Как работает антенна – как работает, можно ли заменить обычной, как подключить и провести настройку каналов вещания в Москве на старых и новых ТВ?

Содержание

Про антенны для самых маленьких / Habr

Попробуем разобраться, как работают антенны и почему электромагнитная энергия из комфортного проводника излучается в чужеродный диэлектрик, причем обойдемся без матана, что потребует, разумеется, очень серьезных упрощений и даже вульгаризации, но все же позволит получить начальное представление и, не исключаю, желание почитать материалы для более продвинутых.

Если вы радиоинженер, опытный радиолюбитель-связист или просто хорошо знаете физику, то вам нижеследующее читать строго не рекомендуется во избежание негативных последствий для вашего психического здоровья. Вас предупреждали.

Начнем со скучных основ. В старые добрые времена, когда не было ни интернетов, ни этого вашего фидо, известные явления электричества и магнетизма не считались чем-то единым, имеющим общую природу, пока ровно двести лет назад датчанин Эрстед не обнаружил, что протекание электрического тока по проводнику вызывает отклонение стрелки компаса, т.е. создает доступное наблюдению и измерению простейшими приборами магнитное поле.

Вскорости француз Ампер вывел закон имени себя, описывающий зависимость электрического тока и возникающего от него магнитного поля, а чуть позже включившийся англичанин Фарадей обнаружил и математически изложил явление электромагнитной индукции. Спустя еще совсем немного времени шотландец Максвелл создает теорию электромагнитного поля, на которую нам бы и следовало опираться в дальнейшем рассказе, но мы договорились обходиться без матана настолько, насколько возможно, чтобы даже самые отпетые гуманитарии смогли почувствовать вкус к технике вместо быть распуганными сложными формулами. Все эти работы привели к тому, что 1887 году немец Герц экспериментально доказал существование радиоволн, построив радиопередатчик и радиоприемник, которые, довольно неожиданно, оказались рабочими. Впрочем, сам Герц перспектив своей радиопередачи (первой в мире!) не оценил и поэтому изобретение радио чаще связывают с итальянцем Маркони, который помимо неоспоримого инженерного гения, оказался успешен и в части коммерциализации. Да, если кому интересно, первая радиопередача голоса принадлежит канадцу Фесендену, которому удалось провернуть это дело в 1900 году.

Ток в проводнике создает магнитное поле. Зачем же нам браться рукой за оголенный провод? Затем, чтобы легко запомнить направление вектора магнитного поля в зависимости от направления тока в проводнике — «правило правой руки».

Итак, теперь мы знаем, что протекание электрического тока в проводнике приводит к тому, что около проводника возникает магнитное поле. Вот это вот, если очень-очень упрощенно, и есть электромагнетизм. Поэтому первое, что мы можем усвоить: излучение антенн связано с протеканием в них электрического тока.

Радиосвязь использует переменный ток различной частоты (или длины волны – говоря об антеннах чаще удобнее говорить о длине волны, а о радиотехнике в целом – о частоте).
Различные частоты позволяют одновременно проводить много независимых передач и разделять их прием, выбирая нужные частоты и отбрасывая ненужные. Способов, как это сделать, довольно много, но они — тема отдельных статей. Переменный ток обладает одной неприятной особенностью: хотя он полностью подчиняется закону Ома (взаимозависимость напряжения, сопротивления цепи и тока в ней), напряжение и ток могут не совпадать по времени. Да-да, «сдвиг по фазе» – это необязательно в голове, это более чем электро- и радиотехнический термин. Вот что получается. Если бы мы подавали переменное напряжение на некий идеальный резистор, то синфазный переменный ток в этой цепи был бы равен напряжению в вольтах, деленному на сопротивление в омах – так же, как и приличный постоянный ток. Но если вместо резистора у нас катушка индуктивности, то дело становится более запутанным. Когда мы прикладываем напряжение к катушке, она как бы сопротивляется току через нее, поэтому ток отстает по фазе от напряжения. Кстати, если отключить подачу напряжения от катушки, то она тоже будет сопротивляться и постарается поддержать течение тока через себя (в той мере, в которой катушка может запасти энергию) – напряжения уже нет, а ток все еще идет. Вот это вот сопротивление, оно называется реактивным, тем выше, чем выше частота. То есть с ростом частоты при равной индуктивности или с ростом индуктивности при равной частоте сопротивление переменному току растет. С конденсаторами все то же самое, но только наоборот. При приложении напряжения к конденсатору ток сначала проваливается в него, как в пустую яму, опережая напряжение, а затем падает по мере заряда. Легкость, с которой переменный ток попадает в конденсатор, означает, что с ростом частоты при равной емкости сопротивление переменному току падает, а при равной частоте при росте емкости сопротивление переменному току также падает. Поэтому примем на заметку: реактивное сопротивление, то есть индуктивное или емкостное сопротивление переменному току, зависит от частоты.

Слева традиционная синусоидальная осциллограмма, справа сдвиг фаз на примере «отставания» тока от напряжения при наличии в цепи индуктивного сопротивления.

Суммарное сопротивление, состоящее из активной компоненты (условный резистор, который потребляет мощность «чисто», без влияния на фазу) и реактивной компоненты (сдвигающие фазу индуктивность и/или емкость), называется комплексным сопротивлением или импедансом.

Итак, антенна – это проводник, к которому подводится электрическая энергия и который ее излучает в окружающее пространство. Излучает электрический ток в проводнике, который создает вокруг проводника магнитное поле.

Почему электромагнитная энергия выходит из комфортного для нее проводника в некомфортный для нее вакуум? А она и не выходит! Энергия создает колебания поля, но не движется сама по себе. Давайте сравним со звуковыми волнами. Когда динамик (антенна) создает колебания, воздух (эфир) не движется, ветер не возникает, но колебания распространяются в воздухе (эфире). Так же происходит и с электромагнитными волнами, разве что электромагнитная энергия распространяется не в воздухе, а в эфире. Позже, правда, выяснят, что предполагавшегося эфира не существует, и что земля тоже не плоская, а электромагнитное поле прекрасно себя чувствует и в вакууме

но мы-то знаем, что эфир есть, а земля, конечно, не плоская, а немного выпуклая. То есть, еще раз, энергия не переносится вместе со средой (точнее с полем), а переносится за счет распространения волн в неподвижной в общем случае среде (в поле).

Антенна как колебательный контур. Прежде чем говорить о конкретных конструкциях простых антенн, по принципу устройства которых мы сможем разобраться и в устройстве сложных, поговорим об электрическом резонансе. Для этого вернемся назад к реактивному сопротивлению. Полотно антенны можно представить как распределенную емкость и распределенную индуктивность – как размотанную до прямого провода катушку и как вырожденные до того же самого провода пластины конденсатора. Наличие реактивного сопротивления в цепи, как мы помним, разделяет фазы тока и напряжения. Однако, если мы подберем определенную комбинацию индуктивности и емкости (а это сработает только на одной определенной частоте, ведь мы помним, что с изменением частоты меняется реактивное сопротивление), то получится, что емкость и индуктивность взаимно компенсируют друг друга и мы видим чисто активное сопротивление в нагрузке. Вот такая взаимная компенсация и результат в виде чисто активного сопротивления как результат компенсации называется электрическим резонансом. Сам по себе для работы антенны он неважен, потому что антенна, как мы уже выяснили, излучает током в проводнике. Однако, есть ряд причин, по которым к достижению резонанса в антенне стремятся. Дело в том, что в отличие от постоянного тока, для переменного важно, чтобы волновое сопротивление (напоминаю закон Ома, а именно что сопротивление цепи численно равно приложенному напряжению, деленному на ток) генератора, линии передачи и нагрузки, т.е. собственно антенны, были равны. Если равенства нет, часть электромагнитной энергии отразится назад на генератор, что приведет к целому спектру нежелательных явлений. Значительное реактивное сопротивление приводит к сильному рассогласованию и значительному отражению энергии. Впрочем, это касается и активной компоненты импеданса, согласовать которую легче при незначительной, легко компенсируемой реактивной компоненте. Поэтому технически стараются создавать такие антенны, у которых реактивная компонента отсутствует или легко компенсируется, а активная равна волновому сопротивлению генератора или легко трансформируется. В случае самых простых антенн, создание определенной емкости антенны или определенной индуктивности означает попросту подбор размеров. Поэтому обычно размеры антенн меряют не в линейных единицах, а в долях длины волны.

Простейшие полноразмерные антенны. Полуволновый диполь, четвертьволновый граундплейн и аналогичные конструкции.

Как видим, распределение токов и напряжений одинаково. Только если в четвертьволновом граундплейне одна половина диполя — штырь, а второй половиной является земля, то в полуволновом диполе — второй половиной является его вторая половина. 🙂

Для ознакомления с принципами, одинаковыми для любых более сложных антенн, предлагаю разобраться с устройством и работой базовых антенн – симметричного полуволнового диполя или несимметричного четвертьволнового граундплейна. В известной степени они идентичны и полуволновый диполь можно рассматривать как крайний случай четвертьволнового граундплейна, угол радиалов (противовесов) которого достиг 180° к излучающему штырю, поэтому большинство рассматриваемых особенностей в равной мере применимы к обоим антеннам.

Как видим, такая антенна имеет электрический резонанс, потому что в ее проводнике помещается целое число полуволн тока и целое число полуволн напряжения. Они смещены по фазе друг относительно друга, но их реактивность взаимно компенсируется.

Если бы антенна была немного короче, чем полволны, то у нее бы появилась емкостная компонента импеданса и ее пришлось бы компенсировать индуктивностью (никому не напоминает катушки в основании сибишных автоантенн?), а если наоборот удлинить, то появится индуктивная компонента, которую необходимо скомпенсировать емкостью.

Сопротивление излучения. В сопротивлении излучения нет ничего особенного. Вернее не так. Сопротивления излучения в физическом смысле не существует, это аналитическое значение, которое используется для определения КПД антенны. Проще всего представить себе сопротивление излучения как ту активную компоненту полного сопротивления всей антенны, которая тратится на излучение. Вообще-то есть термин «потери на излучение» и это полезные «потери», если мы говорим об антенне, но это не равно сопротивлению излучения, так что не путайте. Нет никакого воображаемого сопротивления среды воображаемому излучению в нее или что либо еще — есть разные свойства вроде диэлектрической проницаемости, которые мы рассматривать пока что не будем.

Еще в антенне есть сопротивление потерь в виде сопротивления проводника, которое тратится на его нагрев, различные потери в конструктивных элементах и согласующих звеньях. Знание сопротивления излучения необходимо для понимания КПД антенны: у некоторых антенн сопротивление излучения может составлять единицы и доли Ома при том, что сопротивление потерь в разы больше, что значит что КПД такой антенны крайне низок несмотря на то, что в остальном ее конструкция адекватна. В простых антеннах вроде рассматриваемого диполя или граундплейна, сопротивление излучения близко к полному сопротивлению самой антенны, потому что потери в проводнике сравнительно малы, но в любом случае это не тождественные понятия.

Вернемся к диполю. Пока мы подаем энергию в его геометрическом центре, где ток максимален, а напряжение минимально, сопротивление излучения невелико. Теоретически оно равно приблизительно 73 Омам, а практически немного меньше в зависимости от относительной толщины материала. По мере расщепления одной из половин диполя на отдельные радиалы, сопротивление будет немного снижаться и упадет до приблизительно 36 Ом ми угле в 90° к штырю. Это очевидно влияет на КПД антенны. Но, для наглядности, будем рассматривать именно диполь. По мере смещения точки питания от центра к краю мы увидим, что ток падает, а напряжение растет, то есть растет сопротивление излучения, которое достигнет своего максимума при питании с конца. На все остальные характеристики антенны это обстоятельство не влияет, она по-прежнему излучает с той же диаграммой направленности, а значит, имеет ту же эффективность излучения (но не КПД всей антенны в сборе, потому что КПД зависит от относительных потерь).

Полное сопротивление антенны равно напряжению в точке питания, деленному на отдаваемый ток. А состоит оно из, как мы уже выяснили, сопротивления излучения, на котором мы полезно теряем энергию на нужное нам излучение, и сопротивления потерь, на котором мы теряем энергию бесполезно. Разными способами мы можем влиять на полное сопротивление антенны. Не меняя геометрию, мы можем смещать точку питания. Мы можем использовать различные трансформирующие элементы (включая буквально трансформаторы с обмотками на тех частотах, на которых их применение рационально). На эффективность излучения антенны все эти манипуляции никак не влияют и нужны только для согласования антенны с генератором (передатчиком). Например, полуволновый диполь с питанием по центру, сопротивление которого составляет приблизительно 73 Ома, через простой трансформатор 1:4 может быть согласованным с генератором, рассчитанным на антенну сопротивлением 18 Ом или 300 Ом — смотря как подключить выводы. На работе антенны это не скажется никак, кроме влияния потерь в трансформаторе на КПД всей конструкции в сборе.

Если вам кажется, что у антенны есть только монополь – некий штырь, кусок провода или просто дорожка на печатной плате, то на самом деле это вариант граундплейна, у которого нет специально выделенных радиалов, но радиалами служит земля, тело оператора (портативной радиостанции, например) или земляные полигоны на плате. Потери в таких радиалах очевидно больше, чем в специально созданных как часть антенны, поэтому КПД таких конструкций всегда ниже, равно как и степень согласования импедансов из-за непредсказуемости ситуативных вместо расчетных радиалов.

При увеличении длины антенны сверх полуволнового диполя сопротивление излучения сначала растет, достигая максимума при четном числе полуволн, а затем снова падает, достигая минимума при нечетном числе полуволн. Незначительное увеличение длины сужает диаграмму направленности и увеличивает эффективность передачи в выбранном направлении, а значительное приводит к дроблению диаграммы на множество лепестков и в целом неэффективно, поэтому на практике обычно не применяется кроме многодиапазонных антенн, в которых это является компромиссным решением.

Вообще любое увеличение длины диполя сверх половины волны приводит к тому, что на полотне возникают области, где ток течет в противоположном направлении. Этот ток, разумеется, также участвует в излучении, но интерференция создаваемого им поля с полем условно-основной части полотна и приводит к тому, что диаграмма направленности расщепляется, что в большинстве случаев вредно: обычно радиосвязь производится по одному или нескольким известным направлениям а излучение в «ненужную» сторону означает просто напрасные потери. Например, наземная связь проводится в направлении горизонта, а излучение в космос бесполезно тратит мощность передатчика. Поэтому, когда необходимо увеличить направленность антенны, чтобы посылать энергию более сфокусировано в нужном направлении, предпочитают использовать более сложные конструкции на базе диполя, а не удлиняют единичный диполь.

При уменьшении длины антенны от полуволнового диполя (или укорочению штыря четвертьволнового граундплейна) сопротивление излучения экспоненциально падает, что вкупе со все усложняющимся согласующим устройством делает укороченную антенну крайне неэффективной – небольшое сопротивление излучения рядом с большим сопротивлением означает напрасный нагрев согласующего устройства с малым излучением.

Вот, собственно, и все, что нужно знать гуманитарию об антеннах.

Введение в основы антенн

Добавлено 28 января 2017 в 18:30

Сохранить или поделиться

Основы антенн

Антенны используются для передачи и приема информации через изменения электромагнитных полей, которые окружают их. Данная статья представляет собой введение в теорию антенн для начинающих. В ней кратко рассматривается само понятие волны, падающая, отраженная и стоячая волны, КСВ, модуляция, дипольная антенна.

Краткая история электромагнетизма

Более 2600 лет назад (и, вероятно, еще раньше) древние греки обнаружили, что кусок янтаря, натёртый об мех, притягивает легкие предметы, например, перья. Примерно в то же время древние люди обнаружили магнитную руду, которая представляет собой куски намагниченной горной породы.

Потребовалось несколько сотен лет, чтобы определить, что существует два различных вида притяжения и отталкивания (магнитное и электрическое): одинаковые отталкиваются, а противоположные притягиваются. Затем прошло еще 2000 лет перед тем, как ученые впервые обнаружили, что эти два совершенно разных явления природы были неразрывно связаны между собой.

В начале девятнадцатого века Ханс Кристиан Эрстед помести провод перпендикулярно стрелке компаса и ничего не увидел. Но когда он повернул провод параллельно стрелке компаса и пропустил через него ток, стрелка отклонилась в одном направлении. Когда он пропустил ток через провод в противоположном направлении, стрелка компаса также отклонилась в противоположном направлении.

Ток, протекающий через проводник, расположенный перпендикулярно стрелке компаса, не вызывает ее движенияТок, протекающий через проводник, расположенный перпендикулярно стрелке компаса, не вызывает ее движенияСтрелка компаса, расположенная параллельно проводнику, через который проходит ток. При изменении направления протекания тока на противоположное направление отклонения стрелки также меняется на противоположное.Стрелка компаса, расположенная параллельно проводнику, через который проходит ток. При изменении направления протекания тока на противоположное направление отклонение стрелки также меняется на противоположное.

Этот провод был первой передающей антенной, а компас был первым приемником. Ученые в то время просто не знали об этом.

Пока не очень элегантно, этот эксперимент дал подсказку о том, как работает вселенная – что заряды, двигающиеся через провод, создают магнитное поле, которое перпендекулярно проводу. (Ученые вскоре узнали, что это поле, окружающее проводник, имеет круглую форму, а не форму прямой, перпендикулярной проводнику.)

С помощью этой информации ученые смогли описать способы, с которыми электрические и магнитные поля взаимодействуют с электрическими зарядами, и сформировать основы понимания электромагнетизма.

Видео выше показывает, как нить лампы накаливания, работающей от переменного тока, изгибается между точками крепления при воздействии сильного магнитного поля.

Вскоре Никола Тесла в своей лаборатории без проводов зажег лампы, продемонстрировал первую игрушечную лодку с дистанционным управлением и создал систему переменного тока, которую сегодня мы используем по всему миру для передачи электрической энергии.

Менее чем через столетие после эксперимента Эрстеда, Гульельмо Маркони изобрел способ передачи первых беспроводных телеграфных сигналов через Атлантику.

И вот теперь, через два столетия после первого эксперимента с компасом, мы можем делать фотографии далеких планет и отправлять их через необъятный космос на устройства, которые мы можем держать в руках – и всё благодаря антеннам.

Фотография ПлутонаФотография Плутона

Составные блоки

В нашей Вселенной действуют определенные правила. Люди обнаружили это тысячи лет назад, когда стали различать силу тяжести и способность одних объектов притягивать или отталкивать другие объекты. Затем люди обнаружили еще один набор правил притяжения и отталкивания, которые были полностью отделены от первого.

Люди разделили объекты по категориям и с помощью экспериментов определили, что положительный и отрицательный являются противоположными проявлениями свойства под названием «заряд», как и северный и южный полюса являются противоположными проявлениями чего-то под названием магнетизм, как и левая и правая руки являются двумя типами рук.

Изображение, показывающее зеркальную симметрию между электрическими зарядами, магнитными полюсами и рукамиИзображение, показывающее зеркальную симметрию между электрическими зарядами, магнитными полюсами и руками

Что-то происходило в проводе Эрстеда независимо от того, была ли под ним стрелка компаса или нет. Это приводит к идее о неосязаемых электромагнитных полях, которые пронизывают Вселенную – и самые плотные материи, и вакуум. Каждый из наших объектов, отнесенных к категориям (+/-/N/S), влияет на пространство вокруг него и подвергается влиянию, если изменяется окружающее его поле.

Наложение волн (принцип суперпозиции)

Волны переносят энергию из одного места в другое.

Оставаясь нетронутым в течение длительного периода времени, поверхность воды в бассейне будет казаться плоской и неподвижной. Если побеспокоить воду в одном месте, молекулы воды побеспокоят соседние молекулы воды, которые побеспокоят соседние молекулы воды и так далее, пока волнение не дойдет до края бассейна.

Молекулы, которые начали цепь событий, остаются на месте, близкому их начальному расположению, но волнение достигнет края бассейна за секунды. Волны передают энергию без переноса вещества.

Одиночная волна в бассейнеОдиночная волна в бассейне

Волны, как мы их описываем, это движение возмущения через среду. Одиночное начальное возмущение или миллион таких возмущений, к распространению возмущения приводит цепная реакция столкновений молекул в бассейне.

График распространения двух волн в бассейнеГрафик распространения двух волн в бассейне

Когда две волны возмущают одну и ту же область пространства, их амплитуды будут складываться или вычитаться, создавая либо конструктивную, либо разрушающую интерференцию. Эта практика временного сложения или вычитания называется принципом суперпозиции.

График конструктивной интерференции волнГрафик конструктивной интерференции волн

После того, как волны интерферируют в определенном месте, они продолжают движение в том же направлении и с той же скоростью, с какими они начали движение, так долго, пока они остаются в той же среде. Скорость и направление могут измениться, когда волна войдет в новую среду. Звуковые волны проходят через воздух, водные волны проходят через жидкости – вещества, через которые проходят волны, называются «средой».

Электромагнитные волны могут проходить через такие среды, как воздух и вода, или через пустоту космоса – они не требуют среды для распространения энергии из одного места в другое.

Отражение волны

При переходе волн из одной среды в другую часть их энергии передается, часть энергии отражается, а часть энергии рассеивается в окружающую среду.

Свойства материалов этих двух сред определяют соотношения передачи к отражению и рассеиванию. А также свойства материалов определяют, будет ли волна инвертироваться при отражении.

Передача и отражение энергии одиночного волнового импульсаПередача и отражение энергии одиночного волнового импульсаНепрерывная падающая волна (оранжевый) попадает на границу сред, где часть энергии отражается (светло-оранжевый), а часть энергии передается (темно-оранжевый)Непрерывная падающая волна (оранжевый) попадает на границу сред, где часть энергии отражается (светло-оранжевый), а часть энергии передается (темно-оранжевый)

Отражение и инверсия

Когда волны распространяются из одной среды в другую, часть падающей энергии отражается. В зависимости от свойств материалов сред волны могут инвертироваться при отражении.

Представьте себе длинную пружину, привязанную к столбу. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит столб; и в этот момент оно изменит направление и начнет распространяться назад к вам с другой стороны, справа. Это и есть инверсия.

Инверсия волны при отраженииИнверсия волны при отражении

Возьмите ту же самую пружину и привяжите ее к веревке, одетой петлей на столб. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит веревку; в этот момент оно изменит направление и начнет распространяться назад к вам с той же стороны, слева.

Отсутствие инверсии при отраженииОтсутствие инверсии при отражении

Понимание отражения колебаний пружины поможет нам понять, что происходит внутри антенны.

Вот четыре ситуации, которые помогут проиллюстрировать понятия отражения и инверсии.

отражение и инверсия (или не инверсия) волны и разрушающая и конструктивная интерференцииотражение и инверсия (или не инверсия) волны и разрушающая и конструктивная интерференцииотражение и инверсия (или не инверсия) волны и разрушающая и конструктивная интерференцииотражение и инверсия (или не инверсия) волны и разрушающая и конструктивная интерференции

Инвертируется или нет волна при отражении, это определяется свойствами сред по обе стороны границы раздела.

Если волна инвертируется при отражении, и мы хотим получить конструктивную интерференцию в веревке, у нас должна быть веревка длиной, равной половине длины волны, полной длине волны или полутора длин волны и так далее:\(L = n {\lambda \over 2}\), где n – целое положительное число.

Антенный резонанс основан на тех же принципах отражения и интерференции: выбирайте длину провода так, чтобы отраженная энергия могла интерферировать конструктивно, создавая больший сигнал, а, не уменьшая его.

Стоячие волны

Когда две волны одинаковой длины распространяются в одной среде, но в противоположных направлениях (изображены синим и оранжевым цветами в примерах ниже), они могут взаимодействовать и образовывать стоячую волну (изображена зеленым цветом в примерах ниже). Стоячие волны называются так потому, что в то время, как синие волны движутся влево, а оранжевые волны движутся вправо, зеленые стоячие волны не обладают никаким видимым движением в какую-либо сторону.

Стоячая волна на отрезке половины длины волныСтоячая волна на отрезке длины волныСтоячая волна на отрезке 3λ/2Стоячая волна на отрезке 2λПадающая волна (оранжевая) и отраженная волна (синяя) объединяются, формируя стоячую волну (зеленая)

Стоячая волна возникает только при определенных условиях в среде, которые определяются режимом отражения и длиной падающей волны.

Коэффициент стоячей волны (КСВ, SWR)

Стоячие волны максимальной амплитуды возникают при очень точной комбинации частоты (или длины волны) и длины антенны.

К сожалению, нецелесообразно и фактически невозможно иметь антенны, которые обладают точной длиной, необходимой для формирования идеальной стоячей волны в требуемом диапазоне частот. К счастью, в этом нет необходимости. Антенна с одной фиксированной длиной может работать в небольшом диапазоне частот с небольшим, приемлемым уровнем расстройки.

Стоячие волны и напряжения в линии, показанные в течение периода колебанийСтоячие волны и напряжения в линии, показанные в течение периода колебаний

Длина антенны должна быть настроена для получения стоячей волны как можно более близкой к идеальной в центре рабочего диапазона частот.

Измерители КСВ (коэффициента стоячей волны) измеряют отношение передаваемой энергии к отраженной, и это отношение должно быть как можно ближе к 1:1.

Небольшие подстройки могут быть выполнены путем добавления в схему пассивных компонентов между оконечным каскадом усиления и антенной. Небольшие недостатки в настройке антенны могут вызвать появление разности потенциалов на конечном каскаде усиления, нагревание конечного участка передающей линии. Большой дисбаланс может вызвать подачу большой разности потенциалов обратно на схему передатчика, вызывая пробой диэлектрика, искрение и выход из строя оконечного усилителя.

Передача информации

Вероятно, наиболее известны два способа передачи информации: частотная модуляция (ЧМ, FM) и амплитудная модуляция (АМ, AM).

Частотная модуляция

При частотной модуляции информация передаются с помощью изменения частоты несущего колебания.

Частотная модуляцияЧастотная модуляция

Амплитудная модуляция

При амплитудной модуляции частота несущего колебания остается постоянной. Информация передается с помощью изменения амплитуды несущей.

Амплитудная модуляцияАмплитудная модуляция

Дипольная антенна

Простая антенна, которая использует два одинаковых элемента, называется диполем. Самые короткие дипольные антенны работают с колебаниями, для которых длина антенны равна половине длины волны, и которые создают стоячие волны по всей длине антенны.

Стоячие волны в дипольной антеннеСтоячие волны в дипольной антенне

Изменяющиеся электрические поля вдоль длины антенны создают радиоволны, которые распространяются в направлениях от антенны.

Антенная, излучающая энергиюАнтенная, излучающая энергию

Антенны позволяют передавать и получать информацию, воздействуя и подвергаясь воздействию электромагнитных полей, пронизывающих вселенную. В следующей статье мы рассмотрим различные типы антенн, и как они работают.

Оригинал статьи:

Теги

AM / АМ (амплитудная модуляция)FM / ЧМ (частотная модуляция)VSWR / КСВН / КСВ (коэффициент стоячей волны по напряжению)АнтеннаДипольИнтерференцияКонструктивная интерференцияМодуляцияПринцип суперпозицииРазрушающая интерференцияСтоячая волнаЭлектромагнитное излучение

Сохранить или поделиться

Волновой канал — Википедия

Антенна «волновой канал», известная также как антенна Яги-Уда, или антенна Яги (англ. Yagi antenna), — антенна, состоящая из расположенных вдоль линии излучения параллельно друг другу активного и нескольких пассивных вибраторов. Волновой канал относится к классу антенн бегущей волны. В советской литературе применялось название «волновой канал», которое и осталось распространённым в русскоязычной литературе; в англоязычной литературе используют названия по именам изобретателей.

Схема антенны «волновой канал»: Излучение активного диполя (красного цвета) возбуждает ток в пассивном директоре, который переизлучает волну (синего цвета), имеющую конкретный сдвиг фазы (см. пояснение в тексте). В результате суммарное излучение активного вибратора и директора (зелёного цвета) в направлении рефлектора складывается в противофазе, а в направлении директора — в фазе, что приводит ослаблению излучения в направлении рефлектора и его усилению в направлении директора.

Антенна состоит из расположенных на траве́рсе (на рисунке — Т) активного (A) и ряда пассивных вибраторов — рефлекторов (R), расположенных относительно направления излучения за активным вибратором, а также директоров (D), расположенных перед активным вибратором. Чаще всего применяется один рефлектор, число директоров меняется от нуля до десятков. Активный вибратор имеет длину около полуволны (0,5 λ), рефлектор — длину, немного большую 0,5 λ, а директоры имеют длину, меньшую 0,5 λ. Расстояния от активного вибратора до рефлектора и до первого директора составляют около 0,25 λ.

Излучение антенны можно рассматривать как сумму излучений всех составляющих её вибраторов. Ток, наведённый излучением активного вибратора в рефлекторе, наводит в нём напряжение. Для рефлектора, сопротивление которого носит индуктивный характер за счёт длины, большей 0,5 λ, напряжение отстаёт по фазе от напряжения в активном вибраторе на 270°. В результате излучение активного вибратора и рефлектора в направлении рефлектора складывается в противофазе, а в направлении активного вибратора — в фазе, что приводит к усилению излучения в направлении активного вибратора приблизительно вдвое. Аналогично рефлектору работают директоры, однако из-за ёмкостного характера их сопротивления (что определяется их меньшей длиной) излучение усиливается в направлении директоров. Каждый дополнительный рефлектор или директор дают прибавку усиления, но меньшую, чем предыдущий рефлектор и директор, причём для рефлектора эффект ослабления действия дополнительных элементов намного более выражен, поэтому более одного рефлектора применяют достаточно редко.

Трёхэлементный волновой канал имеет усиление около 5—6 dBd, шестиэлементный — около 9 dBd, десятиэлементный — около 11 dBd. Для длинных (более 15 элементов) антенн можно считать, что усиление увеличивается примерно на 2,2 dB на каждое удвоение длины антенны. Антенна обладает высоким коэффициентом направленного действия, при этом достаточно проста, имеет относительно небольшую массу, а отсутствие сплошных поверхностей обеспечивает малую парусность.

Слева направо на траве́рсе смонтированы рефлектор, активный вибратор и директор (рефлектор несколько длиннее активного вибратора, а директор — короче)

Антенны «волновой канал» широко применяются в качестве приёмных телевизионных, в качестве приёмных и передающих в системах беспроводной передачи данных, в радиолюбительской связи, в прочих системах связи, в радиолокации. Широкому их распространению способствуют высокое усиление, хорошая направленность, компактность, простота, небольшая масса. Антенну применяют на диапазонах, начиная с коротких волн, в диапазонах метровых и дециметровых волн и на более высоких частотах.

Антенна «волновой канал» была изобретена в 1926 году Синтаро Уда из Университета Тохоку, расположенного в городе Сендай в Японии, в работе принимал участие также Хидэцугу Яги, его коллега. Яги опубликовал первое описание антенны на английском языке, в связи с чем в западных странах она стала ассоциироваться с его именем. Яги, впрочем, всегда упоминал принципиально важную роль Уда в изобретении антенны, в связи с чем правильное название — «антенна Яги-Уда».

Антенна получила широкое распространение во время Второй мировой войны в качестве антенны радаров ПВО благодаря её простоте и хорошей направленности. Японские военные впервые узнали об антенне после битвы при Сингапуре, когда к ним попали записки английского радиоинженера, упоминавшего «антенну яги». Японские офицеры разведки не поняли в этом контексте, что Яги — это фамилия создателя.

Несмотря на то, что антенна была изобретена в Японии, она оставалась неизвестной большинству японских разработчиков радаров в течение большой части военного периода, из-за противоречий между флотом и армией.

Антенну горизонтальной поляризации можно видеть под левым крылом самолётов, базирующихся на авианосцах, — Grumman F4F Wildcat, F6F Hellcat, TBF Avenger. Антенну вертикальной поляризации можно видеть на носовом обтекателе многих истребителей Второй мировой войны.

28 января 2016 года на главной странице Google появился дудл, посвященный 130-летию Хидэцугу Яги[1].

  • Карл Ротхаммель «Антенны» ISBN 3-440-07018-2 ISBN 985-6487-15-3
  • H .Yagi, Beam transmission of ultra-shortwaves, Proceedings ofTheА the IRE, vol. 16, pp. 715–740, June 1928. The URL is to a 1997 IEEE reprint of the classic article. См. также Beam Transmission Of Ultra Short Waves: An Introduction To The Classic Paper By H. Yagi by D.M. Pozar, in Proceedings of the IEEE, Volume 85, Issue 11, Nov. 1997 Page(s):1857 — 1863.
  • «Scanning the Past: A History of Electrical Engineering from the Past». Proceedings of the IEEE Vol. 81, No. 6, 1993.
  • Shozo Usami and Gentei Sato, «Directive Short Wave Antenna, 1924». IEEE Milestones, IEEE History Center, IEEE, 2005.
  • D. Jefferies, «Yagi-Uda antennas». 2004.

ТВ антенна. Виды и конструкция. Работа и применение. Особенности

ТВ антенна – это устройство для улучшения качества приема волн телевизионных каналов. Принятый с ее помощью сигнал передается на телевизор по коаксиальному кабелю, который обеспечивает минимальное искажение. Антенны могут использоваться для приема аналогового, цифрового либо спутникового сигнала, что зависит от их конструктивных особенностей. На данный момент на территории России самыми распространенными являются антенны аналогового телевидения. Его трансляцию ведет Останкинская башня, используя метровые и дециметровые волны.

Виды телевизионных антенн

Устройство является очень распространенным, поскольку практически ни один телевизор не сможет работать без антенны, за исключением тех, которые подключаются к кабельному телевидению. Различные населенные пункты имеют разную удаленность от ретранслятора. Одни дома могут быть расположены в сотнях километрах от них, а другие всего в нескольких шагах. Этот фактор напрямую влияет на мощность антенны, которая позволит принимать сигнал приемлемого качества, компенсируя удаленность.

Все ТВ антенны можно разделить на 3 категории:
  • Комнатные.
  • Уличные.
  • Спутниковые.
Комнатная ТВ антенна

Эти устройства устанавливаются внутри помещения. Они самые дешевые, а кроме этого не требуют сложного монтажа. При выборе в их пользу не придется прокладывать коаксиальный кабель на улицу, проделывая сквозное отверстие в фасадной стене или раме окна. Огромным недостатком данной конструкции является слабый сигнал. В связи с этим их устанавливают только в зонах с расстоянием до 30 км от телецентра или ретранслятора. На более дальней дистанции получаемый сигнал будет иметь сильное искажение, что не позволит просматривать качественную картинку телепередач.

Комнатные антенны также могут оснащаться усилителем сигнала. Чем дальше от ретранслятора, тем более мощный усилитель потребуется. Данные устройства по конструкции разделяют на два вида:
  • Стержневые.
  • Рамочные.
Стержневые

Это самые слабые комнатные устройства. Они имеют 2 или 4 телескопических усов-вибраторов, которые и улавливают сигналы. Их длина обычно не превышает 1 м. Они подключаются к специальной подставке, которая внутри имеет согласующий трансформатор, передающий сигнал на коаксиальный кабель и дальше на телевизор. Использование такой конструкции имеет свои преимущества. Она легкая, а благодаря телескопическим усам может компактно складываться для транспортировки.

Если ретранслятор сигнала находится близко, усы можно сделать короткими, чтобы они не занимали полезное пространство. При отдаленности телебашни их высота ставится на максимум, что позволяет компенсировать расстояние. Зачастую стержневая ТВ антенна идет в комплекте с телевизором. Большинству она известна под народным названием «рожки». Такие антенны хорошо принимают волны в метровом диапазоне. Для проведения их настройки необходимо менять не только высоту, но и расстояние между усами, для чего предусматривается их крепление с помощью шарниров. Большим недостатком стержневой антенны является отсутствие универсальной настройки. Выставив положение усов для хорошего приема одного канала, второй начнет транслироваться на экране с помехами.

Рамочные

Более или менее совершенными являются устройства рамочного типа. Они улавливают сигналы в дециметровом диапазоне. Эти устройства имеют металлический контур, выполненный в виде рамки, которая закреплена на подставке. Такое оборудование все же лучше чем стержневое, но все равно далеко от идеала. Его не получится использовать при значительной удаленности от ретранслятора или телебашни.

Уличная ТВ антенна

Более мощными являются наружные антенны для приема телевизионного сигнала. Они устанавливаются на возвышении в зонах открытой видимости. Зачастую такие антенны можно увидеть на крышах многоэтажных домов. Жители частного сектора устанавливают их на вершине высокой металлической трубы зафиксированной вертикально. В этом случае обеспечивается возвышение на 10-15 м, что позволяет компенсировать искажение волн стенами домов и ветвями деревьев. Фактически, чем больше вокруг преград для сигнала, тем на более высокое расстояние необходимо поднять антенну.

Данные устройства бывают различной внешней конструкции, но все они разделяются на 2 вида по принципу действия:
  • Активные.
  • Пассивные.
Активная конструкция

Такая ТВ антенна имеет усилитель мощности, что позволяет принимать сигналы намного качественнее и компенсировать помехи. Подобные устройства выбираются в том случае, если ретранслятор находится далеко, а перед антенной имеются серьезные преграды рассеивающие сигналы, такие как дома, лесные массивы и линии электропередач. Также активное устройство потребуется, если установка ведется на низине, когда нет прямой видимости между источником трансляции и точкой приема.

Активные антенны могут передавать сигнал на несколько телевизоров. Для этого необходимо просто использовать специальный тройник для коаксиального кабеля. Применяемый у них усилитель требует отдельного источника питания. Для этого предусматривается понижающий блок на 12 вольт. Он подключается к коаксиальному кабелю у телевизора и подает напряжение к точке приема к усикам-вибраторам, возле которых находится скрытая в герметичном корпусе плата усилителя.

Пассивные устройства

Такие антенны стоят дешевле, но их можно выбирать только в том случае, если имеется прямая видимость без препятствий между точкой приема и оборудованием трансляции. В таких условиях использование усилителя не нужно. Жители отдельных домов могут проживать слишком близко к транслирующей башне, поэтому им нужна именно такая антенна. Но даже она может принимать сигнал с искажением от того, что он слишком сильный. В этом случае потребуется установка специального оборудования – аттенюатора. Он позволяет компенсировать этот недостаток, уменьшив силу сигнала до приемлемого для телевизора уровня.

Спутниковая антенна

Безусловно, самым лучшим оборудованием для получения телевизионного сигнала является спутниковая ТВ антенна. Она улавливает трансляцию не от расположенной на земле телебашни, а со спутника. Это массивная конструкция, которая стоит в разы дороже, чем уличные и тем более комнатные устройства. Антенна состоит из большой тарелки из металла окрашенной в белый цвет, которая выступает в роли экрана для фокусировки спутниковой трансляции. Попавшие на нее волны улавливаются конвертером, который выполнен в виде небольшой головки размером немного меньше кулака. Он настраивается на определенный спутник и принимает все телеканалы, которые тот передает. Количество конверторов на антенне отличается в зависимости от региона, но редко превышает 3 штуки.

Сигналы обычных трансляторов на земле и спутниковых отличаются, поэтому телевизор не может их воспринимать. В связи с этим между инвертором и телевизионным экраном устанавливается ресивер. Он представляет собой небольшое устройство, габариты которого немного меньше чем DVD приставки. Его задача заключается в трансформации спутникового сигнала в стандартный для телевизора.

Обычно, если в доме имеется два телевизора, то для каждого из них потребуется отдельная ТВ антенна, что обусловлено спецификой конвертера. При приеме одного канала со спутника он не может одновременно обрабатывать другой канал. Иными словами, если провести такое подключение, то все телевизоры будут показывать один телеканал.

Сравнительно недавно данная проблема была решена. Появились универсальные конвертеры, которые позволяют проводить подключение к двум телевизорам, сохранив возможность просмотра разных каналов. В их конструкции предусматривается два входа для подключения коаксиального кабеля. К сожалению, конструкция не идеальна. При выборе такого конвертера, будет использоваться одна ТВ антенна, но все равно к каждому телевизору потребуется подключить по ресиверу.

Спутниковые устройства передают на телевизор намного более качественный сигнал, чем наземные станции, поэтому пользуются большой популярностью, особенно в регионах, где трансляторы находится очень далеко. Даже вместе с очень сложным рельефом удастся смотреть телевизионные программы с идеальной картинкой, что было бы невозможно при использовании наружной антенны. Помехи при трансляции со спутника могут возникать только в случае сильной грозы или интенсивного снегопада.

Спутниковые антенны имеют массу преимуществ. Они безусловно лучше остальных видов, но у них имеется и недостаток. Помимо большей стоимости, они требуют квалифицированного обслуживания. Провести их установку самостоятельно вряд ли удастся, поскольку нужно изначально проверить качество сигнала и выставить тарелку в правильном направлении под нужным углом. Кроме этого, чтобы ресивер работал правильно, необходимо записать частоты каналов трансляции, которые периодически меняются. После прошивки можно будет просматривать все каналы на протяжении нескольких месяцев, после чего некоторые из них начнут исчезать, пока из сотен не останется всего несколько штук. Потребуется снова проводить перепрошивку. Сделать это самостоятельно сложно, потому что требуется специальный кабель и программное обеспечение с кодами каналов. Придется периодически обращаться в специализированные сервисные центры, услуги которых не бесплатны.

Если при нормальных погодных условиях спутниковая ТВ антенна начинает транслировать сигнал с помехами, то скорее всего это связано с отсутствием прямой видимости между тарелкой и спутником. Обычно это связано с разрастанием деревьев. Достаточно обрезать ветки и качество сигнала восстанавливается. Кроме этого, проблема может заключаться в изменение положения конвертера. При монтаже антенны он выставляется под правильным углом относительно расположение спутника. Если угол немного меняется, то качество приема искажается. Обычно во время сильного ветра плохо закрепленная тарелка может немного повернуться, буквально на несколько сантиметров. В этом случае требуется ее перенастройка. Это довольно сложно сделать без специального диагностического оборудования.

Похожие темы:

Ликбез по антеннам: диаграмма направленности

Аннотация

Перед тем как перейти к рассмотрению конструкции и работы разного типа антенн, рассмотрим одну из важнейших характеристик антенны – диаграмму направленности и те параметры, которые из нее напрямую вытекают.
Рекомендую, также, ознакомиться с предыдущей статьёй — Ликбез: основы теории по антеннам.

Введение

Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.

Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.

Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.

Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.

Диаграмма направленности

Диаграмма направленности (ДН) – это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.


Рисунок 1

То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.

На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.

Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.


Рисунок 2

В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.


Рисунок 3

Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.


Рисунок 4

В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие – маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:


Рисунок 5

Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.

Один из наиболее важных параметров – это ширина главного лепестка по нулевому излучению θ0 и ширина главного лепестка по уровню половинной мощности θ0,5. Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.


Рисунок 6

Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ0 = 5,18 град, а ширина по уровню половины мощности θ0,5 = 2,15 град.

Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны – это коэффициент защитного действия, и уровень боковых лепестков.

Коэффициент защитного действия – это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении.  Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного – на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):


Рисунок 7

На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:

 

— в относительных единицах. То же самое значение в дБ: 

Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.


Рисунок 8

УБЛ в районе -18 дБ считается довольно хорошим показателем для высоконаправленной антенны. На рисунке изображены уровни первых боковых лепестков. Аналогично можно указывать также уровни всех последующих, но практической ценности их значение имеет мало, а представляет скорее академический интерес. Дело в том, что первые боковые лепестки находятся как правило «ближе всех остальных» к максимуму диаграммы направленности и могут оказывать помехи. Например, если сопровождение объекта происходит на уровне главного лепестка диаграммы -3дБ, а уровень первого бокового лепестка близок к этому значению (например -5:7 дБ), то велика вероятность начать цеплять объект боковым излучением со всеми вытекающими отсюда последствиями (неправильное позиционирование, потеря объекта и др.). Низкий УБЛ необходим не только для радиолокации, но и для области связи, ведь наличие паразитного излучения это всегда дополнительные помехи.

Коэффициент направленного действия и коэффициент усиления

Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.

Коэффициент направленного действия

Коэффициент направленного действия (КНД) – это отношение квадрата напряженности поля, созданного в главном направлении (Е02), к среднему значению квадрата напряженности поля по всем направлениям (Еср2). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:

D=E02/Eср2

Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.

Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.

КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:


Рисунок 9

Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.

Коэффициент усиления

Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.

Коэффициент усиления (КУ) G – это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е02), к среднему значению квадрата напряженности поля (Еоэ2), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.

Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).    


Рисунок 10

Для такого эталонного вибратора Dэ=3,28, поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D*ŋ/3,28,  где ŋ – КПД антенны.

В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого Dэ=1,64, тогда КУ:

G=D*ŋ/1,64

В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий Dэ=1, и имеющий пространственную диаграмму, изображенную на рисунке 9.

Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.

КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.

Заключение

Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.    

Как улучшить работу модема при плохом покрытии сети / РЭМО corporate blog / Habr

Привет. В этот раз мы решили написать статью об антеннах, в контексте антенн для USB-модемов. Расскажем о том, какие они бывают, почему так выглядят, какие проблемы решает каждая из антенн.

Мы учли пожелания в комментариях к предыдущей публикации о том, чтобы писать «проще», в то же время мы не можем не использовать технические описания и терминологию. Надеемся, что у нас получился нужный баланс удобного и одновременно полезного содержания.

Периодически, на электронную почту завода приходят вопросы вроде: «Почему купленная мною 3G антенна не ловит LTE?», или «Вскрыл вашу антенну — одни железки/фольга, где же усилитель?» и много других вопросов.

Было решено написать статью в том числе для ответов и на такие вопросы. Цель материала — показать, как работают такие антенны на примере собственных изделий и помочь выбрать нужную антенну для приема интернет-сигнала именно в вашей ситуации.

Вступление

Антенны являются неотъемлемой частью любого устройства беспроводной связи. Из-за тренда к уменьшению габаритов устройств потребительской электроники, к антеннам, предъявляются жесткие требования. Под антенну на печатной плате выделяется небольшой участок (10% и менее от площади платы). Иногда и вовсе используются антенны на гибких печатных платах — FPCB, что позволяет компоновать устройство не только в плоскости, но и в объеме корпуса. Бывает, инженеры просто размещают «закорючку» на плате (например, PIFA-антенна), отвечающую за работу устройства в 2G, 3G, 4G сетях. Такая антенна — ненаправленная, с минимальным коэффициентом усиления, её эффективность мала.

Да, подобные технические решения ориентированы преимущественно на работу устройства в зонах уверенного приема сигнала. Но, иногда мы оказываемся в зонах с плохим покрытием, где встроенной антенны недостаточно. В таких случаях может выручить внешняя антенна.

В зависимости от используемого устройства (смартфон, планшет, модем), понадобится антенна, функционал которой реализован под конкретное устройство. О системах усиления интернет-сигнала Orange-900 и Orange-2600, улучшающих качество связи смартфона/планшета, мы говорили ранее. Теперь мы рассмотрим способы усиления сигнала мобильного интернета модема, на примере нескольких классических вариантов антенн.

Антенны-отражатели

Взгляните, как излучает (принимает сигнал) модем в 4G-диапазоне:
Рис. 1 — Компьютерная симуляция 3D диаграммы направленности 4G-модема (f=2.6GHz)

На Рис. 1 изображена 3D диаграмма направленности модема на рабочей частоте 2.6 GHz (сеть 4G). Давайте рассмотрим её подробнее. Как видим, встроенная антенна модема излучает вокруг на 360 градусов по горизонту с небольшим собственным усилением. Перекос излучения по горизонту обусловлен конструкцией антенны модема — за основу взята модель антенны одного из ранее популярных модемов, для наглядности помещенная в радиопрозрачный корпус.

К плюсам кругового излучения относится тот факт, что пользователю не надо искать направление на БС — модем сам выберет нужную ему БС. Однако, ведя прием со всех направлений, помимо полезного сигнала, такая антенна примет помехи и шумы других передатчиков, что ухудшит соотношение полезный сигнал/шум (S/N). Это соотношение влияет на «пинг» и скорость соединения: чем оно больше, тем меньше «пинг» и выше скорость обмена данными.

Для того, чтобы повысить соотношение S/N модема можно использовать усилитель интернет-сигнала Connect 3.0 — это двухэлементная антенна, состоящая из рефлектора и активного элемента (модема, который вставляется в специальный держатель). Самого усилителя (если под усилителем понимать активное устройство) здесь нет, как и в любой пассивной антенне, однако, говоря об усилении, в первую очередь мы говорим о направленных свойствах антенны, и чем ярче они выражены, тем больше подобного «усиления» придает антенна.

Для базовой настройки достаточно направить усилитель с модемом в сторону лучшего уровня сигнала в помещении (как правило это окно) и качество соединения улучшится. В компьютерной модели это происходит так.


Рис. 2 — Компьютерная симуляция 3D диаграммы направленности 4G-модема
в усилителе Connect 3.0 (f=2.6GHz)

На Рис. 2 излучение модема в направлении от Connect 3.0 теперь выражено сильнее, причем красный цвет (максимум излучения) стал ярче, что говорит о приобретенной направленности (усилении). Справа на картинке приведена цветовая шкала усиления, по которой можно представить в каком направлении излучение модема максимально.

С помощью рефлектора Connect 3.0, встроенная антенна модема приобрела направленные свойства, в результате чего возросло собственное усиление антенны 6.5 dBi (1 dBi — децибел относительно изотропного источника излучения), а вход модема стал менее подвержен шумам и наводкам, что повышает соотношение S/N и улучшает качество интернет-соединения.

Важно: у модемов разных моделей антенны совершенно по-разному размещены, их конструкции различны, поэтому эффект усиления может быть различным в количественной мере, однако, диаграмма направленности во всех случаях будет принимать схожий вид, что важно для улучшения соотношения S/N.

Такой отражатель вы можете собрать и настроить самостоятельно, например, из обычной пивной банки. Это любопытно для любителей DIY, и, да, она тоже будет работать в сторону усиления. Одно «но» — пивная банка не всегда эстетично и презентабельно смотрится дома, в офисе, в магазине.

Небольшой FAQ по антеннам-отражателям:

Вопрос: В технических характеристиках вы пишете что антенна поддерживает практически все стандарты связи — как возможно достигнуть такой широкополосности?»

Ответ: поскольку Connect 3.0 — это двухэлементная антенна, активным элементом которой является модем, все зависит от того — поддерживает ли модем нужный стандарт. Размеры и расположение рефлектора, скрытого в пластиковом корпусе Connect 3.0, позволяют антенне оказывать положительный эффект в таком широком диапазоне частот.

Вопрос: «Почему антенна стоит именно столько (подставьте здесь любую цену)? Продавать за такие деньги штампованный пластик и фольгу — обман»

Ответ: Несмотря на относительную простоту конструкции — антенна работает, выполняет заявленную функцию, что подтверждено сотнями тысяч выпущенных изделий и множеством положительных отзывов от наших клиентов. Мы считаем неправильным обсуждать вопрос экономики и расчета стоимости данного изделия, опираясь лишь на цены материалов, входящих в его стоимость. К сожалению, присутствует множество факторов конечного ценообразования, часто не зависящих от нас.

Антенны направленного действия.

Бывают ситуации, когда решения уровня «Connect 3.0» недостаточно, чтобы «дотянуться» модемом до сигнала БС на расстоянии в несколько километров. Здесь нам помогут направленные антенны типа «волновой канал» и панельные патч-антенны. Эти антенны имеют отличные приемные характеристики в рабочем диапазоне и помогут наладить стабильную связь в условиях слабого приема сигнала (конечно, если он есть вообще).

Современные сети 2-4 поколений используют широкий диапазон частот: от 800 до 2700 МГц, который перекрыть одной направленной антенной с одинаковыми параметрами во всей рабочей полосе очень сложно, но этого и не надо. Нужно лишь правильно выбрать антенну под свою ситуацию, понимая, что если у вас 3G-антенна, то она не поможет, если вы захотите поймать WiFi-сеть или, например, сеть LTE-2600.

Стоит уточнить: из-за специфики частотного распределения, в России есть участки диапазонов, в которых размещены сети разных поколений (принцип технологической нейтральности), как например GSM 1800 (2G) и LTE 1800 (4G), для которых подойдет одна и та же антенна на 1800 МГц, но таких примеров немного.


Рис. 3 — 3G/4G/WiFi панельная антенна «Flat Combi»

Когда нужнее панельная антенна, а когда необходима антенна типа ’’волновой канал’’? У панельной антенны (Пример на Рис.3) широкий рабочий диапазон частот и её проще настроить на базовую станцию. Антенна «Волновой канал» (Пример на Рис.4) более узкополосная — обычно они хорошо работают в одном диапазоне (2G, 3G, 4G), но имеют большее усиление. Панельные антенны менее подвержены механическим повреждениям и «атакам ворон» в виду своей обтекаемой формы. А «волновые каналы», благодаря своей узкополосности менее подвержены наводкам и помехам от других источников сигнала, что положительно сказывается на отношении S/N. Антенны комплектуются разъемами SMA, N или FME, поэтому чтобы подключить их к модему, надо использовать переходник на CRC-9 или TS-9 разъем, в зависимости от модема.

Теперь обсудим расположение наружных антенн. В сетях 3G используется вертикальная поляризация, антенны следует располагать элементами перпендикулярно земле. Об этом написано в паспорте продукта и на сайтах производителей, но не все читают инструкции, поэтому нередко устанавливают связные антенны, как традиционные телевизионные — горизонтально. Результат — антенна в таком положении или вовсе не работает, или почти не работает.

Стандарт 4G/LTE имеет другую поляризацию. Для лучшего приёма антенну стоит располагать под углом 45 градусов к горизонту.

Вопрос: Поддерживают ли подобные антенны технологию MiMo?

Ответ: Поддерживают. Для работы с технологией MiMo вам понадобятся 2 антенны. Например, для поддержки LTE MiMo рекомендуем использовать 2 волновых канала, расположенных под углами +45 и −45 градусов к горизонту.


Рис. 4 — Антенна «волновой канал» для 4G сетей «Рысь 4G»

Заключение.

Выбирая антенну, определитесь с тем, какой именно сигнал хотите усилить. Для наглядности мы приведем сводную таблицу с характеристиками рассматриваемых антенн:

Благодарим за внимание. До встречи в новых статьях и обзорах!

Зеркальная антенна — Википедия

Зерка́льная анте́нна — антенна, у которой электромагнитное поле в раскрыве образуется за счёт отражения электромагнитной волны от металлической поверхности специального зеркала (рефлектора). В качестве источника волны обычно выступает небольшой излучатель, располагаемый в фокусе зеркала. В его роли может быть любая другая антенна с фазовым центром, излучающая сферическую волну. Основная цель зеркальных антенн сводится к преобразованию сферического или цилиндрического фронта волны в плоский фронт[1].

Первая параболическая антенна, разработанная Генрихом Герцем

Параболическая антенна была изобретена немецким физиком Генрихом Герцем в 1887 году. Герц использовал цилиндрические параболические рефлекторы для искрового возбуждения дипольных антенн во время своих экспериментов. Антенна имела размер апертуры в 1,2 метра шириной и использовалась на частоте около 450 МГц. Отражатель был сделан из цинковой листовой стали. С двумя такими антеннами, одна из которой была передающей, а другая — приёмной, Герц успешно продемонстрировал существование электромагнитных волн, которые 22 годами раньше были предсказаны Максвеллом.

Итальянский изобретатель Гульельмо Маркони использовал параболический рефлектор в 1930-х годах в экспериментах для передачи сигналов на лодку в Средиземном море. В 1931 году была установлена радиорелейная телефонная связь на частоте 1,7 ГГц через Ла-Манш с помощью зеркальной антенны. Первая большая параболическая антенна с диаметром рефлектора 9 м была построена в 1937 году радиоастроном Гроте Ребер в своём дворе. С её помощью он исследовал звёздное небо.

Разработка радаров во время Второй мировой войны придала толчок разработкам новых форм параболических антенн, были созданы антенны с секторными диаграммами направленности. После войны были созданы параболические антенны с диаметрами зеркала в 60 метров (Медвежьи озёра в СССР), 100-метровый радиотелескоп в Грин-Бэнк, Западная Вирджиния и другие.

В 1960-х зеркальные антенны стали широко применяться для наземных радиорелейных сетей связи. Первая параболическая антенна, используемая для спутниковой связи, была построена в 1962 году на Гунхилли в Корнуолл, Англия, чтобы работать со спутником связи Telstar. Антенна Кассегрена была разработана в Японии в 1963 году в NTT, KDDI и Mitsubishi Electric. Появление в 1980-е годы компьютеров, способных проводить сложные расчёты диаграмм направленности параболических антенн, привело к разработке сложных асимметричным и многозеркальных антенн.

Структура зеркальной антенны Типовая суммарно разностная диаграмма параболической антенны с боковыми лепестками Типовая суммарно разностная диаграмма параболической антенны пеленгатора Рефлектор офсетной антенны вырезан сбоку из параболоида вращения

Зеркальные антенны являются одними из самых распространённых узконаправленных антенн диапазона УКВ[1].

Обычно в зеркальных антеннах происходит преобразование более широкой диаграммы направленности облучателя в узкую диаграмму направленности самой антенны[1].

Кромка зеркала и плоскость Z образуют поверхность, называемую раскрывом зеркала. При этом радиус R называется радиусом раскрыва, а угол 2ψ — углом раскрыва зеркала. От угла раскрыва зависит тип зеркала[2]:

  • если ψ < π/2 — зеркало называют мелким или длиннофокусным;
  • если ψ > π/2 — глубоким или короткофокусным,
  • если ψ = π/2 — средним.

Фокус облучателя антенны может как располагаться в фокусе зеркала F, так и быть смещённым относительно него. Если фокус облучателя расположен в фокусе антенны, то она называется прямофокусной. Прямофокусные антенны существуют различных размеров, в то время как осенесимметричные антенны, облучатель которых находится не в фокусе зеркала, обычно не превышают в диаметре более 1,5 м[3]. Такие антенны часто называют офсетными. Преимущество офсетной антенны — это бо́льший коэффициент усиления антенны, что обусловлено отсутствием затенения раскрыва зеркала облучателем[3]. Рефлектор офсетных антенн представляет собой боковую вырезку из параболоида вращения. Фокус облучателей в таких антеннах расположен в фокальной плоскости рефлектора.

Зеркальная антенна может иметь дополнительное эллиптическое зеркало (двухзеркальная схема Грегори) или дополнительное гиперболическое зеркало (двухзеркальная схема Кассегрена), с фокусами, расположенными в фокальной плоскости зеркальной антенны. При этом облучатель расположен в фокусе дополнительного зеркала.

Зеркальная антенна может иметь одновременно несколько облучателей, расположенных в фокальной плоскости антенны. Каждый облучатель формирует диаграмму направленности, направленную в нужном направлении. Облучатели могут работать в разных диапазонах волн (С, Ku, Ka) или каждый одновременно в нескольких диапазонах.

Расположение фокуса и фокальной плоскости зеркала антенны не зависит от рабочего диапазона волн.

В зависимости от поставленных задач и облучателя зеркальная антенна формирует одну узконаправленную суммарную, суммарно-разностную диаграмму направленности (для пеленгаторов) или одновременно несколько разнонаправленных диаграмм — при использовании нескольких облучателей.

В технике наибольшее распространение нашли следующие типы зеркал:

  1. параболические зеркала преобразуют цилиндрическую или сферическую волну в плоскую. Для цилиндрической волны — зеркало представляет собой параболический цилиндр, для сферической волны — параболоид вращения[1].
  2. сферические зеркала мало отличаются от параболических зеркал с фокусным расстоянием, равным половине радиуса сферы[1].
  3. плоские зеркала в основном используются в вибраторных антеннах и иногда в перископических и остронаправленных[1], при этом система из двух зеркал, находящихся под определённым углом друг к другу, образуют вместе с симметричным вибратором (облучатель) уголковую антенну (тип зеркала в данном случае называют уголковым)[4].
  4. зеркала специального профиля чаще представляют собой параболические зеркала с рассчитанным отклонением от параболической поверхности. Основная цель использования таких антенн — формирование диаграммы направленности специальной формы, например, [1] или любой заданной формы. Зеркала специальной формы могут применяться также для создания диаграммы направленности, комформной зоне обслуживания, в которой работает радиостанция (пример: спутник, базовая станция сотовой связи). Основная цель использования таких зеркал — экономия энергетического ресурса РЭС при максимальном качестве приёма — передачи в зоне обслуживания.
  • Прямофокусная параболическая зеркальная антенна

  • Офсетные параболические зеркальные антенны

  • Тороидальная зеркальная антенна

  • Зеркальная антенна со схемой Кассегрена

  • Зеркальная антенна в аэропорту Ганновера, Германия

Основные типы конструкций параболических антенн

Зеркало обычно состоит из диэлектрической основы (углепластик — для космических антенн), которую покрывают металлическими листами, проводящей краской, фольгой[4]. При этом листы часто являются перфорированными или представляют собой сетку, что обусловлено стремлением снизить вес конструкции, а также максимально снизить сопротивление ветру и осадкам. Однако такое несплошное зеркало приводит к следующим последствиям: часть энергии проникает сквозь зеркало, что приводит к ослаблению КНД антенны, и усилению излучения позади рефлектора. Эффективность антенны с несплошным зеркалом рассчитывается по формуле T=PprPpad{\displaystyle T={\frac {P_{pr}}{P_{pad}}}}, где Ppr{\displaystyle P_{pr}} — мощность излучения позади рефлектора, а Ppad{\displaystyle P_{pad}} — мощность излучения рефлектора (падающей волны)[4]. Если T<0,01{\displaystyle T<0,01}, несплошное зеркало считают хорошим. Данное условие обычно выполняется при диаметре отверстий перфорированного зеркала менее 0,2λ{\displaystyle 0,2\lambda } и суммарной площади отверстий до 0,5−0,6{\displaystyle 0,5-0,6} от всей площади зеркала[4]. Для сетчатых зеркал диаметр отверстий не должен превышать 0,1λ{\displaystyle 0,1\lambda }[4].

Диаграмма направленности параболической антенны формируется облучателем. Облучателей в антенне может быть один или несколько, соответственно в антенне формируется одна или несколько диаграмм направленности. Делается это, например, для того, чтобы принимать сигнал одновременно с нескольких космических спутников связи.

Раскрыв облучателей расположен в фокусе параболического рефлектора или в его фокальной плоскости, если используется несколько облучателей в одной антенне. Несколько облучателей формируют в одной антенне несколько диаграмм направленности, это необходимо при наведении одной антенны сразу на несколько спутников связи.

См. также: Облучатель.

{\displaystyle 0,1\lambda } Параметры параболической антенны. Ширина ДН, уровень боковых лепестков, усиление

Угловая ширина луча антенны и её диаграмма направленности не зависит от того, работает ли антенна на приём или на передачу. Ширина луча определяется по уровню половинной мощности луча, то есть по уровню (-3 дБ) от его максимального значения. Для параболических антенн этот уровень определяется по формуле:

θ=kλ/d{\displaystyle \theta =k\lambda /d\,},

где K является фактором, который незначительно меняется в зависимости от формы отражателя, а d — диаметр рефлектора в метрах, ширина диаграммы по половинной мощности θ в радианах. Для 2-х метровой спутниковой антенны, работающей C диапазоне (3—4 ГГц на приём и 5—6 ГГц на передачу), эта формула даёт ширину диаграммы направленности около 2,6°.

Усиление антенны определяется по формуле:

G=(πkθ)2 eA{\displaystyle G=\left({\frac {\pi k}{\theta }}\right)^{2}\ e_{A}}

При этом существует обратная зависимость между усилением и шириной луча.

Параболические антенны больших диаметров формируют очень узкие лучи. Наведение таких лучей на спутник связи становится проблемой, так как вместо основного лепестка можно навести антенну на боковой лепесток.

Диаграмма направленности антенны представляет собой узкий главный луч и боковые лепестки. Круговая поляризация в главном луче задаётся в соответствии с задачами, уровень поляризации в разных местах главного луча разный, в первых боковых лепестках поляризация меняется на противоположную, левая — на правую, правая — на левую.

{\displaystyle G=\left({\frac {\pi k}{\theta }}\right)^{2}\ e_{A}}

Характеристики зеркальной антенны измеряются в дальней зоне.

  • Ширина диаграммы направленности (ДН) в заданных плоскостях (Е, Н) или во всех направлениях
  • Форма ДН (контурная, круговая)
  • Коэффициент направленного действия
  • Коэффициент усиления в максимуме ДН антенны[5]
  • Эффективная площадь антенны[6]
  • КПД антенны
  • Уровень боковых лепестков
  • КСВ
  • Поляризация (круговая-эллиптическая, линейная) и развязка между ортогональными поляризациями.
  • Направление вращения поля антенны
  • Коэффициент поляризации
  • Диапазон рабочих частот
  • Допустимые ветровые нагрузки
  • Вес (для космических антенн)
  • В однозеркальной антенне с круговой поляризацией облучатель должен иметь направление вращения поля, противоположное заданному направлению вращения поля антенны.
  • Зеркальные антенны с направлением ДН на движущийся объект обычно имеют электропривод для отслеживания углового направления за объектом.
  • Измерения ДН больших зеркальных антенн в дальней зоне связано с большими трудностями, связанными со значительными расстояниями от антенн до мест измерения их сигналов. Для измерений ДН используют шумовые сигналы от Солнца, спутников связи, большие коллиматорные антенны.
  • Большие зеркальные антенны, расположенные в разных местах планеты Земля, используются в качестве элементов антенных решёток, для исследования дальнего космоса.

Параболические антенны используются в качестве антенн с большим усилением для следующих видов связи: радиорелейная связь между близлежащими городами, беспроводная связь WAN / LAN линий связи для передачи данных, для спутниковой связи и связи между космическими аппаратами. Они также используются для радиотелескопов.

Параболические антенны также используются в качестве радиолокационных антенн, управляющих кораблями, самолётами и управляемыми ракетами. С появлением домашних спутниковых телевизионных приёмников, параболические антенны стали особенностью ландшафтов современных городов.

  1. 1 2 3 4 5 6 7 Справочник по радиоэлектронике / Под ред. А. А. Куликовского. — М.: Энергия, 1967. — Т. 1. — 316 с.
  2. И.П. Заикин, А.В. Тоцкий, С.К. Абрамов, В.В. Лукин. Проектирование антенных устройств СВЧ / Под ред. А. А. Куликовского.. — Харьков: Нац. аэрокосм. ун-т «Харьк. авиац. ин-т», 2005. — С. 47. — 107 с.
  3. 1 2 Зеркальные антенны Архивная копия от 5 апреля 2011 на Wayback Machine на antenna.tj
  4. 1 2 3 4 5 Шифрин Я.С. Антенны. — ВИРТА им. Гоборова Л.А., 1976. — С. 239-241. — 408 с.
  5. ↑ Коэффициент усиления и КНД не совпадают, и связаны между собой через КПД антенны.
  6. ↑ Эффективная площадь антенны SA{\displaystyle S_{A}} связана с коэффициентом усиления G{\displaystyle G} соотношением: G=4πSAλ2{\displaystyle G={\frac {4\pi S_{A}}{\lambda ^{2}}}}. Соотношение между эффективной и геометрической площадью антенны зависит от её конструктивных особенностей. Антенны бо́льших размеров при прочих равных условиях имеют и бо́льшую эффективную площадь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *