Как сделать индикатор заряда аккумулятора: СВЕТОДИОДНЫЙ ИНДИКАТОР ЗАРЯДА АККУМУЛЯТОРА – Как самостоятельно сделать индикатор заряда аккумулятора

Как сделать индикатор заряда аккумулятора

Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.

Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.

Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.

Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.

В качестве индикаторов задействованы 3 миллиметровые светодиоды.

Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.

Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.

Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.

Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.

Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.

Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.

Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.

Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.

Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.

Горение только красных светодиодов означает, что аккумулятор почти разряжен.

Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.

Электрические аккумуляторы повсеместно применяются в нашей жизни. Они используются как первичные электрохимические источники электропитания для переносных или передвижных электроприборов. К примеру, для телефонов, ноутбуков, автомобилей, шуруповёртов, квадрокоптеров, игрушек.

Аккумулятор представляет собой сложную конструкцию. Он при зарядке накапливает в себе электроэнергию за счёт физико-химических процессов (электролиза), при подключении нагрузки отдаёт энергию, то есть происходит разряд (разряжается).

При правильном обслуживании необходимо постоянно следить за основным параметром – уровнем зарядки. В этом владельцу поможет индикатор заряда аккумулятора. Он вовремя подскажет, какой параметр вышел из нормы (плотность, уровень электролита), и требуется ли вмешательство.

Применяются разнообразные индикаторы. По назначению они равные, по функциональным элементам – многообразные: от электромеханических до интеллектуальных.

Технические данные аккумуляторов

Основные применяемые типы аккумуляторов:

  • Щелочные – Ni-Cd,
  • Ni-MH – никель-металлогидридные,
  • кислотные – аккумуляторы для автомобилей,
  • Li-ion – литий-ионные,
  • Li-po – литий-полимерные.

При эксплуатации аккумулятора необходимо учитывать его функциональные характеристики, такие как:

  • значение ёмкости,
  • выходное напряжение,
  • размеры,
  • сколько весит,
  • допустимое минимальное напряжение,
  • срок эксплуатации,
  • коэффициент полезного действия,
  • диапазон рабочей температуры,
  • рабочий ток заряда и разряда.

К сведению. Все параметры указываются для 20 или 25 °С.

Аккумулятор для автомобиля (АКБ) состоит из 6 последовательно соединённых аккумуляторных секций с напряжением питания каждой 2,1-2,16 В, на хорошей батарее напряжение 13-13,5 В.

Важно! Не допускается снижение напряжения ниже 9 вольт, поскольку из-за особенностей процессов, происходящих в батареях, садится плотность, что повышает температуру промерзания электролита и ускоряет разрушение электродов. В свою очередь, уменьшается и срок службы аккумулятора.

Разновидности индикаторов заряда аккумулятора

Разделяют индикаторы по методу подключения и индикации сигнала. Зарядка – это сложный процесс, поэтому в основном индикаторы информируют только об окончании зарядки в аналоговом или цифровом виде.

Для каждого типа аккумулятора необходимы адекватные схемы и конструкции зарядки, электроизмерительные или электронные. Так, для телефонов и ноутбуков используются импульсные зарядки, которые должны обладать интеллектом, в них используют микропроцессоры. Электронный контроллер ШИМ Weswen применяется для зарядки аккумуляторных батарей для независимого электроснабжения домов.

Одним из простых является встроенный индикатор заряда батареи, который выполнен в виде глазка. Устанавливается в одну из банок автомобильного аккумулятора. Разновидность работы индикатора с двумя шариками показана на рис. ниже.

Индикатор представляет собой пластмассовый цилиндр с плавающими шариками зелёного и красного цветов. В работе индикатора используется принцип ареометра. Красный шарик реагирует только на уровень электролита, зелёный – на уровень и плотность электролита. Есть варианты и с одним зелёным шариком.

Используются ещё и электроизмерительные индикаторы в виде стрелочных вольтметров. Один из них показан на рис. ниже. Подключается параллельно, в цепи аккумулятора.

Устанавливается как на приборной панели, так и в удобном месте. При нормальном напряжении на аккумуляторе стрелка должна находиться в пределах последнего зелёного сектора. Если стрелка показывает ниже 75%, то требуется подзарядка. Нахождение стрелки в начале шкалы (красный сектор) говорит о том, что аккумулятор неисправен.

Опытные владельцы аккумуляторов могут использовать простые готовые цифровые индикаторы. Один из таких изображён на рис. ниже

Он просто показывает напряжение в данное время. Владельцу самому решать, что делать. При диагностике аккумулятора можно использовать стрелочный или цифровой тестер.

Радиолюбители могут использовать индикацию, сделанную своими руками. В основном изготавливают схемы разнообразных индикаторов для контроля заряда аккумулятора на световых индикаторах, двух или больше. Схемное решение устройств индикации зависит от сложности зарядки.

Важно! Чем проще зарядка, тем сложнее должна быть схема индикации.

На рис. ниже изображена схема проверки степени зарядки на 5 индикаторах.

На рисунке изображена одна из возможных эл.схем, собранная на компараторе Lm339 с термокомпенсацией. HL1 будет гореть при недозаряженном или плохом аккумуляторе. HL2 – это недозаряд, значит, требуется зарядка. HL3 – напряжение в норме. HL4 – небольшой перезаряд. HL5 – недопустимый перезаряд. Остановить зарядку необходимо при загорании HL4.

Нужно отметить! Во время работы будет гореть только один световой индикатор. Таких вспомогательных плат можно разработать столько, на сколько хватит знаний и необходимости.

В современных гаджетах, использующих питание от аккумуляторных батарей, зарядки делают более сложными, чтобы создать оптимальные условия работы батареи. Например, в зарядках для шуруповёртов используются импульсные блоки с применением запрограммированных контроллеров. В таких автоматических зарядках два состояния индикации: разряжен и заряжен. Для удобства в качестве световых индикаторов применяются и жидкокристаллические индикаторы.

В нынешних авто за состоянием аккумулятора следят главный модуль, модуль управления двигателем и датчик, который следит за параметрами батареи. Электронная система автомобиля сама следит за правильной эксплуатацией аккумулятора. Водителю остаётся только наблюдать за информацией на экране дисплея.

Развивается использование батарей при автономном электроснабжении домов. Ветрогенераторы и солнечные панели объединяются в общую электросеть, и аккумуляторы управляются с помощью ШИМ контроллера, например, от компании WESWEN.

Необходимо постоянно следить за работоспособностью аккумуляторных батарей. Для этого предназначены указатели заряда. Простые устройства – просто следят, а контроллеры контролируют и управляют подзарядкой аккумулятора.

Видео

В статье предлагаются два варианта индикатора, цвет свечения которого, по мере разряда батареи, изменяется от зеленого до красного. Существует огромное количество схем, предназначенных для выполнения таких функций, но все из них, на мой взгляд, слишком сложны и дороги. Для моего индикатора требуется всего пять компонентов, один из которых – двухцветный светодиод.

Простейший вариант показан на Рисунке 1. Если напряжение на клемме B+ равно 9 В, будет светиться только зеленый светодиод, поскольку напряжение на базе Q1 равно 1.58 В, в то время, как напряжение на эмиттере, равное падению напряжения на светодиоде D1, в типичном случае составляет 1.8 В, и Q1 удерживается в закрытом состоянии. По мере уменьшения заряда батареи напряжение на светодиоде D2 остается практически неизменным, а напряжение на базе уменьшается, и в какой-то момент времени Q1 начнет проводить ток. В результате часть тока станет ответвляться в красный светодиод D1, и эта доля будет увеличиваться до тех пор, пока в красный светодиод не потечет весь ток.

Рисунок 1.Базовая схема монитора напряжения батареи.

Для типичных элементов двухцветного светодиода различие в прямых напряжениях составляет 0.25 В. Именно этим значением определяется область перехода от зеленого цвета свечения к красному. Полная смена цвета свечения, задаваемая соотношением сопротивлений резисторов делителя R1 и R2, происходит в диапазоне напряжений

Середина области перехода от одного цвета к другому определяется разностью напряжений на светодиоде и на переходе база-эмиттер транзистора и равна приблизительно 1.2 В. Таким образом, изменение B+ от 7.1 В до 5.8 В приведет к смене зеленого свечения на красное.

Различия в напряжениях будут зависеть от конкретных комбинаций светодиодов и, возможно, их будет недостаточно для полного переключения цветов. Тем не менее, предлагаемую схему все равно можно использовать, включив диод последовательно с D2.

На Рисунке 2 резистор R1 заменен стабилитроном, в результате чего область перехода становится намного более узкой. Делитель больше не оказывает влияния на схему, и полная смена цвета свечения происходит при изменении напряжения B+ всего на 0.25 В. Напряжение точки перехода будет равно 1.2 В + VZ. (Здесь VZ – напряжение на стабилитроне, в нашем случае равное примерно 7.2 В).

Рисунок 2.Схема на основе стабилитрона.

Недостатком такой схемы является ее привязка к ограниченной шкале напряжений стабилитронов. Еще больше усложняет ситуацию тот факт, что низковольтные стабилитроны имеют слишком плавный излом характеристики, не позволяющий точно определить, каким будет напряжение VZ при малых токах в схеме. Одним из вариантов решения этой проблемы может быть использование резистора, включенного последовательно со стабилитроном, чтобы иметь возможность небольшой подстройки за счет некоторого увеличения напряжения перехода.

При показанных сопротивлениях резисторов схема потребляет ток порядка 1 мА. Со светодиодами повышенной яркости этого достаточно для использования прибора внутри помещения. Но даже такой небольшой ток весьма значителен для 9-вольтовой батареи, поэтому вам придется выбирать между дополнительным потреблением тока и риском оставить питание включенным, когда необходимости в нем нет. Скорее всего, после первой внеплановой замены батареи вы почувствуете пользу от этого монитора.

Схему можно преобразовать таким образом, чтобы переход от зеленого к красному свечению происходил в случае повышения входного напряжения. Для этого транзистор Q1 надо заменить на NPN и поменять местами эмиттер и коллектор. А с помощью пары NPN и PNP транзисторов можно сделать оконный компаратор.

С учетом довольно большой ширины переходной области, схема на Рисунке 1 лучше всего подходит для 9-вольтовых батарей, в то время как схема на Рисунке 2 может быть адаптирована для других напряжений.

Перевод: AlexAAN по заказу РадиоЛоцман

Индикатор заряда аккумулятора своими руками

Индикатор заряда аккумулятора своими руками-0Индикатор заряда аккумулятора своими руками-0

Индикатор заряда аккумулятора своими руками

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LEDREF, работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Индикатор заряда аккумулятора своими руками-1Индикатор заряда аккумулятора своими руками-1

Световой поток измерительного светодиода LEDVAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон Dz с последовательным резистором R2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R2. Изменения напряжения батареи вызывают большие изменения тока резистора R2. Если напряжение равно примерно 1 В, через светодиод LEDVAR течет ток 10 мА, и он светится намного ярче, чем LEDREF. Если напряжение ниже 0.1 В, интенсивность свечения LEDVARvar будет меньше, чем у LEDREF. показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками-2Индикатор заряда аккумулятора своими руками-2

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S11( чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LEDREFG и LEDREFR подключены через резисторы R1 и R2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R3 и R4 сопротивлением 100 Ом. Диоды D1, D2 и D3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Индикатор заряда аккумулятора своими руками-3Индикатор заряда аккумулятора своими руками-3

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

VBATT= 10G x 100 +VD1 +VD2 +VLEDG +VDZ1

При токе зеленого светодиода 1 мА

VBATT =103 x 100+0.6+0.6+1.85+9.1=1225B.

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в[1]. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

VBATT= IR x IOO+VD3+VLEDR+VZD2

При токе зеленого светодиода 1 мА

Индикатор заряда аккумулятора своими руками-4Индикатор заряда аккумулятора своими руками-4

VBATT =10-3 x 100 +0.6 + 1.85 + 9.1 =11.65 В.

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LEDVARGvarg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

Индикатор уровня заряда аккумулятора и его применение в новом DIY бумбоксе.

Всем привет!
Давно не было от меня ничего самодельного и звучащего. Исправляюсь! Будет новый бумбокс 10 Вт.
Так же поговорим о двух вещах, которые не вошли в мой гид по портативным колонкам:
1. Удобный индикатор уровня заряда батареи.
2. Ликвидация земляной петли (фона) с помощью DC-DC преобразователя с гальванической развязкой.

Содержание и быстрая навигация по тексту:
Обзор индикатора уровня заряда аккумулятора
Компоненты бумбокса
Земляная петля и борьба с ней
Обзор DC-DC преобразователя B1212
Изготовление бумбокса
Готовый бумбокс

Обзор индикатора уровня заряда аккумулятора
Применение таких индикаторов обширно:

Характеристики:
Поддержка: свинцовые, литий ионные и LiFePO4 аккумуляторы.
Вольтметр: 8-70 В.
Свинцовые аккумуляторы: 12, 24, 36 и 48 В.
Литиевые аккумуляторы 3-14S

Упаковка

Антистатический пакет:


В комплекте сам индикатор и кабель 20 см для подключения к аккумулятору:

Размеры: 60х31 мм, экран 43х11 мм.
Кнопка последовательно переключает: проценты заряда, напряжение вольт, выключено. Памяти режима нет.
У индикатора есть фланец:

Установочное отверстие: 59х29 мм.
Микросхемы:

Контроллер экрана TM1621D
Микроконтроллер nuvoton n76e003at20
Там же и кнопка для настроек.
Вот так подключается кабель:

Проверка:
Установлено на 12 В свинцовый акк:

Ставим на литий (кнопка сзади):

Помимо выбора типа аккумулятора, в таком небольшом устройстве еще есть куча настроек:

Мне нужно для бумбокса настройка на 3S лития:

По сравнению с таким индикатором:

у обозреваемого три преимущества:

  • Не нужно делать точное отверстие для установки
  • Есть доступная кнопка
  • Возможность работы как вольтметр

Наверх

Компоненты бумбокса

Основа для корпуса бумбокса алюминиевая труба 85*85*2 мм:

Алюминиевая труба — это реально отличный вариант для портативной акустики, легкая и жесткая, а резонансы и призвуки легко победить.
История этого куска трубы интересна: валялась она на слесарном участке, ее нерационально использовали для подкладок для губок тисков. И я её спас от этой участи (быть прокладкой), унес домой, пусть уж лучше поёт в колонке.
Кусок был длинной 425 мм, это наложило определенный отпечаток на конструкцию бумбокса.
Для планируемых в конструкции динамиков по расчетам нужен 1 л чистого объема. Считаем: 1 л=0,83х0,83х1,44 дм Значит для каждого динамика нужно минимум 150 мм длины трубы, плюс объем самого динамика и перегородки — выходит что бы разместить электронику осталось только 100 мм=425 — 2*162,5. А это мало, ширина mp3 модуля уже больше — и было принято решение — часть электроники вынести из объема трубы в небольших корпусах на стенки трубы.

Список остальных составляющих:
Динамики AURA 2.5″ Обзор с параметрами. Дошли до них руки.
Модуль MP3 Tenda с переходом по папкам, которые фиг купишь на али
Усилитель TA2024 Дешевый и хороший
Пассивные излучатели 3″
Плата 20 А защиты и зарядки для лития 3S
Кнопка с подсветкой

Ну и по мелочи: кейс для 3 шт. аккумуляторов 18650, сами обычные 18650 из ноутбука, антенна, кабели…

Наверх

Земляная петля и борьба с ней

Кто возится с самодельным аудио, думаю, не раз сталкивался с таким явлением, как земляная петля.
Помеха в полезный усиливаемый сигнал от разных потенциалов на общем проводе.
Земляная петля — это еще и контур, воспринимающий и излучающий помехи.

Земляная петля в моих компонентах:

выражается в слышимом фоне/шуме при работе компонентов даже при работе от аккумуляторов. От разных блоков питания для источника и усилителя проблем нет. Традиционные методы ликвидации успехов не принесли.

Ликвидация земляной петли

Традиционные советы:
1. Пускать общий провод из одной точки, например от «минуса» усилителя.
2. Разрыв сигнальной и силовой земли резистором несколько Ом.

Вот еще развернутый совет из книги Рогова И.Е. Конструирование источников питания звуковых усилителей:
Самое главное требование, которое должно быть первостепенным: никогда нельзя объединять силовую
и сигнальную землю. Если земля входного разъема соединена с землей блока питания. Поэтому через проводник, соединяющий земли блока питания и усилителя протекает сразу два тока: ток входного сигнала и ток усилителя. Поскольку сопротивление этого провода не нулевое, то падение напряжения, создаваемое током усилителя, будет складываться со входным сигналом. В правильном варианте каждый ток протекает по своему проводу: отдельно ток входа, отдельно ток усилителя.

Простой и изящный метод ликвидации земляной петли подсказал мне Александр Alex_74 — применение преобразователя B1212 (о нем далее). Александр опытный специалист в построении DIY усилителей мощности. За все ему благодарность и плюсцов в карму.

Наверх

Обзор DC-DC преобразователя B1212


B1212S-1WR2 — миниатюрные (Корпус SIP-4) DC-DC преобразователи из 12 В в 12 В, с гальванической развязкой и выходной мощностью 1 Вт.
Имеют высокий КПД во всем диапазоне нагрузок до 80%. Есть защита от КЗ с автоматическим восстановлением (но надо быть внимательным к полярности).
Есть версии на разное напряжение: 3, 5, 9, 12… В и варианты мощностью 1 и 2 Вт.
Все характеристики.
Схема подключения проста и логична:


4 ножки — две вход, и две выход.
Работает с 9 до 13 В, максимальный выходной ток 0.08 А. Выход нужно зашунтировать электролитом.
Обычный dc-dc преобразователь (например на lm317) не имеет гальванической развязки и земляную петлю не разрывает.

Ставлю в питание mp3 модуля B1212-1 Вт:

Фон пропадает начисто. Это работает!
Ставил еще дополнительный dc-dc повышающий чтобы поддерживать на питание модуля 12 В, но он оказался не нужен — B1212 работает до момента разрядки 3S блока аккумуляторов.
Но есть «но», которое важно учесть. Модуль mp3 tenda на максимуме потребляет 1,2-1,3 Вт и B1212 — 1 Вт уже не хватает не всегда (и B1212 нельзя подключать последовательно). Но есть…

B1212-2W (2 Вт)

Эти брал на ebay за US $3,66, упаковка получше, доставка тоже долгая и безтрековая.

Подключение по такой же схеме:


Сравнение с одно ваттной версией:

Теперь для модуля хватает мощности.


Наверх

Изготовление бумбокса
Основу корпуса — алюминиевую трубу мы уже нашли, теперь подготовим ее.
Вырезаем отверстия в профиле:

Центральное отверстие под электронику.
Инструмент: сверло-балеринка, лобзик, гравер и конечно напильник.

Проверка платы защиты и зарядки:

Плата удобная: есть защита от КЗ (после КЗ требуется перезапуск платы зарядкой 12 В) и все защиты. Плата не имеет контроллера заряда (CC/CV), поэтому зарядка нужна специальная 12,6 В.
Схема подключения аккумуляторов:

Размечаем и нарезаем кучу резьбы М3:

желательно смазывать керосином.
Вклеиваю в трубу фанерные переборки отсеков с динамиками и добавляю на стенку трубы виброизоляцию STP:

Так же в объеме динамиков находится синтепон для подавления стоячих волн.
Пластиковые детали корпусов под электронику и заглушки покрасил серебристой краской:

Оклеиваю корпус пленкой под Пикачу:

если использовать промышленный фен дела идут лучше.
Ставлю динамики и защитные решетки из защит компьютерных вентиляторов:

Решетки подняты на латунных стойках, так как у подвеса динамиков большой ход.
Модуль потребляет: примерно 0,1 А — выходит 1,2 Вт.
Усилитель более прожорлив (около 6 Вт), но по сравнению с классом АБ, это мизер:

Смысла ставить высокотоковые аккумуляторы я не вижу, а вот с большой емкостью — это да. Ибо час работы на хорошей громкости, вот такая автономность с видавшими виды аккумуляторами из батареи старого ноутбука.
А вот откуда взялось 10 Вт выходной мощности.
Документация на TA2024:

Наверх

Готовый бумбокс

Готовое устройство:

Торцы закрыты заглушками, в которых стоят 3″ пассивные излучатели, они дополнительно утяжелены монетками для выхода на низкий резонанс. Пробовал просто с заглушками (оформление закрытый ящик), но понравилось больше слушать с пассивными излучателями — бас с ними более насыщенный, «мясной».
Для удобства переноски есть ремень.
Сзади:


В корпусе расположен усилитель мощности с регулировкой громкости, там же антенна для FM. Гнездо для зарядки над корпусом.
Вот так в наружных корпусах вынесена электроника:

Модуль tenda:

На бок этой внешней коробки выведен линейный вход 3,5 мм и микрофон.
На дне наклеены резиновые ножки.
Индикатор аккумуляторов:

В комплекте с бумбоксом идет пульт от mp3 модуля (надо бы для него сделать карманчик или крепить его к корпусу на велкро липучку) и зарядное устройство 12,6 В 1,5 А.
Такое добротное вышло устройство, сапожник теперь с сапогами)) Бумбокс был проверен походом на шашлыки, всем понравилось.

Бонусом общая измеренная (с 1 м) АЧХ бубмбокса:

К ней подшита АЧХ ближнего поля басовика и ПИ:


Звук очень даже полновесный. Но желательно направленность на слушателя.

Наверх

Спасибо за внимание! Удачных конструкций!

Индикатор напряжения для сборок литиевых батарей 1-7S. Обзор электронного измерительного оборудования индикатора напряжения

Иногда заказываю для сборок аккумуляторов небольшие измерители и вот дошли руки протестировать их, ну и заодно написать микрообзор.
Осмотр, немножко тестов и выводов, надеюсь что будет полезно.

К сожалению доставка в магазине платная, потому заказывал сразу по нескольку штук чтобы компенсировать это.
На момент заказа у продавца вроде были только четыре версии, 1S, 2S, 3S, 4S, но сейчас появились 6S и 7S, при этом странно что нет в продаже версии 5S, подозреваю что скоро появится.

Большая часть измерителей отдал товарищу, но по одной штучке оставил и себе.
Каждый измеритель упакован в отдельный пакет, из отличий только наклейка с маркировкой на китайском и указанием диапазона измеряемого напряжения.
1S — 3.3-4.3 Вольта
2S — 6.6-8.4 Вольта
3S — 11.1-12.6 Вольта
4S — 13.2-16.8 Вольта

Также имеется маркировка цвета свечения (предположительно), но у продавца они только в одном варианте.

Если покупается несколько разных вариантов, то лучше их пометить сразу, так как сами по себе они ни маркировки, ни внешних отличий нет.

На одной из сторон платы есть место под кнопку, скорее всего для включения индикатора, но ни кнопки, ни сопутствующих компонентов на плате нет.

Когда получил индикаторы, то немного удивил размер, почему-то я ожидал что они будут меньше, тем более зная как в китайских магазинах любят делать фото.
Размеры самого индикатора — 31.5х20 мм, общие размеры — 43.5х20х9.5мм, расстояние между крепежными отверстиями — 36мм.

Чтобы не запутаться где какой индикатор, пришлось маркером сделать отметки на каждом из них.

Общее качество на троечку, есть следы флюса, пайка так себе, индикатор на некоторых платах припаян криво относительно самих плат.

Схемотехника довольно проста, стабилизатора напряжения питания нет, потому яркость зависит от напряжения питания. Имеется источник опорного напряжения на базе регулируемого стабилитрона TL431, а также защита от неправильной подачи питания.
Что за чип занимается измерением я определить не смог, сначала думал что это четырехканальный компаратор LM339, но у него выходы выведены на 1, 2, 13 и 14 контакты, а у чипа обозреваемой платы на 1, 7, 8, 14 выводы.

Ниже на фото две платы, 1S и 4S, чтобы понять в чем между ними отличия.
1. Резисторы через которые питаются сегменты индикатора (R1-R5).
2. Резистор R9.

Все остальные компоненты идентичны на всех платах.
При этом номинал резистора питания TL431 одинаков для всех плат и из-за этого ток потребления будет зависеть от входного напряжения.

Индикатор пятисегментный, один общий в виде символа батарейки и четыре сегмента для индикации уровня заряда (собственно потому я и думал что здесь применен LM339), но при этом существует и индикатор с пятью сегментами уровня заряда, мне такой попадался на Таобао.
Мало того, есть еще и много вариантов цветов индикации.

Размеры индикатора платы в обзоре и показанного выше очень похожи, 30.8х17.8мм против 31.5х20мм у обозреваемой платы.

Теперь немного тестов.
Индикатор обозреваемой платы имеет два цвета свечения, символ батарейки — красный, сегменты — синий. При этом символ батарейки состоит из шести параллельно включенных светодиодов.

Яркость достаточная, но у самой низковольтной версии сильно зависит от напряжения питания, но это вполне предсказуемо, остальные ведут себя гораздо стабильнее.
Есть и небольшая сложность, из-за того что цвета свечения синий и красный, то лучше использовать нейтральный светофильтр.
Для примера ниже четыре варианта —
1. Без светофильтра
2. Зеленый светофильтр, видны все сегменты, но яркость сильно падает и становятся более заметны светодиоды подсветки символа батарейки.
3. Красный светофильтр — виден только символ батарейки
4. Синий светофильтр, отлично видны сегменты, но символ батарейки почти не виден.

Измерения, для начала ток потребления.
Ниже на фото результат измерений для четырех режимов из пяти — только символ батарейки, + один сегмент, + два сегмента и + четыре сегмента, фото с тремя сегментами выкладывать не стал, но думаю что можно принять среднее между третьим и четвертым фото.
На всех фото где включены сегменты измерен ток сразу после его включения.
1-4, 1S
5-8, 2S
9-12, 3S
13-16, 4S

Видно что ток постоянно растет, хотя номиналы резисторов, через которые питаются светодиоды сегментов, разные. Происходит это из-за того, что резистор питания TL431 один и тот же на всех платах. Если необходимо уменьшить ток потребления, то можно номинал этого резистора (R14) пропорционально увеличить, например для платы 2S поставить 2кОм.

А теперь напряжение включения сегментов. Сразу сделаю отступление, гистерезиса или нет или он очень мал, потому у самой низковольтной версии бывает "дрожание" яркости, хотя в тесте я поднимал напряжение с дискретностью в 10мВ.

Также я сделал пересчет зависимости напряжения индикации к одному аккумулятору в зависимости от версии измерителя и у меня получилось:
1S…….2S…….3S…….4S
3.35 — 3.36 — 3.43 — 3.37
3.57 — 3.53 — 3.64 — 3.57
3.72 — 3.70 — 3.81 — 3.76
3.92 — 3.90 — 4.03 — 3.97

Видно что результаты немного "плавают", но в целом картина довольно ясна, диапазон измерения примерно 3.4-4.0 Вольта, что примерно соответствует почти полностью разряженному и заряженному аккумулятору. Напряжение литиевого аккумулятора обычно резко снижается с 4.2 до 4 Вольт, затем идет относительно плавное снижение до 3.3-3.4 Вольта и далее опять более резкое падение. Я бы сказал, что индикатор отображает примерно диапазон от 15 до 90%.

Уже позже было найдено еще пару вариантов более простых измерителей.
Например влагозащищенный — ссылка.

И вариант "с циферками" — ссылка

Мой читатель из Франции прислал вариант схемы данного измерителя, изначально он настроен на сборку 4S, за что ему большое спасибо 🙂

По итогам осмотра и тестов могу сказать, что индикаторы вполне работоспособны и полезны, но есть несколько замечаний:
1. Заметны отдельные светодиоды у символа батарейки
2. Ток потребления заметно растет с ростом напряжения, исправляется заменой резистора R14
3. Нет кнопки включения.

По последнему пункту поясню. Так как нет кнопки "программно" включающей индикатор, то сделать это можно только подачей питания, но обычно нет смысла держать его всегда включенным, а обычная мелкая кнопка имеет относительно высокое сопротивление и результат измерения будет сильно зависеть как от силы нажатия не кнопку, так и от срока ее службы.

В остальном вещь полезная и на мой взгляд недорогая, а большой выбор вариантов дает возможность использовать в разных устройствах, например в шуруповерте.

На этом у меня все, надеюсь что обзор пыл полезен, как всегда жду вопросов и просто комментариев.

Дешевый индикатор заряда аккумулятора.

Небольшой обзор с тестами уровня напряжения и показаниями на индикаторе.

Началось все честно говоря давно, я только купил TS100, но не дошел до PD повербанков, стояла задача питать паяльник от аккумуляторов, при этом была важна компактность, удобность зарядки и индикатор уровня заряда прямо на банке. Кроме того, напряжение до 15в, дабы питать видео свет.
решение напросилось простое -3S1p аккумуляторная сборка из 18650 для ноутбука. Конечно сразу стоит сказать что емкость такой сборки не супер как и ток, но отборные аккумы на 2000mAh, и небольшое потребление паяльника при 12в, развеяли все сомнения, надо собирать.
BMS был выбран в виде зеленой платы, ссылка.
Корпус по началу сделан и коретки на 3 аккумулятора, но потом были напечатаны ячейки, а аккумуляторы спаяны. Заряжалось все через плату понижающего преобразователя, с контролем тока.
Оставались 2 части пазла, корпус и индикатор уровня заряда. О последнем и поговорим.

Для начала хотел купит обычный народный мини вольтметр,
https://aliexpress.ru/item/32672092022.html
Стоит дешево, показывает напряжение, а после калибровки, даже с неплохой точностью.

Но пока листал али, нашел интересный вариант. Без цифр а сразу с индикатором аккумулятора и его заполнения, как на телефоне. Точность не супер за счет всего четырех состояний экрана, но почему нет?..

Характеристик никаких не заявлено, лишь фото где видно что заряд отображается четырьмя диодами, а так же выбор индикатора для 1S 2S 3S 4S аккумулятора.

Заказ был обработан за 4 дня, и отправлен почтой «Cainiao Super Economy» при том с треком который так никогда и не заработал. Посылка шла доолго, около 70 дней, иногда почта не любит своих пользователей.
Упаковка в виде стандартного желтого пакета + целофановый пакет в котором само устройство.

Судя по виду, пришло то что заказывал. Сам экран в пленочке. Проводов нет.
Общие размеры — 42х20х9мм.
Плата 42х17х1мм.
Экран отдельно -32х20х6мм.

Сзади платы находится вся электроника.
А именно операционный усилитель LM324. Защита от переплюсовки в виде диода, и куча резисторов.
Конкретно за определение уровней заряда отвечают r6 r9 r11 r12.
Так как модуль на низкое напряжение, линейный понижающий стабилизатор не распаян, а на его месте стоит перемычка.

Легкое свечение модуль начинает уже при напряжении 3в

На 10в, силуэт аккумулятора хорошо виден и далее не становится ярче.

Все что ниже 10.3в для индикатора — 0 делений.
Первое деление появляется при напряжении 10.32в

Второе деление появляется при напряжении 10.92в и выше

3 деление при напряжении 11.42в

И последнее четвертое деление загорелось после 12.03в

Пример того как загораются деления.

Ток потребления при разных уровнях индикатора.

Теперь немного лирики.
Начнем с нижнего порога в 10.3в. Так как это индикатор для 3S аккумулятора, поделив напряжение на 3 аккума, получаем 3.44в, которые индикатор считает малым уровнем заряда, что вполне нормально.
Верхний порог в 12в тоже приемлем, так как полный заряд 3 банок будет на уровне 12.6в. Как видим, по уровням все в целом неплохо. И при полном разряде, плата защиты BMS — Отключит напряжение на выходе, и не даст разрядить аккумулятор. Но раз у нас есть место на плате и красная окантовка, то почему бы не выключать ее при напряжении ниже уровня например в 8.1в ( 2.7в на каждом аккумуляторе).
Вторым моментом что не понравилось — контакты питания. Их на модуле 4 штуки, все помечены, но те что на торце не работают. Они сделаны для исполнения модуля с кнопкой, и запитывают модуль если кнопка нажата.

В остальном же модуль понравился. Он вполне выполняет свои задачи и пригодится для самоделок, в которых будет наглядно показывать уровень заряда батареи. Но если вам хочется следить за зарядом точнее, то конечно лучше взять вольтметр за ровно ту же цену.

Простые устройства — Индикатор заряженности аккумулятора

Аккумуляторный тестерПонадобилось мне контролировать степень заряда 12 вольтового аккумулятора.

Хотелось сделать схему максимально простой, с индикацией на светодиоде, без разных сложных микросхем, и компараторов.

Минимум деталей, максимум наглядности, чтобы о величине остаточного напряжения на аккумуляторе можно было приблизительно судить по частоте вспышек светодиода.

На этот раз речь пойдет о схеме даже без микроконтроллера attiny13 — решить поставленную задачу удалось всего при помощи одного транзистора!

Принципиальная схема индикатора состояния аккумулятора
Решил собрать классическую схему генератора на транзисторе, работающем в режиме лавинного пробоя. В качестве лавинного транзистора выбрал широко распространённый транзистор NPN-структуры 2SC945P. Чтобы генерация световых вспышек прекращалась при понижении напряжения до 11,8 вольт, в схему был добавлен светодиод HL2, работающий в качестве элемента, понижающего питание схемы на 2 вольта (падение напряжения на открытом светодиоде вычитается из напряжения, питающего схему).

{ads1}

Вследствие этого при напряжении на аккумуляторе +12в и выше схема работает в режиме генератора импульсов с частотой около 1 Гц (одна вспышка в секунду). При понижении до уровня 11,9 вольт частота мигания снижается до одной вспышки в 3 секунды, а при напряжении ниже 11,8 вольт мигание отсутствует, светодиод погашен.

О величине остаточного напряжения на аккумуляторе можно судить по частоте вспышек индикатора светодиода HL1.

На основе этого индикатора можно сделать несложный прибор для тестирования аккумулятора под нагрузкой — «нагрузочную вилку».

Схема нагрузочной вилки
Для проверки нагрузочной способности аккумулятора в схему добавляется мощный проволочный резистор R2, который можно изготовить из куска нагревательной спирали сопротивлением 1,5 Ом. Подключив щупы прибора к плюсу и минусу аккумулятора, наблюдаем за частотой мерцания индикатора HL1, затем нажимаем кратковременно кнопку S1 и смотрим, как изменилась частота мигания светодиода: если после нажатия кнопки частота мигания практически не изменилась, значит аккумулятор достаточно заряжен, если же частота мигания стала значительно ниже, или мигание совсем пропало, то аккумулятор разряжен и требует подзарядки.

Через резистор R2 протекает ток порядка 10А, поэтому контакты кнопки S1 должны быть рассчитаны не менее, чем на такой ток.

{plusone}

Владимир Науменко
г. Калининград

Мелкий индикатор заряда сборок литиевых аккумуляторов.

Всем привет! И снова обзор на миниатюрную(40×13.5×3.5мм) плату, в этот раз она служит для индикации уровня заряда литиевых аккумуляторов. Всего существует 5 разновидностей от 1S до 5S сборок. У меня последняя, т.к. планируется добавить его в аккумулятор шуруповерта с напряжением 21 Вольт. Изначально хотел написать DIY пост, но на носу праздники и никто ничего в ближайшее время не сделает, поэтому только посмотрим, что из себя представляет модуль и проверим функционал.
Обзор будет небольшим — не стесняйтесь, проходите под кат =)


Характеристики.

Название: Индикатор заряда литиевых аккумуляторов.
Размер: 40×13.5×3.5 мм
Применение: Тестирование 1/2/3/4/5S сборок аккумуляторов.

Существующие модели:

1S: 3.6V-4.2В
2S: 7.4V-8.4В
3S: 11.1V-12.6В
4S: 14.8V-16.8В
5S: 18V-21В

Внешний вид.


Пакет утерян, так что начну с фирменной упаковки

На лицевой части(индикаторы же на лицевой части?) есть 4 мелких синих светодиода, кнопка активатор и название/ревизия. Обратите внимание, в правом верхнем углу есть контакты для доп питания, которое может обеспечить непрерывную индикацию.

С обратной стороны расположены «мозги» с обвязкой

Используется компаратор LM339, правда не понятно какой серии.

Функционал.


Индикация активируется кнопкой вручную. Через 5 секунд плата плавно гасит индикаторы.
В режиме ожидания потребляет около 0.1 мА, на гифке модуль не успел «уснуть».

Проверим диапазон напряжения на каждом уровне заряда.

100-75%: 21-19.9В (1.1В)

75-50%: 19.9-19В (0.9В)

50-25%: 19.9-18.2В (1.7В)

25-0%: 18.2-16В (2.2В). Индикатор горит в пол силы, при 15.9В перестает реагировать на нажатия.

Наверное стоит упомянуть, что заказывать можно любую версию и при необходимости переделывать под нужную сборку.
Для этого достаточно перепаять резистор R1

Номиналы:

1S: 510 (51Ω)
2S: 201 (200Ω)
3S: 511 (510Ω)
4S: 102 (1kΩ)
5S: 202 (2kΩ)

«Хотелка».


Планировал внедрить сабж вот в этот шуруповерт:

Зверушка за свою цену получилась забавная, но аккумулятор один, поэтому уровень заряда был бы очень кстати.

Немного о шуруповерте кому интересно


Было решено, что логичнее всего будет ковырять аккумулятор, но тут возникла проблема свободного пространства

Элементы расположены очень плотно, плата индикатора 3.5мм шириной, что не позволяет выточить под нее пластик

Неплохо вмещается только сзади между двух частей корпуса, нужно лишь выпилить пазы

Но мне некогда и лень, так что может быть после праздников займусь.

Ну вот и все. Как по мне, модуль вполне интересный, а благодаря размерам, встроить его можно практически куда угодно.
Как обычно, в комментариях приветствуется конструктивная критика. Всем добра =)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *