве резервной копии на случай, если система зарядки выйдет из строя.

Из-за огромной нагрузки на батарею стартером во время запуска двигателя напряжение на мгновение упадет примерно до 11 вольт, что не вызывает беспокойства. Напряжение аккумулятора также может временно упасть до 12.3 вольта или около того во время использования дополнительного оборудования при выключенном двигателе.

Система зарядки вашего внедорожника (генератор и связанные с ним компоненты) должна выполнять две функции: заряжать аккумулятор и подавать питание на все нужды автомобиля во время вождения. Чтобы передать энергию в батарею, создается более высокое напряжение около 14 вольт. Многие системы автомобиля спроектированы так, чтобы лучше всего работать при этом несколько повышенном напряжении.

Во время движения можно увидеть некоторые колебания в отображаемом напряжении.Оно может упасть примерно до 13 вольт при работе на холостом ходу с включенным освещением и обогревателем или в случае, когда существенно разряженная батарея возвращается к своей емкости.

Указанное напряжение может возрасти почти до 15 В при более высоких оборотах двигателя при минимальном активном освещении или дополнительном оборудовании.

Если предположить, что датчик действительно точный, то значение ниже 12,6 В во время вождения указывает на то, что система зарядки не работает или не справляется с интенсивным использованием аксессуаров. В этом случае я бы отключил аксессуары, немного увеличил обороты двигателя, что увеличивает мощность генератора, и наблюдал за напряжением.Если он по-прежнему показывает ниже 12,6, разумно сразу же отправиться домой или обратиться за осмотром / ремонтом, так как аккумулятор без подзарядки может проработать всего несколько часов в автомобиле.

Напряжение выше 15 вольт указывает на неисправность регулятора напряжения системы зарядки или связанных цепей. Если он будет слишком большим, это может привести к повреждению электрической системы и / или аккумулятора.

Вы упомянули, что ваш вольтметр большую часть времени работает при напряжении около 15 вольт. Я предполагаю, что датчик показывает очень высокое напряжение и сообщает о нормальном максимальном напряжении системы 14.8 вольт, что является нормой при полностью заряженной батарее и при наличии дополнительных нагрузок от легкой до умеренной. Единственным недостатком датчиков по сравнению с красными огнями является то, что их нужно время от времени проверять. Похоже, у вас все это хорошо покрыто.


Брэд Бергхольд — инструктор по автомобильным технологиям в колледже Эвергрин-Вэлли в Сан-Хосе. Напишите ему по адресу Drive, Mercury News, 750 Ridder Park Drive, Сан-Хосе, Калифорния 95190; или по электронной почте на адрес under-the-hood @ earthlink.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *