Как работает трансформатор для чайников: Как работает трансформатор для чайников

Содержание

режимы, схема, назначение, из чего состоит

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток

I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Как работает трансформатор, его принцип действия и устройство на простом языке.

Обычный силовой трансформатор является достаточно важным и распространенным электротехническим устройством. Он позволяет преобразовывать напряжение и ток в нужные величины. Конструктивно он прост, имеется магнитный сердечник определенной формы, на который наматываются обмотки изолированного провода (медный, чаще всего). Эти обмотки делятся на первичную (входную) и вторичную (выходная). Их может быть не две (входная и выходная), а более двух (несколько входных и выходных) в зависимости от конкретного назначения силового трансформатора.

В основе работы любого трансформатора заложен один простой принцип, точнее электро физическое явление — это электромагнитная индукция. Что это такое? Все очень просто! Электрический ток представляет собой упорядоченное движение заряженных частиц (в твердых телах это электроны. а в жидких и газообразных это ионы). При движении заряда по проводнику вокруг него образуется магнитное поле (именно движущегося заряда, вокруг не движущегося имеется только электрическое поле). Магнитное поле также существует вокруг постоянных магнитов. Так вот, если взять кусок изолированного провода, намотать из него катушку, подсоединить к концам этой катушки вольтметр, после чего быстро провести возле катушки магнитом, то мы на вольтметре увидим скачок электрического напряжения. Получается, что если постоянно воздействовать на катушку магнитным полем (движущемся), то можно из нее получить некий источник или преобразователь электрической энергии.

В трансформаторе одна катушка (первичная, входная) выполняет роль источника магнитного поля. Стоит учесть, что магнитное поле должно быть обязательно переменным (постоянно меняющееся в направлении и величине). На эту входную катушку подается переменное напряжение определенной величины (то, на которую рассчитана эта катушка, чтобы основная часть электрической энергии тратилось именно на создание магнитного поля, и лишь минимальная его часть тратилась на выделение тепла, это неизбежные потери).

В результате вокруг этой входной катушки образуется переменное магнитное поле, которое по сердечнику передается на вторую катушку. Как было сказано выше, если воздействовать на проводник переменным магнитным полем, на нем индуцируется электродвижущая сила (ЭДС). То есть, на выходной катушке появляется напряжение. Вот и получаем простой электромагнитный преобразователь электрической энергии.

Материал сердечника трансформатора подбирается так, чтобы он максимально хорошо проводил через себя электромагнитные поля, усиливая их. В итоге мы имеем несколько цепей. Первая — электрическая, которая образована движением зарядов по первичной обмотке. Она вокруг себя образовывает магнитное поле, которое замыкается по контуру магнитного сердечника, и это вторая цепь (электромагнитная, смещена на 90 градусов). Ну, а третья цепь опять электрическая, которая образована вторичной обмоткой (где индуцируется напряжение) и подключенной к ней нагрузкой (она также смещена на 90 градусов относительно магнитной цепи).

От количества витков на катушке зависит напряжение, а от сечения провода этой катушки зависит сила тока. То есть, если первичная и вторичная катушка будут иметь одинаковое количество витков — выходное напряжение будет такое же как и входное. Если вторичную обмотку намотать в два раза больше (по количеству витков), то и выходное напряжение увеличится вдвое (относительно входного). От диаметра провода катушки зависит выходной ток. При большой нагрузке и слишком малом сечении провода будет происходит нагрев катушки, что может привести к перегреву, повреждению изоляции и выходу из строя трансформатора.

Существуют специальные таблицы, в которых указаны нужные сечения проводов с учетом определенной плотности тока в них. При расчете трансформатора и выборе сечения провода под нужный выходной ток необходимо брать данные с этих таблиц.

Что касается магнитопровода, который замыкает магнитные поля на себе. Чем лучше материал магнитопровода проводит через себя электромагнитные поля, тем выше коэффициент полезного действия трансформатора. Следовательно, существуют специальные сплавы, имеющие лучшие электромагнитные характеристики, которые и используют в сердечнике трансформаторов. Помимо этого в трансформаторе не должны быть зазоров между частями магнитопровода (на пути течения магнитного поля). Только лишь при полной замкнутости магнитопровода можно получить минимальные потери при трансформации электрической энергии.

Работа трансформатора также зависит от частоты тока, который подается на входную обмотку. Чем выше частота тока, тем лучше происходит трансформация энергии. То есть, с повышением частоты будут уменьшаться размеры трансформатора при тех же выходных мощностях. Если взять обычный трансформатор, который рассчитан на сетевое напряжение стандартной частоты в 50 герц, то он по размерам будет значительно больше того, который будет работать на килогерцовых частотах. Но там уже и магнитопровод используется из других ферромагнитных материалов.

Более короче работу трансформатора можно выразить так — на входную обмотку подается переменное напряжение (которое должно быть изначально рассчитано), в катушке начинает течь переменный ток, который образовывает переменное магнитное поле вокруг себя. Это магнитное поле начинает протекать по магнитопроводу сердечника трансформатора проходя также через выходную катушку. В результате на этой выходной обмотке образуется переменное напряжение, величина которого зависит от количества витков катушек. При подключении нагрузки к выходной обмотки мы получаем течение переменного тока в выходной цепи.

P.S. В нынешнее время все чаще стали использовать электрические схемы, где для источников питания делается специальный модуль, работающий на более высоких частотах, отличных от стандартных 50 герц. То есть, если раньше повсеместно для блоков питания использовали обычные силовые трансформаторы, имеющие железный магнитопровод, рассчитанный на сетевую частоту, имеющие только выпрямительный диодный мост и фильтрующий конденсатор электролит, то сейчас схемы блоков питания более сложнее. Они уже содержать выпрямитель, фильтр, электронный преобразователь напряжения и частоты (на транзисторах, микросхемах), стабилизатор, обратную связь (гальваническую развязку) и т.д. Размеры, масса и выходные характеристики таких источников питания гораздо выше, чем у их предшественников (обычных силовых трансформаторов). Хотя по надежности все же классический вариант блоков питания будет получше.

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Как работает трансформатор для чайников

В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.

Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например. 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.

Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.

Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.

Трансформаторы делятся на две основные группы: однофазные, питающиеся от сети однофазного переменного тока, и трехфазные, питающиеся от сети трехфазного переменного тока.

Трансформаторы очень различны по своей конструкции. Основными элементами трансформатора являются: замкнутый стальной сердечник (магнитопровод), обмотки и детали, служащие для крепления магнитопровода и катушек с обмотками и установки трансформатора в выпрямительное устройство. Матнитопровод предназначен для создания замкнутого пути для магнитного потока.

Части магннтопровода, на которых размещены обмотки, называются стержнями, а части, на которых отсутствуют обмотки и которые служат для замыкания: магнитного потока в магнитопроводе — ярмом. Материалом для магнитопровода трансформатора служит листовая электротехническая сталь (трансформаторная сталь). Эта сталь бывает различных марок, толщины, горячей и холодной прокатки.

Общие принципы работы трансформаторов

Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:

Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.

Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.

Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.

Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.

К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно, после преобразования в U2, подается на подключенную нагрузку R.

Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:

1. активного сопротивления проводов обмотки;

2. реактивной составляющей, обладающей индуктивным характером.

Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.

Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.

Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.

За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.

Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.

При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.

Как устроен и работает автотрансформатор

Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.

Принцип работы такой схемы практически остался прежним: происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.

У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.

Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.

Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.

Рабочие режимы трансформатора

При эксплуатации любой трансформатор может находиться в одном из состояний:

выведен из работы;

Режим вывода из работы

Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.

Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.

Как это может произойти?

У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:

1. подключение постороннего источника электроэнергии;

2. действие наведенного напряжения.

Первый вариант

На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.

Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.

Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.

Действие наведенного напряжения

Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.

Номинальный режим работы

Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.

Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.

Режим холостого хода

Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.

Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.

Режим короткого замыкания

Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.

В этом режиме протекание огромных токов КЗ ничем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.

Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.

Режим перенапряжения

Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.

В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.

Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.

Трансформатор – это регулирующее устройство, которое достаточно часто используется для того, чтобы повысить эффективность многих устройств. Эти устройства могут использоваться для повышения и понижения напряжения в сети. В этой статье вы узнаете принцип работу трансформатора тока.

Принцип работы трансформатора тока

Измерительные трансформаторы имеют достаточно простой принцип работы. Его работа подчиняется закону про электромагнитную индукцию. Если разобраться более детально, то взаимная индукция будет отвечать за действие преобразования напряжения. В соответствии с этим законом Фарадей гласит: «скорость изменения потокосцепления будет пропорциональной наведенной ЭДС в проводнике».

Основы теории трансформатора

Представьте, что у вас есть трансформатор с одной обмоткой, которая соединяется с электрическим током. Переменный ток будет производить меняющийся поток, который окружает катушку. Определенная ее часть может соединяться в том случае, если переменный ток постоянно будет проходить через обмотку. Этот поток может постоянно меняться в своем направлении.

Следуя из закона Фарадея у нас должно быть ЭДС, которое будет производить индукцию раз в секунду. Если в последней обмотке цепь будет закрыта, тогда через нее пройдет ток. Этот принцип работы трансформатора считается простейшим. Тороидальный трансформатор имеет немного другой принцип работы.

Когда вы будете использовать движение переменного тока к электрической катушке, поток энергии будет ее окружать. Поток будет неравномерным, а его скорость может изменяться. Это понятие считается фундаментальным в работе трансформатора. Обмотка, которую он содержит, будет принимать электрическую мощность от источника. Она дает выходное напряжение благодаря взаимной индукции.

Конструктивные части трансформатора

На сегодняшний день устройство трансформатора включает в себя три основные части, к которым относят:

  • Первичную обмотку. Когда подключается к источнику, она будет производить магнитный поток.
  • Магнитный сердечник. Магнитный поток будет создан в замкнутую цепь.
  • Вторичная обмотка. Ее необходимо наматывать на сердечник.

Это три основные части, из которых будет состоять силовой трансформатор.

Принцип работы трансформатора

Электрический силовой трансформатор является статистическим устройством. Принцип работы сварочного трансформатора заключается в том, что он будет преобразовывать энергию от схемы одного устройства к другому. Этот процесс проходит благодаря индукции между обмотками. Преобразование энергии будет происходить на основе изменения частоты. Он может работать в разных уровнях напряжения.

Работа однофазного трансформатора

Принцип работы однофазного трансформатора на сегодняшний день ничем не отличается от других устройств. Когда ток будет проходить по первичной обмотке, то будет создано магнитное поле. У него имеются мощные силовые линии. Первичную катушку они будут пронизывать полностью. Все линии являются замкнутыми между вокруг проводников катушек.

Закон про магнитную связь гласит о том, чем ближе расположены объекты, тем сильнее будет их связь. Вам следует знать, что в однофазном трансформаторе сила магнитного поля будет зависеть от напряжения. Именно поэтому скачки напряжения могут снизить силу МП. При соединении концов обмотки устройство начнет снабжаться электрическим током.

Принцип работы автотрансформатора

Здесь мы рассмотрим принцип работы автотрансформатора. Эти устройства можно отнести к трансформаторам, которые имеют специальное использование. Обмотки в этом устройстве связаны между собою не только магнитным полем, но и гальваническим.

При переключении обмоток можно получить как высокое, так и низкое напряжение. Переменное магнитное поле возникает в момент подключения переменного тока к сердечнику. Благодаря устройству сердечника небольшое напряжение способно создавать сильное МП. Автотрансформаторы довольно часто используют в областях, где существует незначительное изменение напряжения.

На сегодняшний день существуют также узкоспециализированные лабораторные трансформаторы. Они имеют другой принцип работы трансформатора.

Их обмотка должна выполняться из ферромагнитного материала. Она сводит резонансное движение к минимуму. К основным его отличиям относят:

  1. Кроме ферромагнетика используют медный провод.
  2. Он имеет низкие допустимые параметры.
  3. В нем работает система строчного ролика.

Эти трансформаторы также могут иметь недостатки, к которым относят:

  • Все цепи нужно изолировать, так как они имеют сильную связь.
  • Его нельзя использовать для защиты в мощных цепях.
  • Ремонт стоит достаточно дорого.

Работа гидротрансформатора

Наверное, каждый водитель бульдозера знает принцип работы гидротрансформатора. На самом деле прибор является муфтой, которая вращается два раза. Устанавливать его необходимо между двигателем. Это необходимо чтобы получить вращательное движение. Механизм напоминает бублик, но у него достаточно сложная конструкция:

  • По краям находятся специальные насосы. Передний прибор будет передавать жидкость на турбинное колесо.
  • Переднее колесо необходимо соединить с главным валом. Благодаря этому он будет передавать жидкость по механизму.

Как видите, принцип работы трансформатора у всех устройств практически одинаковый. Существуют некоторые особенности, но все зависит от его модели.

Автор: Владимир Васильев · Опубликовано 20 января 2016 · Обновлено 29 августа 2018

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Как работает трансформатор для чайников

Для преобразования переменного напряжения одной величины в переменное напряжения другой величины, используют трансформатор напряжения. Трансформатор напряжения работает благодаря явлению электромагнитной индукции: изменяющийся во времени магнитный поток порождает ЭДС в пронизываемой им обмотке (или обмотках).

Первичная обмотка трансформатора соединяется своими выводами с источником переменного напряжения, а к выводам вторичной обмотки присоединяется нагрузка, которую необходимо питать напряжением более низким или более высоким, чем напряжение источника, от которого питается данный трансформатор.

Благодаря наличию сердечника (магнитопровода), магнитный поток, создаваемый первичной обмоткой трансформатора, не рассеивается где попало, а сосредоточен главным образом в ограниченном сердечником объеме. Переменный ток, действующий в первичной обмотке, намагничивает сердечник то в одном, то — в противоположном направлении, при этом изменение магнитного потока происходит не рывками, а гармонически, синусоидально (если речь идет о сетевом трансформаторе).

Можно сказать, что железо сердечника увеличивает индуктивность первичной обмотки, то есть повышает ее способность создавать магнитный поток при прохождении тока, и улучшает свойство препятствовать нарастанию тока при приложении к выводам обмотки напряжения. Поэтому на холостом ходу (в не нагруженном режиме) трансформатор потребляет сущие миллиамперы, хотя изменяющееся напряжение на обмотку действует.

Вторичная обмотка является у трансформатора принимающей. Она принимает изменяющийся магнитный поток, порождаемый током первичной обмотки, и посылаемый благодаря магнитопроводу сквозь свои витки. Изменяющийся с определенной скоростью магнитный поток, пронизывающий витки вторичной обмотки, по закону электромагнитной индукции наводит в каждом ее витке определенную ЭДС. Эти индуцированные ЭДС складываются в каждый момент времени от витка к витку, формируя напряжение вторичной обмотки (напряжение холостого хода трансформатора).

Здесь своевременным будет отметить, что чем быстрее изменяется магнитный поток в сердечнике, тем большее напряжение наводится на каждом витке вторичной обмотки трансформатора. А поскольку и первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком (создаваемым переменным током первичной обмотки), то и напряжение на каждом витке как первичной, так и вторичной обмотки, получается одинаковым, исходя из величины магнитного потока и скорости его изменения.

Если копнуть глубже, то изменяющийся магнитный поток в сердечнике создает в пространстве вокруг себя электрическое поле, напряженность которого тем больше, чем выше скорость изменения магнитного потока, и чем больше величина этого изменяющегося магнитного потока. Данное вихревое электрическое поле действует на электроны, расположенные в проводе вторичной обмотке, толкает их в определенную сторону, поэтому на концах вторичной обмотки можно измерить электрическое напряжение.

Если ко вторичной обмотке трансформатора подключить нагрузку, то по ней потечет ток, а значит в сердечнике возникнет магнитный поток, создаваемый этим током вторичной обмотки.

Магнитный поток, порождаемый током вторичной обмотки, то есть током нагрузки, окажется направлен (см. правило Ленца) против магнитного потока первичной обмотки, и значит наведет в первичной обмотке противо-ЭДС, которая приведет к росту тока в первичной обмотке, и соответственно — к увеличению потребляемой трансформатором от сети мощности.

Возникновение противоположного первичному, вторичного магнитного потока внутри сердечника, в качестве эффекта от подключенной нагрузки, эквивалентно уменьшению индуктивности первичной обмотки. Вот почему трансформатор под нагрузкой потребляет значительно больше электрической энергии, чем на холостом ходу.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Тема: пояснение работы и устройства силового трансформатора электрического.

Обычный силовой трансформатор является достаточно важным и распространенным электротехническим устройством. Он позволяет преобразовывать напряжение и ток в нужные величины. Конструктивно он прост, имеется магнитный сердечник определенной формы, на который наматываются обмотки изолированного провода (медный, чаще всего). Эти обмотки делятся на первичную (входную) и вторичную (выходная). Их может быть не две (входная и выходная), а более двух (несколько входных и выходных) в зависимости от конкретного назначения силового трансформатора.

В основе работы любого трансформатора заложен один простой принцип, точнее электро физическое явление — это электромагнитная индукция. Что это такое? Все очень просто! Электрический ток представляет собой упорядоченное движение заряженных частиц (в твердых телах это электроны. а в жидких и газообразных это ионы). При движении заряда по проводнику вокруг него образуется магнитное поле (именно движущегося заряда, вокруг недвижущегося имеется только электрическое поле). Магнитное поле также существует вокруг постоянных магнитов. Так вот, если взять кусок изолированного провода, намотать из него катушку, подсоединить к концам этой катушки вольтметр, после чего быстро провести возле катушки магнитом, то мы на вольтметре увидим скачок электрического напряжения. Получается, что если постоянно воздействовать на катушку магнитным полем (движущемся), то можно из нее получить некий источник или преобразователь электрической энергии.

В трансформаторе одна катушка (первичная, входная) выполняет роль источника магнитного поля. Стоит учесть, что магнитное поле должно быть обязательно переменным (постоянно меняющееся в направлении и величине). На эту входную катушку подается переменное напряжение определенной величины (то, на которую рассчитана эта катушка, чтобы основная часть электрической энергии тратилось именно на создание магнитного поля, и лишь минимальная его часть тратилась на выделение тепла, это неизбежные потери).

В результате вокруг этой входной катушки образуется переменное магнитное поле, которое по сердечнику передается на вторую катушку. Как было сказано выше, если воздействовать на проводник переменным магнитным полем, на нем индуцируется электродвижущая сила (ЭДС). То есть, на выходной катушке появляется напряжение. Вот и получаем простой электромагнитный преобразователь электрической энергии.

Материал сердечника трансформатора подбирается так, чтобы он максимально хорошо проводил через себя электромагнитные поля, усиливая их. В итоге мы имеем несколько цепей. Первая — электрическая, которая образована движением зарядов по первичной обмотке. Она вокруг себя образовывает магнитное поле, которое замыкается по контуру магнитного сердечника, и это вторая цепь (электромагнитная, смещена на 90 градусов). Ну, а третья цепь опять электрическая, которая образована вторичной обмоткой (где индуцируется напряжение) и подключенной к ней нагрузкой (она также смещена на 90 градусов относительно магнитной цепи).

От количества витков на катушке зависит напряжение, а от сечения провода этой катушки зависит сила тока. То есть, если первичная и вторичная катушка будут иметь одинаковое количество витков — выходное напряжение будет такое же как и входное. Если вторичную обмотку намотать в два раза больше (по количеству витков), то и выходное напряжение увеличится вдвое (относительно входного). От диаметра провода катушки зависит выходной ток. При большой нагрузке и слишком малом сечении провода будет происходит нагрев катушки, что может привести к перегреву, повреждению изоляции и выходу из строя трансформатора.

Существуют специальные таблицы, в которых указаны нужные сечения проводов с учетом определенной плотности тока в них. При расчете трансформатора и выборе сечения провода под нужный выходной ток необходимо брать данные с этих таблиц.

Что касается магнитопровода, который замыкает магнитные поля на себе. Чем лучше материал магнитопровода проводит через себя электромагнитные поля, тем выше коэффициент полезного действия трансформатора. Следовательно, существуют специальные сплавы, имеющие лучшие электромагнитные характеристики, которые и используют в сердечнике трансформаторов. Помимо этого в трансформаторе не должны быть зазоров между частями магнитопровода (на пути течения магнитного поля). Только лишь при полной замкнутости магнитопровода можно получить минимальные потери при трансформации электрической энергии.

Работа трансформатора также зависит от частоты тока, который подается на входную обмотку. Чем выше частота тока, тем лучше происходит трансформация энергии. То есть, с повышением частоты будут уменьшаться размеры трансформатора при тех же выходных мощностях. Если взять обычный трансформатор, который рассчитан на сетевое напряжение стандартной частоты в 50 герц, то он по размерам будет значительно больше того, который будет работать на килогерцовых частотах. Но там уже и магнитопровод используется из других ферромагнитных материалов.

Более короче работу трансформатора можно выразить так — на входную обмотку подается переменное напряжение (которое должно быть изначально рассчитано), в катушке начинает течь переменный ток, который образовывает переменное магнитное поле вокруг себя. Это магнитное поле начинает протекать по магнитопроводу сердечника трансформатора проходя также через выходную катушку. В результате на этой выходной обмотке образуется переменное напряжение, величина которого зависит от количества витков катушек. При подключении нагрузки к выходной обмотки мы получаем течение переменного тока в выходной цепи.

§63. Назначение и принцип действия трансформатора

Назначение трансформатора.

Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Трансформаторы бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора.

Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3.

Рис. 212. Схема включения однофазного трансформатора

Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков N1 и N2 этих обмоток, т. е.

E1/E2 = N1/ N2.

Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Евн / Eнн = Kвн / Kнн.

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.

U1/U2 ≈ N1/ N2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке.

Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ≠ U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ≠ N2/N1.

Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной.

Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.


Трансформатор — урок. Физика, 9 класс.

Переменный ток обладает ещё одним важным свойством: его напряжение можно сравнительно легко менять — трансформировать (слово «трансформация» образовано от латинского слова transformo — «преобразую»). Достигается это посредством несложного устройства — трансформатора, созданного в \(1876\) году русским учёным Павлом Николаевичем Яблочковым. 

Трансформатор — устройство, осуществляющее повышение и понижение напряжения переменного тока при неизменной частоте и незначительных потерях мощности.

Простейший трансформатор состоит из двух катушек изолированного провода и замкнутого стального сердечника, проходящего сквозь обе катушки. Катушки изолированы друг от друга и от сердечника. Одна из катушек, называемая первичной, включается в сеть переменного тока. Действие трансформатора основано на явлении электромагнитной индукции. Магнитное поле первичной катушки — переменное и меняется с той же частотой, что и ток в первичной катушке. Переменный ток в первой катушке создаёт в стальном сердечнике переменное магнитное поле. Это переменное магнитное поле пронизывает другую катушку, называемую вторичной, и создаёт в ней переменный индукционный ток.

 

 

Допустим, что первичная катушка имеет w1 витков, и по ней проходит переменный ток при напряжении U1. Вторичная обмотка имеет w2 витков, и в ней индуцируется переменный ток при напряжении U2.

Опыт показывает, что во сколько раз число витков вторичной катушки больше (или меньше) числа витков на первичной катушке, во столько же раз напряжение на вторичной катушке больше (или меньше) напряжения на первичной катушке:

 

U2U1=w2w1=k.

Величина \(k\) называется коэффициентом трансформации. Коэффициент равен отношению числа витков вторичной обмотки к числу витков в первичной обмотке.

Во сколько раз увеличивается напряжение на вторичной обмотке трансформатора, примерно во столько же раз уменьшается в ней сила тока при работе нагруженного трансформатора.

В результате мощность тока в первичной и вторичной обмотках трансформатора почти одинакова, поэтому коэффициент полезного действия (КПД) трансформатора близок к единице. КПД у мощных трансформаторов достигает \(99,5\) %.

 

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это Рекламное объявление

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт.Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее рассмотрим, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции все еще очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда по проводу течет колеблющийся электрический ток, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй катушки, вторичная напряжение меньше, чем первичное напряжение:

Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷ Первичное напряжение = Число витков во вторичной обмотке ÷ Число витков в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке уменьшат напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), поэтому вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что часть «магнитного потока» просачивается наружу. сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередач. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие встроенные в них трансформаторы (часто устанавливаются в конце силового свинец) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Индукционные зарядные устройства

Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество. в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, который имеет ширину примерно с небольшой автомобиль, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. В некоторых трансформаторах есть электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Справочник по проектированию трансформаторов и индукторов, составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электротрансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351 589: Система распределения электроэнергии Люсьена Голарда и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство, автор Никола Тесла, 5 августа 1890 г. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это Рекламное объявление

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт.Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее рассмотрим, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции все еще очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда по проводу течет колеблющийся электрический ток, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй катушки, вторичная напряжение меньше, чем первичное напряжение:

Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷ Первичное напряжение = Число витков во вторичной обмотке ÷ Число витков в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке уменьшат напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), поэтому вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что часть «магнитного потока» просачивается наружу. сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередач. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие встроенные в них трансформаторы (часто устанавливаются в конце силового свинец) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Индукционные зарядные устройства

Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество. в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, который имеет ширину примерно с небольшой автомобиль, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. В некоторых трансформаторах есть электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Справочник по проектированию трансформаторов и индукторов, составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электротрансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351 589: Система распределения электроэнергии Люсьена Голарда и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство, автор Никола Тесла, 5 августа 1890 г. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают повышающие и понижающие трансформаторы?

Что такое электромагнитная индукция?

Если магнетизм может быть произведен из электричества, Фарадей выдвинул гипотезу, что электричество может быть произведено с помощью магнетизма. Фарадей использовал аппарат, состоящий из сердечника из мягкого железа, подобного показанному ниже. Катушка слева была подключена к батарее, а катушка справа — к гальванометру.Когда ток течет через левую катушку, подключенную к батарее, создается магнитное поле. Сила магнитного поля увеличивается за счет железного сердечника. Хотя Фарадей не мог создать ток в левом проводе, но, как ни странно, он заметил, что ток возникает при изменении тока. Фарадей пришел к выводу, что, хотя постоянное магнитное поле не производит электрического тока, изменение магнитного поля действительно вызывает ток. Такой ток называется индуцированным током . Процесс, при котором ток возникает при изменении магнитных полей, называется электромагнитной индукцией.

Примечание: Электромагнитная индукция была независимо открыта Майклом Фарадеем и Джозефом Генри в 1831 году. Связь между электродвижущей силой, ЭДС (напряжением) и магнитным потоком была формализована в уравнении, которое теперь называется Закон индукции Фарадея

Как работают трансформаторы

Трансформатор — это устройство, повышающее или понижающее напряжение переменного тока.Ток в одной катушке индуцирует ток в другой катушке.

Трансформатор состоит из двух катушек (одна катушка является первичной, а другая — вторичной), намотанных вокруг металлического сердечника. (см. изображения —) Когда переменный ток проходит через первичную катушку и индуцируется магнитное поле, электромагнитная индукция вызывает ток во вторичной катушке. Если количество витков провода одинаково в обеих катушках, индуцированное напряжение во вторичной катушке будет одинаковым.Если количество витков во вторичной катушке больше, чем в первичной катушке, напряжение во вторичной катушке будет больше. Это пример повышающего трансформатора.

Как количество петель влияет на напряжение?

Если количество витков во вторичной катушке меньше, чем в первичной, то напряжение будет меньше. Это называется понижающим трансформатором.

СТУПЕНЧАТЫЙ ТРАНСФОРМАЦИЯ 10 КАТУШЕК В 2 КАТУШКИ 5: 1 ВОЛЬТ

Если количество витков вторичной обмотки больше, чем первичной, то напряжение будет больше.Это называется повышающим трансформатором.

СТУПЕНЧАТЫЙ ТРАНСФОРМАТОР 2 КАТУШКИ НА 10 КАТУШЕК 1: 5 ВОЛЬТ

Почему трансформаторы важны для передачи электроэнергии.

Повышающие трансформаторы используются компаниями при передаче электроэнергии по линиям электропередачи. Затем компании используют понижающие трансформаторы для создания 120 В, используемых в домах.Повышающие трансформаторы также используются в домашних телевизорах, где требуется высокое напряжение. Понижающие трансформаторы также используются в радиоприемниках, компьютерах и калькуляторах


Проверьте свой Понимание:

Как работают трансформаторы — инженерное мышление

Узнайте, как работают трансформаторы, как создать магнитное поле с помощью электричества, почему в трансформаторах можно использовать только переменный ток, как работает базовый трансформатор, повышающие и понижающие трансформаторы и, наконец, трехфазные трансформаторы.Эта статья является продолжением нашей серии по электротехнике, так что ознакомьтесь с другими статьями ЗДЕСЬ , если вы еще этого не сделали.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Основы трансформатора

Есть два типа электричества; Переменный и постоянный ток, но трансформаторы могут работать только от переменного или переменного тока.Теперь, если вы не знаете разницы между этими двумя, пожалуйста, прежде всего, прочтите статьи по основам электричества. Проверьте эти ЗДЕСЬ. Когда мы подключаем генератор переменного тока к замкнутому контуру кабеля, через этот кабель может протекать ток, и направление тока будет чередоваться взад и вперед при вращении генератора.

Как это работает?

Чередование означает, что ток достигает максимальной и минимальной точки в течение цикла, что придает ему синусоидальную форму при подключении к осциллографу.Вы можете думать об этом как о приливе на море; по мере того, как он меняет направление и достигает своей максимальной и минимальной точки. Когда ток течет по кабелю, он допускает магнитное поле. Если мы пропустим через кабель постоянный ток, магнитное поле останется постоянным, но если мы пропустим через кабель переменный ток, то магнитное поле будет увеличиваться и уменьшаться по силе и меняет полярность по мере изменения направления тока.

Переменный ток

Если мы соединим несколько кабелей вместе и пропустим через них ток, то магнитные поля объединятся, чтобы создать более сильное магнитное поле.Если затем свернуть кабель в катушку, магнитное поле станет еще сильнее. Если мы поместим вторую катушку в непосредственной близости от первой катушки, а затем пропустим переменный ток переменного тока через первую катушку, то создаваемое ею магнитное поле вызовет ток во вторую катушку, и эта магнитная сила будет толкать и тянуть свободные электроны. заставляя их двигаться.

Электродвижущая сила

Ключевым моментом здесь является то, что магнитное поле меняет полярность, а также интенсивность.Это изменение интенсивности и направления магнитного поля постоянно мешает свободным электронам во вторичной катушке и заставляет их двигаться. Это движение известно как электродвижущая сила или ЭДС.

Магнитное поле, изменяющее полярность

Электродвижущая сила не возникает, когда мы пропускаем постоянный ток через первичную катушку, и это потому, что магнитное поле постоянно, поэтому электроны не вынуждены двигаться. Единственный раз, когда это вызовет ЭДС, — это очень короткое время, когда первичная цепь размыкается и замыкается или когда напряжение увеличивается или уменьшается.И это потому, что эти действия приводят к изменению магнитного поля. Поэтому мы используем переменный ток, так как это изменение происходит постоянно.

Постоянный ток через первичную обмотку

Проблема с этой установкой заключается в том, что большая часть магнитного поля с первичной стороны тратится впустую, потому что оно находится вне диапазона вторичной обмотки.

Как это исправить?

Чтобы исправить это, место инженера, сердечник или ферромагнитный материал, такой как железо, в петле между первичной и вторичной обмотками.Теперь этот контур направляет магнитное поле по пути к вторичной катушке, так что они разделяют магнитное поле, и это делает трансформатор намного более эффективным.

Ферромагнитный материал

В настоящее время использование железного сердечника не является идеальным решением. Некоторая энергия будет потеряна из-за чего-то известного как вихревые токи, когда ток закручивается вокруг сердечника, и это нагревает трансформатор, что означает, что энергия теряется в виде тепла. Чтобы уменьшить это, инженеры используют ламинированные листы железа для формирования сердечника, что значительно снижает вихревые токи.

через GIPHY

Повышающие и понижающие трансформаторы

Трансформаторы

производятся в качестве повышающих или понижающих трансформаторов, и они используются для увеличения или уменьшения напряжения, просто используя другое количество витков в катушке на вторичной стороне. В повышающем трансформаторе напряжение во вторичной обмотке увеличивается, и это будет означать, что ток будет уменьшаться, но не беспокойтесь сейчас о том, почему это происходит. Мы рассмотрим это в следующей статье по электротехнике.Для увеличения напряжения в повышающем трансформаторе; нам просто нужно добавить больше витков к катушке на вторичной стороне, чем на первичной стороне. В понижающем трансформаторе это напряжение снижается во вторичной обмотке, что означает, что ток увеличивается. Для этого мы просто используем меньше витков в катушке на вторичной стороне по сравнению с первичной стороной.

Например, электростанции необходимо транспортировать вырабатываемую ею электроэнергию в город на некотором расстоянии. Электростанция будет использовать повышающий трансформатор для увеличения напряжения и уменьшения тока, поскольку это снизит потери в длинных кабелях передачи.Затем, когда он достигнет города, его нужно будет уменьшить, чтобы сделать его безопасным и пригодным для использования в зданиях и домах, поэтому потребуется понижающий трансформатор. Трансформаторы для коммерческих зданий и электростанций обычно имеют трехфазную конфигурацию. Вы увидите, как они размещены вокруг ваших городов, и они будут выглядеть примерно так.

Пример трансформатора

Эти трехфазные трансформаторы могут быть изготовлены либо из трех отдельных трансформаторов, которые соединены вместе, либо они могут быть встроены в один большой блок с общим железным сердечником.

В этой схеме катушки обычно располагаются концентрически одна в другой, причем катушка с более высоким напряжением находится снаружи, а катушка с более низким напряжением находится внутри. Теперь эти катушки изолированы друг от друга, так что между двумя катушками будет проходить только магнитное поле. Для соединения двух сторон существует множество различных конфигураций, но одна из наиболее часто используемых — это соединение катушек в конфигурации, известной как Delta Wye, иногда называемой Delta Star. Это относится к первичной стороне, подключенной по схеме треугольника, а к вторичной стороне — к широкой в ​​конфигурации звезды.Центральная точка стороны звезды, где встречаются все три разъема, часто заземляется, что позволяет также подключить нейтральную линию.

Конфигурация «треугольник» и «звезда»

Мы рассмотрим соединения трансформаторов и расчеты в других более сложных статьях, так как это может оказаться довольно сложным. Так что пока просто сосредоточьтесь на том, как они работают, чтобы накапливать ваши базовые знания.


Что такое понижающий трансформатор?

Трансформатор — это пассивное устройство, которое преобразует уровень напряжения из высокого в низкий или из низкого в высокий.Трансформатор, который преобразует мощность высокого напряжения в мощность низкого напряжения, называется понижающим трансформатором, а тот, который преобразует низкое напряжение в высокое, называется повышающим трансформатором.

Трансформатор работает по принципу взаимной индукции, также известному как закон электромагнитной индукции Фарадея, который гласит, что величина напряжения прямо пропорциональна скорости изменения магнитного потока.

Чтобы получить более полное представление о характеристиках трансформатора, давайте разберемся с его основами.

Взаимная индукция

Это означает, что ток индуцируется в катушке, когда она приближается к катушке с током, имеющей переменный магнитный поток. Этот индуцированный ток прямо пропорционален скорости изменения тока.

Закон Фарадея

Согласно закону Фарадея, любое изменение магнитного поля вблизи катушки или проводника приводит к возникновению электродвижущей силы (ЭДС), которая индуцируется внутри катушки из-за изменения магнитного потока.

Строительство

Трансформатор состоит из следующих основных частей:

Ядро

Катушки, намотанные на определенный материал, вместе образуют сердечник трансформатора. Эти сердечники изготовлены из материала с очень высокой проницаемостью, способного переносить флюс. Сердечник трансформатора действует как путь или канал для легкого прохождения магнитного потока. Эти сердечники изготовлены из ферромагнитных материалов с высокой проницаемостью, таких как железо.

В трансформаторах мы используем тонкие металлические листы железа вместо одного твердого сердечника, потому что один твердый сердечник вызывает большее образование вихревых токов, и это снижает эффективность трансформатора.

Обмотка

Трансформаторы намотаны проводами, называемыми катушками. Здесь мы используем провода с меньшим сопротивлением и хорошей проводимостью, что необходимо для обеспечения хорошего КПД трансформатора. Обычно медь используется в обмотке трансформатора, поскольку она имеет хорошую электропроводность и очень низкое сопротивление по сравнению с другими. Это также не дорого, как золото, серебро и платина.

Рабочий

Трансформатор работает по принципу взаимной индукции.Таким образом, когда происходит изменение тока в одной катушке, электрический ток также индуцируется в другой катушке, находящейся поблизости.

Каждый трансформатор состоит из двух катушек или обмоток: первичной и вторичной. Первичная обмотка подключена к источнику переменного тока, а вторичная — к нагрузке. Когда переменный ток подается на первичную обмотку катушки, создается магнитный поток. Магнитное поле проходит через сердечник трансформатора. Когда вторичная обмотка контактирует с этим магнитным потоком, на ней наводится ЭДС.Сила генерируемой ЭДС зависит от количества витков в обмотке вторичной катушки.

N1> N2

где, N1 = количество витков в 1-й катушке

N2 = количество витков во 2-й катушке

Соотношение между напряжением и количеством витков в катушке:

Впик. / Всз. = Норм. / Нс

где, Vp = напряжение в первичной обмотке

Вс = напряжение вторичной обмотки

Np = количество витков в первичной обмотке

Нс = количество витков вторичной обмотки

Понижающий трансформатор

Что такое понижающий трансформатор?

Трансформатор, имеющий большее количество витков в первичной обмотке и меньшее количество витков во вторичной обмотке, называется понижающим трансформатором.Итак, как мы можем видеть из предыдущего уравнения для связи между количеством витков в обмотке и напряжением, если количество витков в первичной обмотке больше, чем количество витков во вторичной, то ЭДС, генерируемая во вторичной обмотке, меньше, чем первичная Вход.

Следовательно, мы получаем более низкое напряжение во вторичной обмотке понижающего трансформатора. Как видно из названия, понижающий трансформатор используется для преобразования мощности более высокого напряжения в мощность более низкого напряжения.

Теперь давайте разберемся с описанным выше процессом на примере.Предположим, у нас есть источник переменного тока, который может производить 210 В. Если мы используем трансформатор, имеющий Np (количество витков в первичной катушке) = 20000 и Ns (количество витков во вторичной обмотке) = 100, тогда Vs (напряжение на вторичной катушке) ) дается

Vs = (Vp * Ns) / Np

Введите указанные выше значения в это уравнение, чтобы рассчитать напряжение на вторичной обмотке. Я оставил тебе эту работу. Укажите правильное значение в комментариях.

Типы понижающих трансформаторов

  1. однофазные понижающие трансформаторы
  2. Понижающие трансформаторы средней фазы
  3. Многоступенчатые понижающие трансформаторы

Применение понижающего трансформатора

Понижающие трансформаторы

используются в блоках питания и выпрямителях для эффективного снижения напряжения.Они также используются в электронных ИИП.

Другие приложения включают:

  • Линии электропередачи
  • Сварочные аппараты
  • Стабилизаторы и инверторы напряжения

Преимущества понижающих трансформаторов

  • Понижающие трансформаторы очень эффективны и могут давать желаемую мощность с КПД до 99%.
  • Мы можем легко получить желаемое выходное напряжение без больших потерь мощности.
  • Они дешевле и надежнее.
  • Их можно использовать для обеспечения высоких токов и низких напряжений.

Фактов о трансформаторах для детей

Трансформатор — это устройство, которое передает электрическую энергию от одной электрической цепи к другой посредством взаимной (электромагнитной индукции) и без изменения частоты. Трансформаторы — важная часть электрических систем.

Трансформаторы

производятся разных размеров, от очень маленького трансформатора связи внутри сценического микрофона до больших блоков, которые переносят сотни МВА, используемых в электрических сетях.

Основная причина использования трансформатора — преобразовать мощность одного уровня напряжения в мощность другого уровня напряжения. Высокое напряжение легче отправить на большие расстояния, но меньшее напряжение проще и безопаснее использовать в офисе или дома. Трансформаторы используются для увеличения или уменьшения напряжения переменного тока в цепях. Трансформатор обычно состоит из двух катушек на одном сердечнике. Первичная катушка или входная катушка подключены к стороне питания, а вторичная катушка подает питание на нагрузку.Вторая называется выходной катушкой. Энергия передается от первичной обмотки к вторичной за счет электромагнетизма. В электрических сетях используется много трансформаторов. Это сети для доставки электроэнергии от генератора к пользователю.

Трансформаторы в вашем районе, на электрических столбах или подключенные к подземным проводам, обычно преобразуют высокое напряжение 7200 вольт в 220-240 вольт электричества для питания освещения и таких приборов, как холодильники в домах и на предприятиях.В некоторых странах, например в Америке, в домах используется другое напряжение, например 120 вольт. Трансформаторы не могут увеличивать мощность, поэтому при повышении напряжения пропорционально снижается ток. Если напряжение понижается, ток пропорционально увеличивается.

Трансформаторы внутри электронного оборудования вырабатывают электричество, необходимое для различных частей.

Существует несколько основных типов трансформаторов:

  • Повышающий трансформатор: выходное напряжение больше входного напряжения.
  • Понижающий трансформатор: входное напряжение больше выходного напряжения.
  • Некоторые трансформаторы имеют то же выходное напряжение, что и входное, и используются для гальванической развязки двух электрических цепей.

Галерея

Детские картинки

  • Распределительный трансформатор на опоре со вторичной обмоткой с отводом от средней точки, используемый для обеспечения «расщепленной фазы» электропитания для жилых и легких коммерческих предприятий, которое в Северной Америке обычно составляет 120/240 В.

  • Измерительный трансформатор с точкой полярности и маркировкой X1 на выводе со стороны низкого напряжения

  • Состояние перевозбуждения силового трансформатора, вызванное понижением частоты; поток (зеленый), магнитные характеристики железного сердечника (красный) и ток намагничивания (синий).

  • Чередующиеся пластинки трансформатора E-I, показывающие воздушный зазор и пути потока

  • Испытание трансформатора подстанции.

  • Трансформатор на станции производства известняка в Манитобе, Канада

  • Пластины E-образной формы для сердечников трансформаторов, разработанные Westinghouse

  • Эквивалентная схема реального трансформатора

  • Трансформатор с ламинированным сердечником, на фото

    вверху видна кромка пластин.
  • Малый трансформатор с тороидальным сердечником

  • Обмотки обычно располагаются концентрически, чтобы минимизировать утечку магнитного потока.

  • Трансформатор, погруженный в жидкость, в разрезе. Консерватор (резервуар) наверху обеспечивает изоляцию жидкости от атмосферы при изменении уровня охлаждающей жидкости и температуры. Стенки и ребра обеспечивают необходимый отвод тепла.

  • Эксперимент Фарадея с индукцией между витками проволоки

  • Индукционная катушка, 1900, Бремерхафен, Германия

  • Кольцевой трансформатор Фарадея

  • Трансформатор формы оболочки.Набросок, использованный Аппенборном для описания патентов 1885 года инженеров ZBD и самых ранних статей.

  • Команда ZBD состояла из Кароли Зиперновски, Отто Блати и Миксы Дери.

Как работает тороидальный трансформатор?

Обновлено 12 ноября 2018 г.

Крис Дезиел

Трансформатор является одним из самых простых электрических устройств, и он находит применение в электротехнической и электронной промышленности.Трансформатор «преобразует» напряжение в цепи, повышая или понижая его. Практически каждое электронное устройство, которое вы используете каждый день, нуждается в трансформаторе для понижения выходного напряжения до другого, полезного для деликатных схем.

Тор — это форма, образующаяся, когда твердое тело изгибается назад и образует замкнутую петлю с отверстием в середине. Чтобы определить тороидальный, представьте себе пончик: тороидальный трансформатор — это трансформатор в форме пончика. Это не единственная форма, которую может принимать трансформатор, но она предпочтительна в большинстве отраслей электронной промышленности и производителями звукового оборудования.Тороидальный трансформатор может быть очень маленьким без потери эффективности, и он создает меньше магнитных помех, чем другой распространенный тип трансформатора, E-I или многослойный трансформатор.

Трансформаторы полагаются на электромагнитную индукцию

Физик Майкл Фарадей открыл индукцию в 1831 году, когда заметил, что перемещение магнита через проводящий провод, намотанный на соленоид, индуцирует электрический ток в проводнике. Он обнаружил, что сила тока пропорциональна скорости движения магнита и количеству витков катушки.

Трансформатор использует эту пропорциональность. Оберните одну катушку — первичную катушку — вокруг ферромагнитного сердечника, а второй провод — вторичную катушку — вокруг того же или другого сердечника. Когда ток через первичную катушку постоянно меняет направление, как это происходит с переменным током, он индуцирует магнитное поле в сердечнике, а это, в свою очередь, вызывает электрический ток во второй катушке.

Пока пиковое значение тока остается неизменным, пиковое значение индуцированного магнитного поля также не изменяется.Это означает, что наведенный ток во вторичной катушке увеличивается с количеством витков. Таким образом, трансформатор обеспечивает способ усиления электрического сигнала, что жизненно важно в аудиоиндустрии. Вы также можете использовать трансформатор для понижения напряжения, сделав количество витков во вторичной катушке меньше количества витков в первичной катушке. Это принцип, лежащий в основе трансформаторов, которые вы подключаете к стене для питания вашего электронного оборудования.

Тороидальный трансформатор производит меньше шума

Трансформатор E-I, или ламинат, состоит из пары катушек, намотанных вокруг отдельных сердечников, расположенных близко друг к другу и герметизированных внутри корпуса.С другой стороны, тороидальный трансформатор имеет один ферромагнитный тороидальный сердечник, вокруг которого намотаны как первичная, так и вторичная обмотки. Не имеет значения, соприкасаются ли провода, и часто они накладываются друг на друга.

Переменный ток, проходящий через первичную катушку, возбуждает сердечник, который, в свою очередь, возбуждает вторичную катушку. Тороидальные поля более компактны, чем поля в многослойном трансформаторе, поэтому меньше магнитной энергии мешает чувствительным компонентам схемы.При использовании в звуковом оборудовании тороидальные трансформаторы производят меньше шума и искажений, чем ламинатные, и их предпочитают производители.

Другие преимущества тороидального трансформатора

Поскольку тороидальный индуктор более эффективен, производители могут делать тороидальные трансформаторы меньше и легче, чем трансформаторы E-I. Это важно для производителей электроники и звукового оборудования, поскольку трансформатор обычно является самым большим компонентом в большинстве схем. Его более высокий КПД создает еще одно преимущество тороидального трансформатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *