Как проверить симистор на работоспособность: Как проверить симистор: тестером, схема включения

Содержание

Как проверить симистор: тестером, схема включения

Симистором называют полупроводниковый выключатель для переменного тока. Часто встречается международное название TRIAC, что означает то же самое (TRIode for Alternate Current). Чтобы разобраться в устройстве симистора (симметричного тиристора) и узнать, как проверить симистор, важно сначала понять, что он состоит из двух встречно-параллельно включенных тиристоров (если совсем правильно, тринисторов, но тиристор употребляется чаще), имеющих общую цепь управления. Теперь осталось понять, что такое тиристор.

Что это такое

Как показано на Рис.2, тиристор составлен из двух транзисторов разной проводимости: npn и pnp, включенных «навстречу» друг-другу. Если приоткрыть один из транзисторов (npn), приложив между его эмиттером и базой напряжение порядка 0,6 … 0,8 В (напряжение открывания кремниевого p-n перехода), то в коллекторе потечет ток.

Схема тиристора

Появившееся напряжение между базой и эмиттером второго транзистора начнет открывать его и, одновременно, через коллектор второго транзистора, — первый транзистор.

Все это будет лавинообразно нарастать с очень большой скоростью, и теперь уже независимо от начального напряжения. Достаточно только «подтолкнуть» процесс открывания небольшим начальным импульсом.

Для закрывания тиристора необходимо понизить ток в его цепи до минимальной величины, называемой током удержания, и чуть ниже. Поскольку переменный ток так себя и ведет в каждом полупериоде, то каждая половинка симистора будет закрываться, когда меняется полярность в цепи тока.

Схема и устройство симистора

Схема симистора показана на рисунке Рис. 3 слева, а его физическое устройство, — справа. Напоминаем, что это два встречно-параллельно включенных тиристора. Выводы Т1 и Т2 уже нельзя назвать анодом и катодом, в цепи переменного тока они становятся равноправными. Однако, в цепи постоянного тока триак ведет себя как обычный тиристор и даже содержит «запасной», хотя для его использования придется поменять полярность управляющего напряжения.

Дополнительная информация! Кстати говоря, как тиристор, так и симистор, могут быть составлены из обычных транзисторов разной структуры, имея ту же работоспособность. Главное, чтобы они были рассчитаны на требуемый ток и допустимое напряжение. Но на практике это не используется, с очень давних времен (1960-е) тиристоры стали выпускать в виде готовых приборов в одном корпусе.

Современный тиристор или симистор средней мощности выглядит, как показано на Рис. 4.

Триак BTA136

Характеристики

Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:

  • Напряжение обратного пробоя, Uобр, В;
  • Напряжение закрытого состояния, Uзс, В;
  • Ток открытого состояния средний, Iос, А;
  • Время включения, tвк, мкс;
  • Время выключения, tвык, мкс;
  • Ток открытого состояния импульсный, Iос, А;
  • Ток закрытого состояния, Iзс, мА;
  • Обратный ток, Iобр, мА;
  • Напряжение открытого состояния, Uос, В;
  • Управляющее напряжение, Uупр, В;
  • Ток управления, Iупр, мА;
  • Скорость нарастания напряжения, dU/dt, В/мкс;
  • Скорость нарастания тока, dI/dt, А/мкс.
Вольт-амперная характеристика триака

Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.

Проверка исправности

Если принять во внимание уже написанное в этой статье, то такую проверку выполнить несложно. Как проверить симистор? Это можно сделать несколькими способами. Самый простой проверить исправность, — это способ замены. Вместо подозреваемого симистора устанавливаем заведомо исправный, и смотрим, как будет работать схема. Но обычно симисторы проверяют при помощи мультиметра или тестера, иногда без отключения от схемы. Тестером называют мультиметр старого типа, стрелочный. Кроме того, есть еще один способ проверки, при помощи тумблера, лампочки и кнопки. Рассмотрим два последних способа проверять триак более подробно.

Проверка с помощью тестера

Симистор имеет три вывода, которые потребуется попарно прозвонить.

В этом и состоит проверка. Включите тестер в режим измерения сопротивления на диапазоне килоом и установите его стрелку на нуль, замкнув между собой щупы. В старых стрелочных приборах это необходимая операция. Полезно знать, какой из щупов тестера имеет положительную полярность, — это позволит определить вид p-n перехода, связанного с управляющим электродом.

Тестер и его настройка для проверки симистора

Поскольку конструкция симисторов бывает разной, каким-либо образом отметьте проверочный симитор, любым способом, это просто условность. Затем выполните прозвонку всех трех возможных пар электродов, меняя полярность их подключения, и результаты запишите в таблицу. В зависимости от состояния прибора, и даже типа, вы получите различные результаты. Проверка облегчается, если вы заранее знаете тип прибора (при недостатке знаний и опыта можно спутать с транзистором). Поскольку речь в статье идет именно о симисторе (триаке), то дальше будем считать, что мы проверяем именно его.

Некоторые типичные сопротивления при проверке:

  • 0Ом — пробой, короткое замыкание;
  • 50 … 100Ом — открытый (прямосмещенный) p-n переход;
  • 1 … 10кОм — утечка, испорчен кристалл полупроводника;
  • 1МОм … ∞ — запертый (обратносмещенный) p-n переход или обрыв.
Анализ состояния симистора

Признак исправности симистора — есть пара выводов, дающая при любой полярности щупов тестера признаки исправного p-n перехода, при этом с третьим выводом любой из двух показывает очень большое сопротивление. Остальные случаи показывают, как минимум, очень сомнительное состояние прибора.

Проверка мультиметром

Мультиметром называют тот же тестер, просто в более современном исполнении, с микропроцессором внутри и цифровым дисплеем. Функции у него те же самые. У мультиметра не требуется устанавливать ноль шкалы, достаточно просто переключить прибор на измерение сопротивлений. Более того, так как в режиме измерения сопротивлений цифровой мультиметр выдает в цепь слишком маленькое напряжение, почти у всех мультиметров есть функция проверки диодов или, что то же самое, p-n переходов. Иногда она объединяется с прозвонкой. Здесь в цепь дается достаточное напряжение, чтобы открыть переход.

Мультиметр

Обратите внимание! Для исправного p-n перехода (или диода) цифровой мультиметр покажет не сопротивление, а напряжение в милливольтах, падающее на открытом p-n переходе, или «бесконечность» на запертом переходе. «Бесконечность» в обе стороны означает обрыв, а ноль в обе стороны — пробой p-n перехода.

Разумеется, никакой бесконечности тут нет, просто в цепь выдается напряжение, превышающее 2 вольта, на которые рассчитана полная шкала милливольтметра (2,5 В от источника опорного напряжения АЦП), и милливольтметр просто зашкаливает, если он не зашунтирован такой нагрузкой, как открытый диод.

Проверка лампочкой и переменой полярности

Это самый надежный способ проверки работоспособности симистора. Мультиметровый способ не дает полной уверенности в его исправности. Если такая проверка производится достаточно часто, есть смысл собрать простой испытательный стенд. Его схема (и схема проверки в любом случае) показана на Рис. 8.

Проверка симистора лампой

На схеме Рис. 8, аккумулятор B подключается через тумблер S2 с двумя группами контактов. Они соединены так, что тумблер меняет плюс с минусом, то есть, фактически имитирует переменный ток (частота тут не важна, меняется только подключение).

Рабочий симистор VS поведет себя следующим образом: пока не будет нажата кнопка S1, небольшая автомобильная лампа L (от поворотника, например) не загорится, как S2 не переключай. После нажатия кнопки S1 лампа должна зажечься при любом положении тумблера и продолжать гореть при отпускании кнопки. Но при переключении тумблера лампа гаснет. Если лампочка включается и при новом положении тумблера, продолжая гореть, значит, триак, он же симистор, исправен.

Если лампочка не зажигается при одном из положений тумблера, то это либо простой тиристор, либо вышла из строя одна половина симистора, превратив его в тиристор.

Важно! Не рекомендуется использовать частично работающий симистор в качестве замены для тиристора, так как его надежность под большим сомнением.

Если лампочка не зажигается при любых переключениях, то симистор в обрыве, а если лампочка горит при любых переключениях, то симистор «битый», замкнут накоротко или «пробит».

Проверка без выпаивания из схемы

Такая проверка сводится к проверке тестером или мультиметром.

Выпаивание не производится. Но при этом есть особенности, которые необходимо учесть. Так как проверка симистора мультиметром без выпаивания содержит свои «подводные камни». Как проще проверить симистор мультиметром не выпаивая? Во-первых, симистор может быть зашунтирован другими элементами схемы, и это может ввести в заблуждение. Во-вторых, монтаж или плата может препятствовать доступу к выводам, как показано на Рис. 9. Выпаивать симистор может помешать заливка корпуса компаундом. Тогда выпаять будет невозможно.

Симистор в монтаже

Поэтому проверку надо производить, по возможности, отключая все, что можно: нагрузку в цепи симистора, цепь управления и т. п. если есть возможность вытаскивать разъемы или клеммы. Крайне желательно при этом руководствоваться принципиальной схемой устройства. Для простых регуляторов схема может быть нарисована по имеющемуся монтажу.

Симистор, или триак, это мощный полупроводниковый ключ, способный работать в цепях со значительным током и напряжением, достигающим 1 кВ и больше. Точное значение определяется по марке прибора и его даташиту. Благодаря своей двусторонней проводимости и простоте управления, симисторы еще долго будут применяться в технике. Не последнее место в этом занимает достаточная надежность и простота проверки симисторов, не требующая специального оборудования.

Отличие симисторов bt и bta. Как проверить симистор мультиметром, чтобы не покупать новую деталь? Как работает отпирание тиристора

Симисторы представляют собой двунаправленные тиристоры, что позволяет их напрямую использовать в цепях переменного тока. Симистор, как выключатель, может находиться в одном из двух состояний — открытом, в этом случае он пропускает ток, и в закрытом, когда он имеет очень большое сопротивление. Изменять состояние симистора можно путем подачи управляющего импульса между одним из анодов и управляющим электродом. И хотя симистор является симметричным прибором, а оба силовых вывода называются анодами (А1 и А2 или Т1 и Т2), ток управления должен протекать по цепи управляющий электрод — первый анод (А1 или Т1). Поэтому при монтаже или замене симистора нужно быть внимательным — аноды нельзя менять местами, в этом случае вы рискуете что-нибудь спалить. Если требуется гальваническая развязка для мощного симистора, в управляющую цепь включают маломощный оптосимистор, в некоторых типах может быть встроена схема контроля смены полярности переменного напряжения (перехода через ноль). Если включать симистор в этот момент, то процесс коммутации проходит без ненужных бросков тока, что продляет срок службы включаемого оборудования и не дает помех в сети. Отключается симистор самостоятельно в конце каждого полупериода, поэтому для поддержания его в открытом состоянии нужно иметь постоянное напряжение на управляющем электроде.

Симисторы являются основой для твердотельных (электронных) реле переменного тока. Также на управляющий электрод симистора можно подавать напряжение не в начале полупериода, а с некоторым запаздыванием. В этом случае на выходе получится синусоида с отрезанными частями полуволн. Изменяя задержку открывания симистора, мы можем изменять значение действующего напряжения на нагрузке. Это свойство часто используется в разного рода диммерах и регуляторах напряжения. Такие регуляторы нельзя использовать для реактивных нагрузок, а с чисто активными потребителями — такими как лампы накаливания или нагревательные приборы — они справляются прекрасно. В промышленности симисторы активно используются в мощных электроприводах, имеют внушительные размеры и устанавливаются на мощные радиаторы. В бытовых электроприборах симисторы работают с токами до десятков ампер и напряжениями в сотни вольт, внешне они похожи на транзисторы и обычно выпускаются в корпусах типа ТО-220, ТО-92 и т.п.

Основными параметрами симисторов являются максимальные ток и напряжение в силовой цепи и в цепи управления, а также минимальный ток управления, необходимый для открывания. При больших токах симистор нагревается, и поэтому для его нормальной работы нужен теплоотвод.

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении , симистор способен проводить ток в двух направлениях . Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле , то его достоинства неоспоримы:

    Невысокая стоимость.

    По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

    Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

    Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

    Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

    Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г . Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

    Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

    В импульсном режиме напряжение точно такое же.

    Максимальный ток в открытом состоянии – 5А.

    Максимальный ток в импульсном режиме – 10А.

    Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

    Наименьший импульсный ток – 160 мА.

    Открывающее напряжение при токе 300 мА – 2,5 V.

    Открывающее напряжение при токе 160 мА – 5 V.

    Время включения – 10 мкс.

    Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от N ot C onnect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка.

Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Для понимания процесса, разберем, что такое тиристор:

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями.

Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.


Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Рекомендуем также

принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников


Широкое применение в электронике и радиотехнике получило электронное регулирование параметров питания в различных цепях переменного тока при помощи симистора. Бывают случаи, когда он выходит из строя и возникает необходимость правильной проверки на предмет исправности. Для того чтобы это сделать, необходимо знать его принцип работы, предназначение и способы проверки мультиметром и другими приборами.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Характеристики

Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:

  • Напряжение обратного пробоя, Uобр, В;
  • Напряжение закрытого состояния, Uзс, В;
  • Ток открытого состояния средний, Iос, А;
  • Время включения, tвк, мкс;
  • Время выключения, tвык, мкс;
  • Ток открытого состояния импульсный, Iос, А;
  • Ток закрытого состояния, Iзс, мА;
  • Обратный ток, Iобр, мА;
  • Напряжение открытого состояния, Uос, В;
  • Управляющее напряжение, Uупр, В;
  • Ток управления, Iупр, мА;
  • Скорость нарастания напряжения, dU/dt, В/мкс;
  • Скорость нарастания тока, dI/dt, А/мкс.


Вольт-амперная характеристика триака

Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Тестирование

У каждого радиолюбителя есть свои способы проверить симистор. Для этого можно использовать специальные приборы или подручные материалы. Главное – знать, как проверить правильно прибор на основе принципа его работы.

Способ №1

Самый простой способ – это протестировать симистор омметром. Для этого необходимо катод детали соединить с отрицательным контактом омметра, анод с положительным контактом. А затем закоротить анод с управляющим электродом. На самом омметре необходимо выставить единицу (х1). Если при этом стрелка покажет сопротивление прибора в пределах 15-50 Ом, можно считать, что симистор цел и пригоден для установки в любой радиоприбор.

Но тут есть один важный момент. Если в таком положении с анода убрать все контакты, и показания сопротивления при этом не изменятся, то это подтверждает целостность детали. Если стрелка начнет отклоняться к нулю, то выбросите симистор в мусор.

Способ №2

Конечно, можно придумать большое количество различных приборов, с помощью которых провести проверку симистра будет несложно. Но для этого придется прикладывать усилия и тратить свое время на сборку, хотя для многих это будет в удовольствие. Для примера приводим одну из схем такого тестового устройства, вот она на рисунке снизу.

Схема подключения данного прибора к симистру точно такая же, как и в случае с тестированием при помощи омметра. Но в этом устройстве установлен светодиод (HL1). Так вот при подаче напряжения на симистор через кнопку (ключ) световой источник должен загореться. А это говорит об исправности детали.

Обратите внимание на резисторы. Их сопротивления рассчитывается под номинальное напряжение. Практика показала, что сопротивление в диапазоне 9-12 Ом достаточная величина.

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Электромеханические ключи

Для коммутации в электрических схемах используются ключи различного типа:

  • механические;
  • электромеханические;
  • электронные.

К электромеханической группе относятся реле или контакторы. Замыканием и размыканием контактов управляет электромагнит. На катушку электромагнита подается управляющее напряжение, которое может быть как постоянным, так и переменным. Механические контакты реле могут коммутировать практически любые токи. Сопротивление контактной пары ничтожно, падение напряжения на контактах практически отсутствует. Нет потерь мощности при коммутации нагрузок, хотя есть потери на питание управляющей катушки.

Огромным преимуществом контакторов является то, что цепи нагрузки и управления электрически изолированы.

Недостатков тоже немало:

  • Ограниченно число переключений. Контакты изнашиваются;
  • Возникновение электрической дуги при размыкании — искрение контактов. Приводит к электроэрозии и недопустимо во взрывоопасных средах;
  • Низкое быстродействие.

Там, где применение контакторов невозможно или нецелесообразно, применяют электронные ключи.

Скорее всего, Вам пригодится информация о том, как выбрать стабилизатор напряжения 220 вольт.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет  отрицательную полярность, а на управляющем электроде —  положительную).

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Почему тиристор не остался в открытом состоянии?

Ситуация заключается в следующем — мультиметр не вырабатывает достаточное количество тока для того, что бы сработал тиристор. Исходя из этого, провести проверку данного элемента не выйдет. Но сама проверка показала, что остальные детали у нас в рабочем состоянии. Если же поменять полярность — проверка закончится провалом. В данной ситуации мы уверены,что отсутствует обратный пробой.

Так же при помощи аппарата, можно легко проверить чувствительность тиристора. Для этого нужно поставить переключатель в режим омметра. Все измерения проходят так же, как описывалось выше.

Тиристоры которые более чувствительны выдерживают открытое состояние при отключении управляющего тока, все данные мы фиксируем на мультиметре. Затем повышаем предел до 10х. В этой ситуации ток на щупах будет уменьшен.

Если управляющий ток при закрытии, отказывает, нужно постепенно увеличить предел измерения, до тех пор, пока не сработает тиристор.

Если проверка проходит элементов из одной партии или со схожими техническими характеристиками, нужно выбирать те элементы, которые более чувствительны. Такие тиристоры более функциональны и имеют больше возможностей, из этого следует что область применения в разы увеличивается.

Когда вы освоите проверку тиристора, то решение проверки симистора придет само. Главное вникнуть в суть проверки, и четко следовать инструкциям.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

    Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

  • Использовать триаки с высокой шумовой устойчивостью. В маркировке у них добавлена буква «Н», от «нечувствительный». Называют их «симисторы ряда «Н». Отличаются они тем, что минимальный ток перехода у них намного выше. Например, симистор BT139-600H имеет ток перехода IGT min =10mA.

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.

Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Предварительная подготовка

Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.

После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Источник: pochini.guru

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Самодельный пробник

Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.

Схема самодельного пробника представлена сочетанием следующих элементов:

  1. Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
  2. Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
  3. Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
  4. В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
  5. Создается сопротивление с номиналом 47 Ом.
  6. Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.

Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.

Простой способ как проверить тиристор мультиметром | Лучшие самоделки своими руками

Существует несколько способов проверить тиристор на работоспособность но я покажу как это сделать с помощью обычного мультиметра (тестера), сделать это проще простого хоть и не все знают, как это сделать, это пожалуй самый быстрый и простой способ, так как мультиметр всегда у радиолюбителя под рукой.

Простой способ как проверить тиристор мультиметром

Тиристор изобрели достаточно давно и его и сейчас используют в различной силовой автоматике, реле, светомузыкальной аппаратуре, сварочных аппаратах, зарядных устройствах, регуляторах мощности и яркости лампочек накаливания. И когда не часто приходится чинить подобную технику и вдруг нужно это сделать то задаёшься вопросом как проверить на работоспособность тиристор, хоть этот элемент и является своего рода диодом с управлением но просто взять и прозвонить его как обычный диод не получится и различные транзистор тестеры тоже не помогут, но на самом деле мультиметром всё же это можно сделать просто надо знать, как это сделать. Сейчас я и расскажу об этом способе.

Тиристоры выпускаются в разных корпусах и различных размеров, размер зависит на какой ток он рассчитан. Примеры корпусов можно посмотреть на картинке, как видите тиристоры по виду могут быть разные но у всех них есть 3 вывода, это: анод, катод и управляющий электрод. Другие подвиды тиристоров как динистор, симистор мы в этой статье затрагивать не будем.

Простой способ как проверить тиристор мультиметром

Простой способ как проверить тиристор мультиметром

Чтобы проверить тиристор, берём мультиметр, ставим его на прозвонку диодов, если сейчас проверить его подключив в любом из направлений то получим бесконечные значения сопротивлений. Для того, чтобы тиристор открылся и его можно было прозвонить то на анод ставим красный щуп тестера, а на катод чёрный, а затем берём например, пинцет и замыкаем анод на управляющий электрод, при этом тиристор откроется и мультиметр должен показать значение падения напряжения на переходе анод катод. Если всё получилось то данный тиристор работает, если нет то скорее всего он сгорел.

Простой способ как проверить тиристор мультиметром

Простой способ как проверить тиристор мультиметром

Таким способом с помощью мультиметра мы можем быстро проверить на работоспособность тиристор. Напишите в комментариях, каким методом проверки тиристоров пользуетесь Вы.

Все своими руками Как проверить тиристор

Опубликовал admin | Дата 8 января, 2013

Как проверить тиристор тестером.

     Здравствуйте дорогие читатели. Часто в своих изделиях радиолюбители используют тиристоры и часто возникает необходимость их проверки на работоспособность. Вообще проверке должен подвергаться любой элемент схемы при ее сборке. Ведь из-за одной «паршивой овцы» может пройти мор по всем компонентам и блокам устройства.

     Схемы включения тиристора для его проверки приведены на рисунках. Рисунки с первого по четвертый подписаны – здесь надеюсь все понятно. Рис.5 и Рис.6 – проверяем сопротивление перехода управляющий электрод – катод в обоих направлениях. У КУ202, например, это сотни Ом, а у Т-160 – десятки Ом в обоих направлениях. Если собрать схемку, показанную на Рис.7 и подключить ее к источнику постоянного тока с напряжением, равным рабочему напряжению лампочки (нагрузка), то лампочка гореть не должна. При кратковременном замыкании контактов S5 лампа должна загореться и гореть постоянно, при условии, что ток протекающий через нее больше тока удержания конкретного тиристора. Вот выдержка из справочника для тиристоров Т-160.

Тиристоры Т-160 параметры


Ток удержания тиристора Т-160 – не более 0,25 ампера. Если ток протекающий через нагрузку (лампочку), будет меньше тока удержания, то лампочка будет гаснуть (тиристор будет закрываться) сразу после размыкания контактов S5. Если вместо постоянного напряжения подать переменное – Рис.8, то при замыкании контактов S6, тиристор Т8 должен открыться, а лампочка загореться в половину накала, так как открытый тиристор будет пропускать только одну полуволну переменного тока. При размыкании контактов S6 лампочка должна погаснуть. Если тиристор ведет себя так, как я рассказал, то тиристор исправен. Успехов всем. До свидания. К.В.Ю.

Просмотров:49 175


Как проверять симисторы и тиристоры универсальным мультиметром. Как проверять тиристоры и симисторы тестером и мультиметром

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор, который представляет собой один из видов тиристора.

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении. Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт. После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается. А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p — n переходов . Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах. Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Практическое применение симисторов

Необходимые знания для проверки, замены и последующего ремонта различных радиоэлектронных блоков с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.


Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки


При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.


Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Как правило, проверка тиристора заключается в измерении сопротивления между его анодом и катодом. У исправного тиристора оно всегда бесконечно большое. Между же управляющим выводом и одним из контактов (у тиристоpa — катод) малое сопротивление (от 25 до 390 Ом в зависимости от вида полупроводника) – параметр который сопоставляется с рабочим полупроводником.

Если симистор или тиристор внешне кажется работоспособным, но все, же есть подозрение в его неисправности, то его необходимо проверить. Но как проверить симистор и тиристор на работоспособность?Среди большинства способов поиска неисправности тиристора или симистора, достаточно легкими (не требующими применения особых приставок) считаются два способа проверки.

Первый способ проверки тиристора или симистора

Его можно применить в случае наличия двух стрелочных омметра. Данные приборы нужно подключить по нижеуказанной схеме.

Нужно заметить, что измеряемое сопротивление между катодом и анодом проверяемого полупроводника должно стремиться к бесконечности до того, пока мы не подсоединим щупы другого омметра к управляющему контакту (необходимо соблюдать полярность). Посредством идущего с омметра напряжения, рабочий тиристор отпирается и его сопротивление между катодом и анодом мгновенно уменьшается до нескольких десятков ом.

Второй способ проверки

Данный способ проверки исправности полупроводника заключается в том, что отпирающее напряжение поступает через кнопку с анода.

Необходимо отметить, что вслед за одиночным нажатием кнопки, полупроводник малой мощности будет прибывать в открытом состоянии до тех пор, пока мы не отсоединим щуп омметра от анода тиристора.

Для подобной проверки исправности нет надобности выпаивать симистор из платы — необходимо только отсоединить управляющий контакт от цепей устройства.

Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для проектирования трансформаторов и зарядных устройств.

Симисторы – это вид тиристоров, которые являются аналогами кремниевых выпрямителей в корпусе. Но, в отличие от тиристоров, которые являются однонаправленными приборами, т. е. передают ток только в одном направлении, триаки – двухсторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять слоев тиристора, которые оснащены электродами. При первом взгляде, отечественные симисторы напоминают структуру р-n-р, но у них несколько областей с проводимостью n-типа. Последняя область, которая расположена после этого слоя, имеет прямую связь с электродом, что обеспечивает высокую проводимость сигнала. Иногда их также сравнивают с выпрямителями, но при этом стоит помнить, что диоды передают электрический сигнал только в одну сторону.

Фото — использование тиристора

Симистор считается идеальным устройством для использования в коммутационных сетях, так как он может контролировать ток идет через обе половины переменного цикла. Тиристор же контролирует только полуцикл, при этом вторая половина сигнала не используется. Благодаря такой особенности работы, триак отлично передает сигналы любых электрических приборов, часто применяется симистор вместо реле. Но при этом симистор редко используется в сложных электрических приборах, таких как трансформаторы, ЭВМ и т. д.


Фото — симистор

Видео: как работает симистор

Принцип действия

Принцип работы симистора очень похож на тиристор, но его проще понять исходя из работы тринисторного аналога того компонента электрических сетей. Обратите внимание, четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

  1. Контролировать работы катода и анода;
  2. При необходимости менять их местами, что позволяет изменять полюсность работы.

При этом работу прибора можно расценивать как сочетание двух встречно-направленных тиристоров, но работающих в полном цикле, т. е. не обрывающих сигналы. Маркировка на схеме соответствующая двум соединенным тиристорам:

Фото — тринисторный аналог симистора

Согласно чертежу, на электрод, который является управляющим, передает сигнал, позволяющий открыть контакт детали. В момент, когда на аноде положительное напряжение, соответственно на катоде отрицательное – электроток начнет протекать через тринистор, который на схеме с левой стороны. Исходя из этого, если полностью изменить полярность, что поменяет местами заряды катода и анода, ток, передающийся через контакты пойдет через правый тринистор.

Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряженность на контактах и сравнивая её, переправляет ток на определенный тринистор. Прямопорционально этому, если сигнал не подается – то все тринисторы закрыты и устройство не работает, т. е. не передает никакие импульсы.

Если сигнал есть, существует подключение к сети и ток куда-то должен течь, то симистор в любом случае его проводит полярность направления в этом случае диктуется зарядом и полярностью полюсов, катодом и анодом.

Обратите внимание, на схеме выше дана вольт-амперная характеристика (ВАХ) симистора, на рисунке 3. Каждая из кривых имеет параллельное направление, но в другую сторону. Они повторяют друг друга под углом 180 градусов. Такой график позволяет говорить, что симистор – это аналог динистора, но при этом области, через которые сигнал динисторы не передают, очень легко преодолеваются. Параметры устройства можно корректировать, подавая ток разных напряжений, это позволит отпирать контакты в нужную сторону, просто изменяя полярность сигнала. На чертеже места, которые могут изменяться, отмечены штриховыми линиями.


Фото — симисторы

Благодаря этой ВАХ становится понятно, почему стабилизированный тиристор получил такое название. Симистор – означает «симметричный» тиристор, в некоторых учебниках и магазинах его могут называть триаком (иностранный вариант).

Область использования

Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им контролировать большие потоки электрической энергии, проходящие через маленькие контактные полюса. Помимо этого можно контролировать даже процентное соотношение тока индуктивной нагрузки.


Фото — работа симистора

Устройства используются в радиотехнике, электромеханике, механике и прочих отраслях промышленности, где может понадобиться контроль течения тока. Оптосимисторы часто используются в системах сигнализации и светорегуляторах, где для корректной работы приборов необходим полный цикл, а не полупериод. Хотя довольно часто применение этой радиодетали не эффективно. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить маломощные тиристоры, которые будут обеспечивать работу обоих периодов одинаково.

Проверка, распиновка и использование симисторов

Для того чтобы использовать устройство в работе, нужно знать, как проверить симистор мультиметром или «прозвонить» его. Для проверки Вам нужно оценить характеристики, управляемых кремниевых диодов. Такие выпрямители позволяют настроить нужные показания и провести испытания. Отрицательный контакт омметра подключается к катоду, а положительный устанавливается на анод. После нужно выставить на омметре показатель на единицу, и соединить контрольный электрод с выводом анода. Если данные будут находиться в пределах 15 и 50 Ом, то деталь работает нормально.


Фото — управление светом симисторами

Но при этом, когда Вы отключите контакты от анода, то на устройстве должны сохраниться показания омметра. Следите за тем, чтобы простое измерительное устройство не показывало остаточного сопротивления, иначе это будет говорить о том, что деталь не рабочая.

В быту симисторы часто используются для создания приборов, продлевающих срок службы различных устройств. Например, для ламп накаливания или измерителей Вы можете сделать регулятор мощности (понадобится тиристор MAC97A8 или ТС).


Фото — схема регулятора мощности на симисторе

На схеме показан, как собрать регулятор мощности. Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой детали производиться около 5 импульсов, которые представляют собой полупериоды одного сигнала. Импульсы контролируются при помощи резисторов, а транзистор с выпрямляющими диодами контролирует момент включения симистора.


Фото — измерение симистора

Данный транзистор открыт, исходя из этого, на вход генератора подходит сигнал, пока симисторы и оставшиеся транзисторы закрыты. Но если в момент открытия контактов состояние генератора не измениться, то накопительными элементами будет сгенерирован небольшой импульс для того, чтобы запустилась цоколевка. Такая схема диммера на симисторе может использоваться для контроля работы осветительных приборов, стиральной машине, оборотов пылесоса или ламп накаливания с датчиком движения. Тестером проверьте работоспособность схемы и можете использовать её.


Фото — работа симистора

Для усовершенствования системы, можно устроить управление симистором через оптопару, чтобы включение элемента в работу происходило только после сигнала. Обратите внимание, если при прокрутке барабана, очень резко происходят движения – то неисправен электронный модуль. Чаще всего сгорает симистор, импортные проводники часто не выдерживают скачков напряжений. Для его замены просто подберите такую же деталь.


Фото — зарядное устройство на тиристоре

Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований понадобится просто купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB – ВТВ, BTA – ВТА также подойдут). В бытовых импортных условиях используются зарубежные триаки, цены на которых немного выше.

Динисторы, тиристоры, симисторы представляют собой полупроводниковые приборы четырехслойной структуры р-п-р-п. Часто при пояснении принципа работы их изображают в виде соединенных между собой, как показано на рис. 1, транзисторов разной проводимости. Как видно из рисунка, тиристор имеет три вывода: анод (А), катод (К) и управляющий электрод (УЭ). Напряжение, приложенное к р-n переходу одного из транзисторов, обеспечивает отпирание тиристора.

Самая распространенная и характерная неисправность симисторов, тиристоров и динисторов это межэлектродный пробой — анод1-анод2, анод-катод, анод-управляющий электрод, катод управляющий электрод. По этой причине в первую очередь следует проверить омметром сопротивление между электродами. В исправных симисторах, тиристорах, динисторах участок А-К (A1-A2) не прозванивается. Тиристор и симистор , кроме того, можно проверить на исправность р-n перехода между УЭ и К, за исключением приборов со встроенным резистором.

Наилучшие результаты проверки тиристоров и симисторов обеспечивает испытательная схема , изображенная на рис. 2. Для питания схемы используется источник постоянного тока напряжением 12 В с допустимым током нагрузки не менее 200 мА. Резистор R1 ограничивает ток через испытуемый прибор, а резистор R2 — через его управляющий электрод. Схема обеспечивает тестирование тиристоров и симисторов малой и средней мощности. Для проверки прибора необходимо:

1. Включить его в схему, как показано на рис. 2.

2. Кратковременно соединить его УЭ с резистором R2. Прибор должен открыться, напряжение +U тест станет близким к нулю. Прибор остается открытым и при отключенном от R2 управляющем электроде.

3. Разорвать цепь питания анода (УЭ при этом соединен с К) и замкнуть ее вновь. Прибор должен находиться в закрытом состоянии. +U тест при этом равно 12 В.

При тестировании симисторов следует повторить п.п. 2, 3, и R2 при этом должен быть запитан от отрицательного полюса источника питания.

Результат такого тестирования позволяет убедиться в исправности прибора. Тем не менее 100% результатом тестирования следует считать исправную работу полупроводникового прибора в том устройстве, где он установлен.

Динисторы (или диаки и сидаки как их еще называют) не имеют вывода УЭ, и они открываются при превышении напряжения на аноде некоторого значения, указываемого в параметрах на данный тип прибора. Как было сказано выше, с помощью мультиметра динистор можно проверить только на пробой перехода. Для того чтобы точно знать исправен динистор или нет, его следует проверить, включив в испытательную схему (рис. 3), которая питается от регулируемого источника напряжения переменного тока.

Диод D1 представляет собой однополупериодный выпрямитель, конденсатор С1 — сглаживающий, резистор R1 ограничивает ток через динистор. При проверке следует плавно увеличивать напряжение на динисторе. При достижении некоторого порогового значения он откроется, при уменьшении напряжения по достижении протекающего тока значения заданного тока удержания — закроется. После такой проверки необходимо ее повторить, изменив полярность приложенного к динистору напряжения. При проверке в качестве источника напряжения переменного тока во избежание опасности поражения следует использовать трансформатор.


▶▷▶▷ простая схема для проверки тиристоров и симисторов

▶▷▶▷ простая схема для проверки тиристоров и симисторов
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:13-08-2019

простая схема для проверки тиристоров и симисторов — Простейшая схема для проверки тиристора — YouTube wwwyoutubecom watch?v7R2AJiTvzQg Cached Unlimited DVR storage space Live TV from 70 channels No cable box required Cancel anytime Симисторы: принцип работы, проверка и включение, схемы wwwasutpprusimistoryhtml Cached Схема простого тестера для симисторов Обозначения: Резистор r1 51 Ом Конденсаторы c1 и С2 1000 мкФ х 16 В Диоды 1n4007 или аналог, допускается установка диодного моста, например КЦ405 Пробник для проверки тиристоров — YouTube wwwyoutubecom watch?vDAXO2tNjP80 Cached This feature is not available right now Please try again later РадиоКот :: Тиристорно-симисторные пробники (КН) wwwradiokotrucircuitanalogmeasure07 Cached Пробник 1 для проверки тиристоров Схема древняя, но весьма простая и надёжная Была опубликована в Радио 8-1972 Собирается из того, что есть под рукой у любого уважающего себя Пробники тиристорно-симисторные radio-masternetArticleDetailaspx?aID235kID30675 Cached Пробник 2 для проверки тиристоров и Параметры транзистора lt8232 симисторов Эта схема чуток посовременнее, но также, Параметры транзистора lt8232 как и первая, собирается из подручных Параметры транзистора lt8232 деталей Пробник для тиристоров и симисторов electshemarudrugoeprobnik-dlya-tiristorov-i Cached Испытатель тиристоров и симисторов Часто радио любители сталкиваются с такой проблемой, как проверить тиристор и симистор схема которая показана ниже очень проста в сборке и безотказная Тиристорный регулятор напряжения простая схема, принцип hardelectronicsrutiristornyj-regulyator-napryazheniyahtml Cached 25 thoughts on Тиристорный регулятор напряжения простая схема , принцип работы Greg 18032016 в 01:55 Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке а до 12 полупериода (до 90 эл градусов Простой испытатель (тестер) тиристоров и симисторов — PDF docplayerru72506294-Prostoy-ispytatel-tester Cached Получается коробочка, провода для подключения тиристоров и симисторов пропущены в отверстие в боковой стенке корпуса тестера и припаяны к плате (см фото 2 4) Простой испытатель тиристоров и тринисторов wwwcqhamruttesterhtm Cached Простой испытатель тиристоров и симисторов В настоящей статье представлен простой прибор, требующий для своего создания совсем немного деталей Симистор: назначение и основные характеристики, принцип rusenergeticsruustroistvoprincip-dejstviya Cached Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 987

  • Уважаемые радиолюбители на ваш суд предлагаю еще один вариант схемы для проверки исправности тиристо
  • ра Если при включении питания горит светодиод, то нажимаем кнопу, а затем отпускаем. Проверка симисторов: пытаем с усердием. Эта схема чуток посовременнее, но также, как и первая, собирается из подру
  • торов: пытаем с усердием. Эта схема чуток посовременнее, но также, как и первая, собирается из подручных деталей. Схема древняя, но весьма простая и надёжная. В соответствие с принципиальной схемой, размещайте детали устройства на монтажной плате. Когда (переменный) ток уменьшается, переходит через нуль, чтобы сменить затем свою полярность, симистор автоматически закрывается. Еще схемы для УНЧ. Схемы на PIC. При проверке тиристора или симистора вначале переключателем SA2 (quot;Ток управленияquot;) задается необходимый ток управляющего электрода. Это также позволяет подбирать тиристоры (симисторы) по минимальному току управления. Схемы соединения аккумуляторов. Схема проверки исправности диода. Схема проверки тиристоров омметром. Устройство и схема домофона. Качество состояния симистора можно оценить описанными выше методами проверки. Схема отмотки счетчика электроэнергии на генераторе реактивной мощности (с печатной платой) (13) Если тиристор или симистор явно не пробит, но все же есть сомнение в работоспособности, то его нужно проверить. В момент, когда на аноде положительное напряжение, соответственно на катоде отрицательное электроток начнет протекать через тринистор, который на схеме с левой стороны. РадиоКот gt; Схемы gt; Аналоговые схемы gt; Измерения. Проверка симисторов: пытаем с пристрастием. Эта схема чуток посовременнее, но также, как и первая, собирается из подручных деталей. Если в схеме с симистором (рис. 1, б) при соответствующем включении сетевых проводов источник управляющего сигнала можно соединить с нулевым проводом, то при использовании тринистора (рис 1, а) такая возможность возникает лишь при исключении выпрямительного моста VD1-VD4. В качестве ключей используют малощумящие электромагнитные реле,… Радиолюбительские схемы на ИС 555. Схема проверки стабилитронов. Иногда, для того чтобы проверить подозрительную деталь требуется её отключение от схемы, поскольку внешние цепи способны исказить измеряемое сопротивление.

то при использовании тринистора (рис 1

размещайте детали устройства на монтажной плате. Когда (переменный) ток уменьшается

  • принцип hardelectronicsrutiristornyj-regulyator-napryazheniyahtml Cached 25 thoughts on Тиристорный регулятор напряжения простая схема
  • требующий для своего создания совсем немного деталей Симистор: назначение и основные характеристики
  • то хочется уточнить: при задержке а до 12 полупериода (до 90 эл градусов Простой испытатель (тестер) тиристоров и симисторов — PDF docplayerru72506294-Prostoy-ispytatel-tester Cached Получается коробочка

Нажмите здесь , если переадресация не будет выполнена в течение нескольких секунд простая схема для проверки тиристоров и симисторов Поиск в Все Картинки Ещё Видео Новости Покупки Карты Книги Все продукты Картинки по запросу простая схема для проверки тиристоров и симисторов Тиристорносимисторные пробники КН РадиоКот янв Пробник для проверки тиристоров Схема древняя, но весьма простая и надёжная Простой испытатель тиристоров и симисторов CQHam wwwcqhamruttesterhtm Простой испытатель тиристоров и симисторов В настоящей Проверить тиристор или симистор несколько сложнее Представленная здесь схема тестера позволяет проверять только Простой испытатель тестер тиристоров и симисторов PDF Простой испытатель тестер тиристоров и симисторов Введение Схема Измеритель тестер, принципиальная схема которого представлена на рис , позволяет проверять только вышеназванные функции тиристоров и Простейшая схема для проверки тиристора YouTube июн Подробнее здесь tiristorov myoutubecom Схема для проверки тиристоров Практическая электроника ruselectroniccompribordly Из этой статьи вы узнаете, как собрать простую схему для проверки тиристоров С этой схемой справиться даже Как проверить диод и тиристор простых способа electrikinfokakproveritdiodi Перед описанием способов проверки вспомним устройство тиристора , который не зря Схема проверки исправности диода Для этого достаточно собрать простую электрическую схему PDF Простой испытатель тестер тиристоров и симисторов tyumenradioru Простой испытатель схемы испытателя, рассмотрим кратко, что же такое тиристор и симистор Тиристор проверять только вышеназванные функции тиристоров и симисторов работоспособность, Симисторы принцип работы, проверка и включение, схемы asutpprusimistoryhtml Рейтинг , голосов окт Схема на двух тиристорах , как эквивалент симистора , и его условно графическое обозначение Рис Одно время были популярны простые электронные устройства, Схема прибора проверки тиристоров и симисторов wwwpayatelru shema pribora Прибор предназначен для проверки работоспособности тиристоров и симисторов , он может приблизительно Простой пробник симисторов и тиристоров своими руками Схема Простой пробник симисторов и тиристоров своими руками Электрод Проверять только вышеназванные функции тиристоров и симисторов управляющего электрода Приведёт к Пробник для тиристоров и симисторов Сайт Паяльник cxemnetizmerizmerphp Схема пробника для тиристоров и симисторов Так, для симистора можно показать отличие его поведения в После предварительной проверки можно подсоединить переключатель SW к Простые схемы для лаборатории радиолюбителя Страница Таким образом , схема способна проверять Простой испытатель тиристоров и симисторов Прибор для проверки тринисторов Простые электронные beginesxemaru?p янв Схемы и справочные материалы Словарь терминов Прибор для проверки тринисторов можно быстро проверить исправность трехэлектродного тиристора Таким же образом можно проверить и симистор Схема пробника для проверки симисторов и тиристоров shema shema май Прибор проверяет работоспособность симисторов и тиристоров , позволяя приблизительно Прибор для проверки тиристоров и симисторов zmf как Схемы для бы простой не КАК ПРОВЕРИТЬ ТИРИСТОР И СИМИСТОР Схема устройства для проверки тиристоров и симисторов Схема устройства для проверки тиристоров и Как проверить тиристор Простой способ и видеоинструкция wwwtexnicruavtomatikahtml Простой способ проверки тиристоров с помощью обычной лампочки и несколько простых схем для проверки Устройства для ремонта и поиска Заметки для мастера kopilkasovetovucozruindex Устройство, схема которого показана на рис, относится к Прибор для проверки тиристоров и симисторов Для проверки целостности кабелей предлагается простая схема рис, Как проверить тиристор ? Diodnik diodnikcomkakproverittiristor окт Для самой простой проверки тиристора необходимо использовать схему , которую использовали для проверки симистора необходимо использовать следующую схему Простые способы проверки симисторов и тиристоров Сам Рейтинг голоса фев Проверка симисторов и тиристоров мультиметром, Обозначение на схеме вы видите ниже Включение тиристора схема включения тиристора geekmatic geekmaticinuavklyuchenie_tiristora_ Самое простое включение тиристора и симистора Самый простой способ управления тиристорами это подача на и не требуется никакого шунтирования для симисторов Реальные Проверка тиристора Как убедиться в работоспособности soloprojectcomproverkatiristoraka дек Далее приведена простейшая схема проверки тиристора Рис На катод надо присоединить Симистор принцип работы Все об электричестве Симисторы принцип работы, проверка и включение, схемы Схема для проверки тиристоров и симисторов В завершении приведем простую схему , позволяющую управлять мощностью Схема проверки тиристоров и симисторов oritmpsmrunetdophp Симистор Принцип работы, параметры и обозначение на схеме Простейшая схема для проверки тиристора Симистор как проверить, принцип работы, характеристики Проверка мультиметром Так как симистор , по сути, двусторонний тиристор , при появлении Давайте разберем, как работает симистор на примере простой схемы , в которой переменное Схема проверки тиристоров и симисторов Радиокапсула shema proverki дек Схема прибора для проверки симисторов и тиристоров способна приблизительно определить Как проверить симистор Схема , описание Симисторы ноя Симисторы принцип работы, проверка и включение, схемы Узо Проверить тиристор мультиметром такого плана, можно только при наличии Для этого достаточно собрать простую электрическую схему Симистор Принцип работы, параметры и обозначение на goradiorusimistorhtml Устройство, обозначение и разновидности симистора Эквивалентная схема симистора на двух тиристорах Очень простой схемой, характеризующей принцип работы и область Симистор принцип работы и виды, основные Универсальная схема проверки Схема Простой пробник для проверки симистора или тиристора Как проверить симистор onlineelektrikrusposobykakproverit Это разновидность тиристоров , которая отличается от них тем, что может пропускать Схема проверки Схема PDF Управление тринисторами и симисторами wwwplatanrushempdf_ppdf Самый простой способ управ ления тиристорами это по тиристоров требуется ток управля рительной проверки или же подбо ра тиристоров схеме с симистором рис , б при Как проверить bta b что это такое, принцип работы дек Как проверять симисторы и тиристоры универсальным мультиметром Схема простая и точная, она сразу даст возможность не только проверить симмистор, но и поможет Проверка симистора и тиристора мультиметром приемы и obinstrumenterukakproveritsimistor янв Например, проверка тиристора мультиметром может избавить вас от схема симистора Проверка исправности тиристоров radioamatorru radioamatorruproverkaispravnost Тиристоры и симисторы широко применяются в различных устройствах автоматики Схема простого пробника для проверки тиристоров приведена на рис Простой транзисторный металлоискатель Приставка ваувау Способы проверки симистора , как прозванивать симисторы Рейтинг , голосов Тиристорами принято работоспособности схемы в Проверка симистора Радиопилюля radiopillnetloadizmeritelnaja Главная Каталог схем Измерительная техника Проверка симистора Простой индикатор разряда батарей Тиристорный регулятор напряжения простая схема hardelectronicsrutiristornyjregulyator янв Тиристорный регулятор напряжения простая схема , принцип работы методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов Проверить тиристор мультиметром Как проверить мар Способы проверки симистора , как прозванивать симисторы мультиметром Самодельный пробник для тиристоров В интернете можно найти более простые схемы , где Как проверить динистор, симистор или тиристор vguru Рейтинг , голоса Самая простая схема состоит из трёх схему , приступают к проверке Симистор назначение и основные характеристики rusenergeticsruprincipdejstviya Проверка в схемах при помощи тестера и сборки специальной схемы , Схема включения тиристоров Этот простой пример показывает, что триак может пропускать ток сразу в двух Как проверить симистор с помощью тестера или батарейки Рейтинг , голоса Перед тем как проверять симистор , необходимо разобраться со схемой и Тиристор обозначается символом годность симистора как проверив тестером, так и с помощью простой схемы Симистор обозначение на схеме Управление симисторами Рассмотрим схему проверки тиристора на рисунке Можно б простая схема трансформаторной развязки Устройство и принцип работы симистора Токарь Мастер окт Особенность симистора , по сравнению с тиристором , состоит в том, что этот Схема простая и содержит всего пять деталей Два простых способа проверки симистора Как проверять тиристоры исправность не выпаивая Как проверять тиристоры характеристика, типы и применение В первой схеме на управляющий электрод положительный потенциал не Это самый простой вариант для проверки PDF Мощный тиристорный выключатель переменного тока с В статье рассмотрены схемы гальванически изолированных симисторных и потребность изго товить простой и недорогой бескон В резуль тате проверки один из симисторов БУСТ Блок управления симисторами и тиристорами Овен апр Прибор для проверки тиристоров и симисторов Там есть достаточно простые схемки и методика проверки Для интересующихся схема плавного пуска двигателя на Как проверять симисторы и тиристоры универсальным azoworuhowtotesttriacsand июл Как проверять тиристоры и симисторы тестером и мультиметром Для этого достаточно собрать простую электрическую схему Схема прибора для проверки тиристоров Что такое симистор и как он работает triac что это симистор мар Симистор ; Симметричный тиристор ; Симисторы принцип работы, проверка и включение, схемы По той простой причине, что изобретён и запатентован он был в СССР, Симистор принцип работы, характеристики прибора, схема Как устроен симистор , принцип работы, особенности и схема включения симистора в схеме фазного Простейшая схема симисторного регулятора приведена ниже Проверка тиристора Запросы, похожие на простая схема для проверки тиристоров и симисторов схемы проверки тиристоров самодельные пробники для проверки тиристоров прибор для проверки мощных тиристоров стенд для проверки мощных тиристоров прибор для проверки симисторов как проверить тиристор не выпаивая простой испытатель тиристоров симисторов как проверить тиристор т След Войти Версия Поиска Мобильная Полная Конфиденциальность Условия Настройки Отзыв Справка

Уважаемые радиолюбители на ваш суд предлагаю еще один вариант схемы для проверки исправности тиристора Если при включении питания горит светодиод, то нажимаем кнопу, а затем отпускаем. Проверка симисторов: пытаем с усердием. Эта схема чуток посовременнее, но также, как и первая, собирается из подручных деталей. Схема древняя, но весьма простая и надёжная. В соответствие с принципиальной схемой, размещайте детали устройства на монтажной плате. Когда (переменный) ток уменьшается, переходит через нуль, чтобы сменить затем свою полярность, симистор автоматически закрывается. Еще схемы для УНЧ. Схемы на PIC. При проверке тиристора или симистора вначале переключателем SA2 (quot;Ток управленияquot;) задается необходимый ток управляющего электрода. Это также позволяет подбирать тиристоры (симисторы) по минимальному току управления. Схемы соединения аккумуляторов. Схема проверки исправности диода. Схема проверки тиристоров омметром. Устройство и схема домофона. Качество состояния симистора можно оценить описанными выше методами проверки. Схема отмотки счетчика электроэнергии на генераторе реактивной мощности (с печатной платой) (13) Если тиристор или симистор явно не пробит, но все же есть сомнение в работоспособности, то его нужно проверить. В момент, когда на аноде положительное напряжение, соответственно на катоде отрицательное электроток начнет протекать через тринистор, который на схеме с левой стороны. РадиоКот gt; Схемы gt; Аналоговые схемы gt; Измерения. Проверка симисторов: пытаем с пристрастием. Эта схема чуток посовременнее, но также, как и первая, собирается из подручных деталей. Если в схеме с симистором (рис. 1, б) при соответствующем включении сетевых проводов источник управляющего сигнала можно соединить с нулевым проводом, то при использовании тринистора (рис 1, а) такая возможность возникает лишь при исключении выпрямительного моста VD1-VD4. В качестве ключей используют малощумящие электромагнитные реле,… Радиолюбительские схемы на ИС 555. Схема проверки стабилитронов. Иногда, для того чтобы проверить подозрительную деталь требуется её отключение от схемы, поскольку внешние цепи способны исказить измеряемое сопротивление.

Серия тренингов по электричеству и электронике ВМС (NEETS), Модуль 21, 2-21 — 2-30

Модуль 21 — Методы и практика испытаний

Страницы i, 1−1, 1-11, 1−21, 2−1, 2-11, 2−21, 2−31, 2−41, 3−1, 3-11, 3−21, 3−31, 4−1, 4-11, 5−1, 5-11, 5−21, 5-31, от AI-1 до AI-3, индекс

различных величин и частоты.Некоторые диоды могут быть повреждены чрезмерным током, создаваемым некоторыми настройками диапазона стандартного мультиметр. Поэтому при выполнении этого измерения следует использовать цифровой мультиметр.

В-14. Какое практическое правило является приемлемым соотношением прямого и обратного сопротивления для диода?

КРЕМНИЕВЫЕ ВЫПРЯМИТЕЛИ (SCR)

Многие морские электронные устройства используют кремниевые выпрямители (SCR) для управления мощностью.Как и другие твердотельные компоненты, SCR подлежат до отказа. Вы можете протестировать большинство тиристоров с помощью стандартного омметра, но вы должны понимать, как работает тиристор.

Как показано на рисунке 2-12, SCR представляет собой трехэлементное твердотельное устройство, в котором прямое сопротивление может быть под контролем. На рисунке показаны три активных элемента: анод, катод и затвор. Хотя они могут различаются внешне, все тиристоры работают одинаково.SCR действует как выпрямитель с очень высоким сопротивлением. как в прямом, так и в обратном направлениях, не требуя стробирующего сигнала. Однако, когда правильный стробирующий сигнал В случае применения тиристор работает только в прямом направлении, как и любой обычный выпрямитель. Чтобы проверить SCR, вы подключаете омметр между анодом и катодом, как показано на рисунке 2-12. Начать тест с R x 10 000 и постепенно уменьшайте значение. Тестируемый тиристор должен показывать очень высокое сопротивление независимо от омметра. полярность.Анод, который подключен к плюсовому проводу омметра, теперь необходимо замкнуть на затвор. Это заставит SCR проводить; в результате на омметре будет отображаться низкое сопротивление. Устранение короткого замыкания анод-затвор не остановит ток SCR; но удаление любого из проводов омметра приведет к тому, что SCR перестанет проводить — показание сопротивления вернется к предыдущему высокому значению. Некоторые SCR не будут работать при подключении омметра.Это связано с тем, что омметр не подает достаточный ток. Однако большинство SCR в оборудовании ВМФ можно проверить методом омметра. Если SCR чувствителен, R x Шкала 1 может подавать слишком большой ток на устройство и повредить его. Поэтому попробуйте протестировать его на более высоком шкалы сопротивления.

Рисунок 2-12. — Проверка SCR омметром.

2-21

Q-15.При тестировании тиристора с омметром, тиристор будет проводить, если какие два элемента закорочены. вместе?

TRIAC

Triac — торговая марка General Electric для кремния, двухполупериодный переключатель переменного тока, управляемый затвором, как показано на рисунке 2-13. Устройство предназначено для переключения с блокировки состояние в проводящее состояние для любой полярности приложенных напряжений и с положительным или отрицательным затвором срабатывание.Подобно обычному тиристору, симистор — отличное твердотельное устройство для управления током. Вы можете заставить симистор вести себя, используя тот же метод, что и для тиристора, но у симистора есть то преимущество, что он способен одинаково хорошо вести как в прямом, так и в обратном направлении.

Рисунок 2-13. — Проверка симистора омметром.

Чтобы проверить симистор с помощью омметра (шкала R x 1), вы подсоединяете отрицательный провод омметра к аноду 1. и положительный вывод к аноду 2, как показано на рисунке 2-13.Омметр должен показывать очень высокое сопротивление. Замкните затвор на анод 2; затем удалите это. Показание сопротивления должно упасть до низкого значения и оставаться низким до тех пор, пока любой из выводов омметра отключен от симистора. На этом первый тест завершен.

Второй Тест включает в себя перестановку проводов омметра между анодами 1 и 2 так, чтобы положительный провод был подключен к аноду. 1, а отрицательный вывод подключен к аноду 2.Снова закоротите затвор на анод 2; затем удалите это. Сопротивление показания должны снова упасть до низкого значения и оставаться на низком уровне до тех пор, пока один из выводов омметра не будет отсоединен.

В-16. Когда симистор правильно закрыт, каково направление (а) тока между анодами 1 и 2?

Однопереходные транзисторы (UJT)

Однопереходный транзистор (UJT), показанный на рис. 2-14, представляет собой твердотельный трехконтактный полупроводник, который демонстрирует стабильные характеристики холостого хода и отрицательного сопротивления.Эти характеристики позволяют UJT

2-22

, чтобы служить отличным генератором. Тестирование UJT — относительно простая задача, если вы рассматриваете UJT как Диод подключен к месту соединения двух резисторов, как показано на рисунке 2-15. С помощью омметра измерьте сопротивление между базой 1 и базой 2; затем поменяйте местами провода омметра и снимите еще одно показание. Чтения должны показывать одинаково высокое сопротивление независимо от полярности проводов измерителя.Подключите отрицательный провод омметра к эмиттер UJT. Используя положительный провод, измерьте сопротивление от эмиттера до базы 1, а затем от эмиттер на базу 2. Оба показания должны указывать на высокие сопротивления, которые примерно равны друг другу. Отсоедините отрицательный вывод от эмиттера и подсоедините к нему положительный вывод. Используя отрицательный вывод, Измерьте сопротивление от эмиттера к базе 1, а затем от эмиттера к базе 2.Оба чтения должны указывают на низкие сопротивления примерно равные друг другу.

Рисунок 2-14. — Однопереходный транзистор.

Рисунок 2-15. — Схема замещения однопереходных транзисторов.

ИСПЫТАНИЯ ПОЛЕВОГО ЭФФЕКТА ПЕРЕХОДА (JFET)

Полевой эффект перехода Транзистор (JFET) имеет схемы применения, аналогичные тем, что используются в электронных лампах.JFET имеет чувствительный к напряжению характеристика с высоким входным сопротивлением. Вам следует ознакомиться с двумя типами полевых транзисторов JFET: p-канальное соединение и n-канальное соединение типа, как показано на рисунке 2-16. Показаны их эквивалентные схемы. на рисунках 2-17 и 2-18 соответственно. Единственная разница в вашем тестировании этих двух типов JFET заключается в следующем: полярность проводов измерителя.

2-23

Рисунок 2-16.- Соединительные полевые транзисторы.

Рисунок 2-17. — Эквивалентная схема N-канального JFET.

Рисунок 2-18. — Эквивалентная схема P-канального JFET.

2-24

Тест N-канала

С помощью омметра, установленного на шкалу R x 100, измерьте сопротивление между стоком и истоком; затем поменяйте местами провода омметра и снимите еще одно показание.Оба показания должны быть одинаковыми (в диапазоне от 100 до 10 000 Ом) независимо от полярности проводов измерителя. Подключите положительный счетчик ведет к воротам. С помощью отрицательного вывода измерьте сопротивление между затвором и стоком; затем измерьте сопротивление между затвором и источником. Оба показания должны указывать на низкое сопротивление и быть примерно так же. Отсоедините положительный провод от ворот и подключите отрицательный провод к воротам.С помощью плюсового провода измерьте сопротивление между вентилем и стоком; затем измерьте сопротивление между ворота и источник. Оба показания должны показывать бесконечность.

Тест P-канала

Использование омметром установить по шкале R x 100, измерить сопротивление между стоком и истоком; затем поменять местами омметр проводит и снимает еще одно показание. Оба значения должны быть одинаковыми (от 100 до 10 000 Ом) независимо от полярность проводов измерителя.Затем подключите положительный вывод счетчика к воротам. Используя отрицательный провод, измерьте сопротивление между затвором и сливом; затем измерьте его между затвором и источником. Оба чтения должны показать бесконечность. Отсоедините положительный провод от ворот и подключите отрицательный провод к воротам. С помощью плюсовой провод, измерьте сопротивление между затвором и стоком; затем измерьте его между воротами и источник. Оба показания должны указывать на низкое сопротивление и быть примерно равными.

MOSFET TESTING

Другой тип полупроводника, с которым вам следует ознакомиться, — это металл. оксидно-полупроводниковый полевой транзистор (MOSFET), как показано на рисунках 2-19 и 2-20. Вы должны быть чрезвычайно Будьте осторожны при работе с полевыми МОП-транзисторами из-за их высокой степени чувствительности к статическому напряжению. Как раньше Упомянутый в этой главе паяльник должен быть заземлен. на верстак следует поставить металлическую пластину и заземлен на корпус корабля через резистор сопротивлением 250 кОм — 1 МОм.Вам также следует носить браслет с прикрепите заземляющий провод и заземлите себя к корпусу корабля через резистор сопротивлением 250 кОм — 1 мОм. Вам следует Не допускайте контакта полевого МОП-транзистора с вашей одеждой, пластиком или целлофановыми материалами. вакуум плунжер (присоска для припоя) нельзя использовать из-за высоких электростатических зарядов, которые он может генерировать. Удаление припоя путем впитывания рекомендуется. Также рекомендуется оборачивать полевые МОП-транзисторы металлической фольгой, когда они находятся вне цепи.Чтобы убедиться в безопасности тестируемого полевого МОП-транзистора, используйте портативный вольт-ом-миллиамперметр (ВОМ), чтобы измерить сопротивление полевого МОП-транзистора. измерения. VTVM никогда не должен использоваться для тестирования полевых МОП-транзисторов. Вы должны знать, что пока вы тестируете полевой МОП-транзистор, вы заземлены на корпус корабля или на землю станции. Использование VTVM может создать определенную угрозу безопасности. из-за потребляемой мощности 115 вольт и 60 герц. Когда измерения сопротивления завершены и полевой МОП-транзистор правильно храните, не заземляйте пластину на верстаке и себя.Вы лучше поймете тестирование MOSFET если вы визуализируете его как эквивалент схемы с использованием диодов и резисторов, как показано на рисунках 2-21 и 2-22.

2-25

Рисунок 2-19. — MOSFET (тип истощения / улучшения).

Рисунок 2-20. — MOSFET (тип расширения).

Рисунок 2-21. — Эквивалентная схема MOSFET (типа истощения / увеличения).

2-26

Рисунок 2-22. — Эквивалентная схема MOSFET (расширенного типа).

Q-17. Почему не рекомендуется использовать присоску для припоя при работе с полевыми МОП-транзисторами?

MOSFET (тип истощения / улучшения) Тест

Используя омметр, установленный на шкалу R x 100, измерить сопротивление между стоком полевого МОП-транзистора и истоком; затем поменяйте местами провода омметра и возьмите другой чтение.Показания должны быть одинаковыми независимо от полярности проводов измерителя. Подключите положительный вывод омметр до ворот. Используя отрицательный провод, измерьте сопротивление между затвором и стоком и между ворота и источник. Оба показания должны показывать бесконечность. Отсоедините плюсовой провод от ворот и подключите отрицательный провод к воротам. Используя положительный провод, измерьте сопротивление между затвором и осушать; затем измерьте его между затвором и источником.Оба показания должны показывать бесконечность. Отключите отрицательный вывод от затвора и подключите его к подложке. Используя плюсовой провод, измерьте сопротивление. между субстратом и стоком и между субстратом и истоком. Оба эти чтения должны указывают на бесконечность. Отсоедините отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между субстратом и стоком, а также между субстратом и водостоком. источник.Оба показания должны указывать на низкое сопротивление (около 1000 Ом).

MOSFET (Расширение Тип) Тест

С помощью омметра, установленного на шкалу R x 100, измерьте сопротивление между стоком. и источник; затем поменяйте местами выводы и снимите еще одно показание между стоком и истоком. Оба чтения должен показывать бесконечность, независимо от полярности проводов измерителя. Подключите положительный вывод омметра к затвору.Используя отрицательный провод, измерьте сопротивление между затвором и стоком, а затем между затвором и стоком. источник. Оба показания должны указывать на бесконечность. Отсоедините положительный провод от ворот и подключите отрицательный вывод к воротам. Используя положительный провод, измерьте сопротивление между затвором и стоком, а затем между воротами и источником. Оба показания должны указывать на бесконечность. Отсоедините отрицательный провод от ворота и соедините с подложкой.С помощью плюсового провода измерьте сопротивление между подложкой и сток и между субстратом и истоком. Оба показания должны указывать на бесконечность. Отключите отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между подложкой и стоком и между подложкой и истоком. Оба чтения должны указывают на низкое сопротивление (около 1000 Ом).

2-27

ИСПЫТАНИЕ ИНТЕГРИРОВАННЫХ ЦЕПЕЙ (ИС)

Интегральные схемы (ИС) составляют область микроэлектроники, в которой многие традиционные электронные компоненты объединены в модули высокой плотности. Интегральные схемы состоят из активных и пассивных компоненты, такие как транзисторы, диоды, резисторы и конденсаторы. Из-за их меньшего размера использование интегральные схемы могут упростить сложные системы за счет уменьшения количества отдельных компонентов и взаимосвязи.Их использование также может снизить энергопотребление, уменьшить общий размер оборудования и значительно снизить общую стоимость оборудования. Многие типы интегральных схем являются ESDS устройств, и с ними следует обращаться соответственно.

В-18. Назовите два преимущества использования ИС.

Ваш подход к тестированию ИС должен несколько отличаться от которые используются при тестировании электронных ламп и транзисторов.Физическая конструкция ИС — основная причина этого. другой подход. Наиболее часто используемые ИС производятся с 14 или 16 контактами, все из которых могут быть впаян прямо в схему. Отпаять все эти контакты может оказаться непростой задачей, даже если специальные инструменты, предназначенные для этого. После распайки всех контактов у вас будет утомительная работа по чистка и выпрямление их всех.

Хотя на рынке есть несколько тестеров ИС, их приложения ограничены.Так же, как транзисторы должны быть удалены из проверяемой схемы, некоторые ИС также должны быть удалено, чтобы разрешить тестирование. Когда ИС используются вместе с внешними компонентами, внешние компоненты сначала следует проверить правильность работы. Это особенно важно в линейных приложениях, где изменение в цепи обратной связи может отрицательно повлиять на рабочие характеристики компонента.

Любая линейная (аналог) ИС чувствительна к напряжению питания.Это особенно характерно для ИС, которые используют смещение и управление. напряжения в дополнение к напряжению питания. Если вы подозреваете, что линейная ИС неисправна, все напряжения, приходящие на IC должна быть проверена по принципиальной схеме производителя оборудования на наличие каких-либо специальных примечаний по напряжения. Справочник производителя также даст вам рекомендуемые напряжения для каждой конкретной ИС.

Когда устраняя неисправности ИС (цифровых или линейных), вы не можете беспокоиться о том, что происходит внутри ИС.Ты не может проводить замеры или ремонт внутри ИС. Следовательно, вы должны рассматривать ИС как черный ящик. выполняющий определенную функцию. Однако вы можете проверить ИС, чтобы убедиться, что она может выполнять свои проектные функции. После проверки статического напряжения и внешних компонентов, связанных с ИС, вы можете проверить ее на наличие динамических характеристик. операция. Если он предназначен для работы в качестве усилителя, вы можете измерить и оценить его вход и выход.Если он должен функционировать как логический вентиль или комбинация вентилей, вам относительно легко определить, что входы требуются для достижения желаемой высокой или низкой производительности. Примеры различных типов ИС приведены в рисунок 2-23.

Рисунок 2-23. — Типы микросхем.

2-28

Q-19. Почему вы должны рассматривать ИС как черный ящик?

Цифровые ИС относительно просты для вас для устранения неполадок и тестирования из-за ограниченного числа задействованных комбинаций ввода / вывода.При использовании положительного логика, логическое состояние входов и выходов цифровой ИС может быть представлено только как высокое (также называется состоянием 1) или низким (также называется состоянием 0). В большинстве цифровых схем высокий уровень — это устойчивый уровень 5 В постоянного тока, а низкий — уровень 0 В постоянного тока. Вы можете легко определить логическое состояние ИС, используя устройства измерения высокого входного импеданса, такие как осциллограф. Из-за более широкого использования ИС в последнее время лет, множество единиц испытательного оборудования было разработано специально для тестирования ИС.Они описаны в следующие параграфы.

В-20. Каковы два логических состояния ИС?

ЛОГИЧЕСКИЕ ЗАЖИМЫ

Логические зажимы, как показано на рисунке 2-24, представляют собой подпружиненные устройства, предназначенные для закрепления на двухрядном ИС корпуса, в то время как ИС смонтирована в его цепи. Это простое устройство, обычно имеющее 16 светодиодов. (Светодиоды) крепятся вверху на зажимах.Светодиоды соответствуют отдельным контактам ИС и любому горящему светодиоду. представляет собой высокое логическое состояние. Не горит светодиодный индикатор означает низкое логическое состояние. Логические зажимы не требуют внешнего питания соединения, и они маленькие и легкие. Их способность одновременно контролировать ввод и вывод ИС очень полезна при поиске неисправностей в логической схеме.

Рисунок 2-24. — Логический клип.

Q-21.какой логический уровень отображает горящий светодиод на логическом зажиме?

ЛОГИЧЕСКИЕ КОМПАРАТОРЫ

Логический компаратор, как показано на рисунке 2-25, предназначен для обнаружения неисправные микросхемы внутри схемы DIP путем сравнения их с заведомо исправными микросхемами (эталонные микросхемы). Эталонная ИС установлен на небольшой печатной плате и вставлен в логический компаратор. Затем вы прикрепляете логику компаратор к тестируемой ИС с помощью измерительного провода, который подключается к подпружиненному устройству, внешне похожему на к логическому зажиму.Логический компаратор предназначен для обнаружения различий в логических состояниях эталонной ИС и ИС проходит испытания. Если какая-либо разница в логических состояниях действительно существует на каком-либо контакте, светодиод, соответствующий контакту в вопрос загорится по логическому компаратору. Логический компаратор питается от тестируемой ИС.

2-29

Рисунок 2-25. — Логический компаратор.

Q-22. На что указывает горящий светодиод на логическом компараторе?

ЛОГИЧЕСКИЕ ДАТЧИКИ

Логические зонды, как показано на рисунке 2-26, чрезвычайно просты и полезны Устройства, соответствующие

, помогут вам определить логическое состояние ИС. Логические зонды могут показать вам сразу является ли конкретная точка в цепи низким, высоким, разомкнутым или пульсирующим. высокий уровень обозначается, когда свет на конец зонда горит, и когда индикатор гаснет, отображается низкий уровень.Некоторые датчики имеют функцию, которая обнаруживает и отображает высокоскоростные переходные импульсы длительностью до 5 наносекунд. Эти зонды обычно подключен непосредственно к источнику питания тестируемого устройства, хотя некоторые из них также имеют внутренние батареи. Поскольку большинство отказов ИС проявляются в виде точки в цепи, застрявшей на высоком или низком уровне, эти пробники обеспечивают быстрый и недорогой способ найти неисправность. Они также могут отображать один короткий импульс, который так сложно уловить на осциллографе.Идеальный логический пробник будет иметь следующие характеристики:

Рисунок 2-26. — Логический зонд.

1. Уметь определять устойчивый логический уровень

2. Уметь определять последовательность логических уровней

3. Уметь обнаруживать обрыв цепи

4. Уметь обнаруживать высокоскоростной переходный импульс

2-30

Материя, Энергия, и постоянного тока
Переменный ток и трансформаторы
Защита, управление и измерение цепей
Электрические проводники, методы электромонтажа, и схематическое чтение
Генераторы и двигатели
Электронные излучатели, трубки и источники питания
Твердотельные устройства и блоки питания
Усилители
Цепи генерации и формирования волн
Распространение волн, линии передачи и Антенны
Принципы СВЧ
Принципы модуляции
Введение в системы счисления и логические схемы
— Введение в микроэлектронику
Принципы синхронизаторов, сервоприводов и гироскопов
Введение в испытательное оборудование
Принципы радиочастотной связи
Принципы работы радаров
Справочник техника, Главный глоссарий
Методы и практика испытаний
Введение в цифровые компьютеры
Магнитная запись
Введение в волоконную оптику
Примечание: Обучение электричеству и электронике военно-морского флота Содержимое серии (NEETS) — U.С. Собственность ВМФ в свободном доступе.

Охладитесь и сократите время выхода на рынок с помощью решения для управления двигателями на основе TRIAC

Потребность в портативных, небольших двигателях растет в потребительском секторе, особенно в портативных устройствах кондиционирования воздуха, предназначенных для жилых домов, Дома на колесах и передвижное жилье, поскольку пандемия коронавируса вызвала всплеск продаж домов на колесах, поскольку потребители обратились к альтернативным решениям для традиционных праздников.

Чтобы удовлетворить растущий спрос и помочь инженерам ускорить разработку и сократить время вывода на рынок, эта выигрышная комбинация была разработана для приложений управления двигателями на основе TRIAC.TRIAC (или триодные переключатели переменного тока) представляют собой электронные компоненты, способные к двунаправленному переключению и выдерживать высокие уровни напряжения и тока, что делает их идеальными для приложений управления мощностью переменного тока, таких как управление двигателями, диммеры для домашнего освещения и электронные переключатели.

В этой выигрышной комбинации любое из семейств 32-битных микроконтроллеров RX или RA может быть использовано в качестве основы для управления переключением TRIAC. Блок-схема показана ниже на рисунке 1.Входной сигнал переменного тока, отфильтрованный и выпрямленный, обрабатывается RAA223021. Это высоковольтный понижающий преобразователь на 700 В со сверхнизким энергопотреблением в режиме ожидания, обеспечивающий питание системных устройств. Отфильтрованный переменный ток также проходит через реле, которым управляет MCU, чтобы обеспечить дополнительную защиту цепей управления. Если устройство не подает постоянные импульсы на реле, оно отключается, и мощность не может проходить через симистор на нагрузку. Благодаря гибкости и простоте управления TRIAC и TRIAC, несколько TRIAC могут быть подключены к нескольким нагрузкам в этой системе для увеличения функциональности.

MCU использует сигналы широтно-импульсной модуляции (ШИМ) для включения симисторов с высокой точностью, что позволяет переменному току течь через симисторы к нагрузке (нагрузкам). Усилители считывания тока ISL28005 также используются на каждой линии TRIAC для контроля протекания тока для дополнительной защиты. Для дополнительной защиты и мониторинга могут быть дополнительно включены такие датчики, как датчик температуры и влажности HS3001, обеспечивающие обратную связь с системой. Изолированный приемопередатчик RS-485 ISL32704E включен в эту конструкцию, чтобы обеспечить взаимодействие с пользователем, которое может использоваться для настройки управляющих сигналов от MCU к системе.

Рис. 1. Решение для управления двигателем на основе TRIAC

Суть этой конструкции заключается в использовании обнаружения перехода через нуль для управления сигналами ШИМ, подаваемыми на TRIAC. Когда сигнал переменного тока переключается с положительного на отрицательный или с отрицательного на положительный, он будет проходить через нулевое напряжение, что называется переходом через нуль, и MCU использует эту информацию для регулировки коэффициента заполнения TRIACS. Комбинируя эту схему обнаружения перехода через ноль с использованием симисторов, мы можем легко спроектировать и создать решение для управления двигателем, которое эффективно управляет двигателем с помощью считывающей обратной связи и контролирует шины питания, а также позволяет пользователю вводить данные для достижения большей гибкости и надежность.

Посетите страницу «Выигрышные комбинации Renesas», чтобы увидеть больше решений, которые помогают нашим клиентам ускорить разработку своих конструкций и быстрее выйти на рынок.

MDL Triac Oral: использование, побочные эффекты, взаимодействия, изображения, предупреждения и дозировка

Принимайте это лекарство внутрь в соответствии с указаниями врача. Если вы занимаетесь самолечением, следуйте всем указаниям на упаковке продукта. Если у вас есть вопросы, спросите своего врача или фармацевта.

Это лекарство можно принимать во время еды, если возникает расстройство желудка.Пейте много жидкости, если врач не назначил иное.

Если вы используете жидкую форму этого лекарства, осторожно измерьте дозу с помощью специального мерного устройства / ложки. Не используйте бытовую ложку, потому что вы можете получить неправильную дозу. Если ваша жидкая форма представляет собой суспензию, хорошо встряхивайте флакон перед каждой дозой.

Не раздавливайте и не жуйте таблетки или капсулы с расширенным высвобождением. Это может привести к высвобождению всего препарата сразу, увеличивая риск побочных эффектов.Кроме того, не разделяйте таблетки с пролонгированным высвобождением, если на них нет линии счета, и ваш врач или фармацевт не скажут вам это сделать. Проглотите целую или разделенную таблетку, не измельчая и не разжевывая.

Если вы используете жевательные таблетки, тщательно разжуйте каждую таблетку перед проглатыванием.

Если вы используете продукт, предназначенный для растворения во рту (таблетки / полоски), вытрите руки перед использованием лекарства. Поместите каждую дозу на язык и дайте ей полностью раствориться, затем проглотите ее со слюной или водой.

Дозировка зависит от продукта, который вы принимаете, а также от вашего возраста, состояния здоровья и реакции на лечение. Не увеличивайте дозу и не принимайте это лекарство чаще, чем указано в инструкции, без одобрения врача. Неправильное использование (злоупотребление) этим лекарством может привести к серьезному ущербу (например, галлюцинациям, судорогам, смерти).

Если ваш врач рекомендует вам принимать это лекарство ежедневно, принимайте его регулярно, чтобы получить от него максимальную пользу. Чтобы помочь вам запомнить, принимайте его в одно и то же время каждый день.

Сообщите своему врачу, если ваше состояние сохраняется более 1 недели, если оно ухудшается или проявляется лихорадкой, сыпью или постоянной головной болью. Это могут быть симптомы серьезной проблемы со здоровьем и должны быть проверены врачом.

Симисторных цепей

  • Изучив этот раздел, вы сможете:
  • Распознать типичные пакеты симисторов:
  • Ознакомьтесь с типовой диаграммой характеристик симистора.
  • Понимание функции квадрантов при срабатывании триаков:
  • Разберитесь в основных принципах работы опто-симисторов.
  • Разберитесь в работе диак.
  • Ознакомьтесь с методами и ограничениями при испытании тиристоров вне схемы.
  • Меры безопасности при использовании устройств среднего и высокого напряжения.

Симистор

Фиг.6.3.1 Пакеты симисторов

На рис. 6.3.1 показаны некоторые типичные корпуса симистора вместе с условным обозначением схемы для симистора. Симистор представляет собой двунаправленный тиристор, аналогичный по работе двум тиристорам, соединенным в обратную параллель, но использующим общее соединение затвора. Следовательно, симистор может проводить и управлять как во время положительных, так и на отрицательных полупериодов сигнала сети. Однако вместо положительных анодных и отрицательных катодных соединений основные токоведущие соединения симистора обычно обозначаются как MT1 и MT2, обозначающие главные выводы 1 и 2 (хотя могут использоваться и другие буквы), поскольку любой вывод может быть положительным или отрицательным.Симистор может быть приведен в действие током, подаваемым на клемму затвора (G). После срабатывания симистор будет продолжать проводить до тех пор, пока основной ток не упадет ниже порога удержания тока, близкого к нулю.

Рис. 6.3.2 Характеристики симистора

  • На рис. 6.3.2 показаны основные характеристики симистора.
  • В BO — это максимальное прямое или обратное напряжение, которое симистор может выдержать, прежде чем он перейдет в неконтролируемую проводимость.
  • В DRM — это максимальное повторяющееся пиковое напряжение (обычно максимальное пиковое напряжение приложенной волны переменного тока), которое может надежно выдерживаться.
  • V GT — это диапазон напряжений затвора, которые вызывают проводимость.
  • I L — это минимальный ток, который заставит симистор запираться и продолжать проводить после снятия напряжения срабатывания затвора.
  • I H — это минимальный ток удержания, ниже которого проводящий симистор перестает проводить.

Рис. 6.3.3 Квадранты симистора

Квадранты симистора

Поскольку стробирующий ток или импульс, используемые для запуска симистора, могут применяться, пока клемма MT2 является положительной или отрицательной, а стробирующий ток или импульс также могут быть положительными или отрицательными, существует четыре различных способа запуска симистора. Обычно они обозначаются как «Квадранты», как показано на Рис. 6.3.3

Большинство симисторов могут срабатывать в любом из четырех квадрантов, и два из четырех возможных квадрантов необходимы для запуска проводимости во время двух (положительного и отрицательного) полупериодов переменного тока.Квадранты I и III или квадранты II и III являются предпочтительными методами запуска, поскольку квадрант IV гораздо менее чувствителен к запуску из-за способа построения диака. Таким образом, если квадрант IV используется с любым из трех других квадрантов, для положительных и отрицательных полупериодов потребуются разные значения триггерного тока, что создает ненужные сложности. Также, если симистор срабатывает в квадранте IV, его способность обрабатывать любые быстрые изменения тока (δI / δt) снижается, что делает симистор более восприимчивым к повреждениям в результате таких событий, как случайные сильные всплески тока и неизбежные высокие пусковые токи при использовании ламп накаливания. включены.

Важной целью многих современных разработок является борьба с потенциально опасными скачками напряжения и снижение склонности симистора к повторному срабатыванию во время выключенной части цикла. Это происходит во время каждого цикла переменного тока между моментом, когда ток падает ниже тока удержания тиристора, и до следующего импульса запуска. Хотя обычно это не проблема, когда симистор управляет резистивной нагрузкой, такой как лампа накаливания, при использовании с индуктивными нагрузками, такими как двигатели, напряжение нагрузки и ток нагрузки, скорее всего, не будут «синфазны» друг с другом, поэтому напряжение может фактически быть около своего пикового значения, когда ток падает до нуля (как описано здесь), вызывая большое и быстрое изменение напряжения на симисторе, которое может вызвать немедленное повторное срабатывание симистора и, таким образом, повторное включение, что приведет к потере управления.

Стандартные симисторы

использовались для управления переменным током в течение многих лет, но за это время диапазон различных конструкций симисторов значительно увеличился. Современные конструкции симисторов, такие как симисторы 3Q HIGH-COM (3 квадранта, высокая коммутация) от NXP / WeEn и симисторы Snubberless TM от ST Microelectronics, имеют множество преимуществ, таких как улучшенная производительность, меньшее количество ложных срабатываний, удобство использования как с резистивными, так и с индуктивными нагрузками и улучшенные возможности выключения без необходимости использования дополнительных схем, таких как демпферы.Дополнительное согласование входов также является особенностью некоторых конструкций, включая согласование стробирующих импульсов, таких как детекторы перехода через ноль, входы логического уровня и т. Д.

Поскольку многие функции управления теперь выполняются с помощью микропроцессоров и / или логических схем, существует также много симисторов, которые принимают логические сигналы для запуска, а не полагаются исключительно на традиционные методы управления фазой. Одним из таких симисторов является симистор 6073A Sensitive Gate от ON Semiconductor, который используется в демонстрационной схеме низкого напряжения в модуле тиристоров 6.4.

Рис. 6.3.4. Опто-симистор

Опто-симистор

Материалы, используемые при производстве симисторов и тиристоров, как и любого полупроводникового прибора, светочувствительны. Их проводимость изменяется при наличии света; поэтому они обычно упаковываются в маленькие куски черного пластика. Однако, если в комплект входит светодиод, он может включать выход высоковольтного устройства в ответ на очень небольшой входной ток через светодиод. Это принцип, используемый в опто-симисторах и опто-тиристорах, которые легко доступны в форме интегральных схем (ИС) и не нуждаются в очень сложных схемах, чтобы заставить их работать.Просто подайте небольшой импульс в нужное время, чтобы загорелся встроенный светодиод, и питание будет включено. Основным преимуществом этих оптически активируемых устройств является превосходная изоляция (обычно несколько тысяч вольт) между цепями малой и высокой мощности. Это обеспечивает безопасную изоляцию между цепью управления низкого напряжения и высоковольтным выходом высокого тока. Хотя выходной ток опто-симисторов обычно ограничен десятками миллиампер, они обеспечивают полезный интерфейс, когда выход используется для запуска симистора высокой мощности от опто-симистора низкого напряжения.

Диак

Рис. 6.3.5 DB3 Diac & Circuit Symbol

Диак представляет собой двунаправленный триггерный диод (см. Рис. 6.3.5), который в течение многих лет использовался в качестве основного триггерного компонента для стандартных триаков. Он блокирует ток, когда приложенное к нему напряжение меньше его потенциала разрыва V BO (см. Рис. 6.3.6), но проводит сильную проводимость, когда приложенное напряжение равно V BO . Однако, в отличие от других диодов, которые проводят только в одном направлении, диак имеет одинаковое разрывное напряжение как в положительном, так и в отрицательном направлении.Как только напряжение переменного тока, приложенное к диакте, достигает либо + V BO , либо -V BO , генерируется положительный или отрицательный импульс тока. Потенциал отключения для диак обычно составляет от 30 до 40 вольт. Это действие делает диаки особенно полезными при срабатывании симисторов в цепях управления переменного тока из-за их способности запускать симистор во время либо положительного, либо отрицательного полупериода сигнала сети (линии). Его схемное обозначение (показанное на рис. 6.3.5) аналогично символу симистора, но без клеммы затвора.

Рис. 6.3.6 Типичные характеристики диафрагмы.

Характеристики Diac, показанные на рис. 6.3.6, показывают, что при напряжениях ниже V BO диак имеет высокое сопротивление (характеристическая кривая почти горизонтальна, что указывает на то, что протекает только небольшой ток утечки в несколько мкА, но как только достигается + V BO или -V BO , диак показывает отрицательное сопротивление. Обычно закон Ома гласит, что увеличение тока через компонент с фиксированным значением сопротивления вызывает увеличение напряжения на этом компоненте. ; однако здесь происходит обратный эффект, диак показывает отрицательное сопротивление при размыкании, где ток резко возрастает, хотя на самом деле напряжение снижается.Режим отрицательного сопротивления длится около 2 мкс, за это время прямое напряжение упадет примерно до 5 В и диак будет пропускать ток 10 мА. Это действие достаточно (хотя и не совсем) симметрично в положительной (+ V) или отрицательной областях характеристик.

Рис. 6.3.7. Симистор с внутренним запуском (Quadrac)

Симистор с внутренним запуском (Quadrac)

Поставщики компонентов предлагают гораздо меньше типов диаков, чем симисторов.Также легче выбрать идеальный диак для срабатывания конкретного симистора, когда он уже встроен в комплект. Так обстоит дело с «квадрактом» или симистором с внутренним запуском, показанным на рис. 6.3.7. Эти устройства также уменьшают количество компонентов и пространство на печатной плате.

Чувствительные затворные симисторы

Симисторы

, для запуска которых требуется диак, имеют недостаток для многих современных низковольтных приложений. Напряжение, необходимое диакритическому устройству для генерации импульса запуска, должно быть не менее или равно его потенциалу отключения (V BO ), и оно составляет около 30 В или более.Однако доступны симисторы — чувствительные затворные симисторы, которые могут срабатывать гораздо более низкими напряжениями в диапазоне устройств TTL, HTL, CMOS и OP AMP, а также выходов микропроцессора.

Демонстрационная схема управления чувствительным затворным симистором показана в тиристорном модуле 6.4.

Проверка тиристоров, симисторов и диодов.

В Интернете есть множество страниц, на которых предлагаются методы тестирования тиристоров и симисторов с помощью мультиметра. В основном они включают в себя проверку сопротивления тестируемого устройства, чтобы убедиться, есть ли в нем разомкнутая цепь.Измерение сопротивления между анодом и катодом SCR или между двумя главными выводами симистора должно указывать на очень высокое сопротивление при измерении в любом направлении путем перестановки щупов измерителя.

В обоих тестах измеритель должен регистрировать сопротивления вне диапазона (обычно обозначаемые дисплеем, показывающим «1» или «OL»), также называемое бесконечным или бесконечным сопротивлением. Подобные испытания сопротивления могут быть выполнены путем измерения сопротивления, опять же в обоих направлениях, между затвором тринистора и его катодом или затвором и MT1 на симисторе, и они должны указывать на гораздо более низкое сопротивление, но не на нулевое сопротивление.

Если какой-либо из этих четырех тестов дает показание 0 Ом, можно предположить, что компонент неисправен; однако, если результаты не показывают неисправностей, это ТОЛЬКО ВЕРОЯТНО означает, что с компонентом все в порядке. Испытания сопротивления этих высоковольтных компонентов имеют ограниченное применение, и на них можно положиться только как на простое руководство; они не показывают, что устройство будет запускаться при правильном напряжении или что ток удержания правильный. SCR и симисторы обычно работают при сетевом (линейном) напряжении, и когда они выходят из строя, результаты могут быть драматичными.По крайней мере, резкое сгорание предохранителя будет обычным результатом короткого замыкания тиристора или симистора. Однако вполне возможно, что эти устройства неисправны и не показывают никаких признаков неисправности при проверке омметром. Они могут казаться нормальными при низком напряжении, используемом в тестовых счетчиках, но все равно выходят из строя в условиях сетевого напряжения. Компоненты высокого напряжения, такие как тиристоры и симисторы, также могут быть повреждены из-за невидимых скачков напряжения или перегрузки по току.

Обычным методом тестирования оборудования, использующего тиристоры или симисторы, является проверка напряжений и форм сигналов, если цепь работает, или замена подозрительной части при повреждении (например,грамм. перегоревшие предохранители). Во многих случаях компоненты в источниках питания или схемах управления высоким напряжением производимого оборудования будут обозначаться как «критически важные для безопасности компоненты» и должны заменяться только с использованием методов и компонентов, рекомендованных производителем. Производители обычно указывают полные «комплекты для обслуживания» нескольких полупроводниковых устройств и, возможно, других связанных компонентов, все из которых должны быть заменены, поскольку отказ одного устройства управления мощностью может легко повредить другие компоненты, что не всегда очевидно. на момент ремонта.

ЛЮБЫЕ РАБОТЫ НА СЕТЕВЫХ ЦЕПЯХ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ ПРИ ПОЛНОСТЬЮ ОТКЛЮЧЕНИИ ЭЛЕКТРОПИТАНИЯ. ТАКЖЕ ЛЮБЫЕ КОМПОНЕНТЫ ДЛЯ ХРАНЕНИЯ ЗАРЯДА (например, КОНДЕНСАТОРЫ) ДОЛЖНЫ БЫТЬ РАЗРЯЖЕНЫ, ЕСЛИ ЭТО АБСОЛЮТНО НЕИЗБЕЖНО.

Если вы не были обучены безопасным методам работы, которые необходимы для работы с этими типами цепей, НЕ ДЕЛАЙТЕ ЭТО! Эти схемы могут убить!

Технические характеристики и рекомендации TRIAC

Технические характеристики и рекомендации TRIAC (поведение при включении)

Введение

Wiki определяет TRIAC как электронный компонент, приблизительно эквивалентный двум кремниевым выпрямителям (тиристорам / тиристорам), соединенным в обратную параллель (параллельно, но с обратной полярностью), и их вентили соединены вместе.В результате получается двунаправленный электронный переключатель, который может проводить ток в любом направлении при срабатывании (включении) и, следовательно, не имеет полярности. Это может быть вызвано либо положительным, либо отрицательным напряжением, приложенным к его электроду затвора. После срабатывания устройство продолжает проводить до тех пор, пока ток через него не упадет ниже определенного порогового значения, удерживающего тока, например, в конце полупериода основного питания переменного тока (AC). Это делает TRIAC очень удобным переключателем для цепей переменного тока, позволяющим управлять очень большими потоками мощности с помощью управляющих токов миллиамперного диапазона.Кроме того, применение триггерного импульса в контролируемой точке цикла переменного тока позволяет контролировать процентную долю тока, протекающего через TRIAC к нагрузке (управление фазой).

ОБЗОР
Заказчик запросил

DfR для определения критических параметров симистора и определения запаса, необходимого для обеспечения успешной работы их модульной системы управления. Используемый симистор тока — это чувствительный тип затвора.

Включить цепь управления

  • Включение (фиксация) при подаче напряжения срабатывания на затвор и поддержка выходного тока и напряжения клапанной станции для подачи питания на определенное количество и тип соленоидных нагрузок
    • Ток срабатывания затвора (зависит от квадранта)
    • Потенциально другие второстепенные

Отключить цепь управления

  • Не включайтесь, если вы не подаете напряжение срабатывания на затвор, даже при воздействии чрезмерного dV / dt, шума от основного источника переменного тока или обратной ЭДС после отключения индуктивной нагрузки соленоида.
    • Ток срабатывания затвора
    • Напряжение отключения
    • Минимальный ток удержания
    • Максимальное dV / dt
Срок службы 10 лет
    • Достаточно быстрое выключение при снятии напряжения срабатывания, чтобы предотвратить повреждение цепи во время перегрузки по току для станции
      • Минимальный ток удержания
      • Остаться в рабочем состоянии в случае воздействия указанного скачка напряжения на проводе клапана
        • Напряжение отключения
        • Импульсный ток
        • Способность рассеивать мощность и обеспечивать длительную фиксацию без ухудшения характеристик деталей
          • RMS ток в открытом состоянии
          • Температура перехода
МОДЕЛИРОВАНИЕ SPICE

Модель SPICE схемы между симистором и драйвером была смоделирована для определения влияния соленоидов и параметров симистора.Схема модели представлена ​​на рисунке 1.

Поведение симистора было определено с помощью директивы SPICE, которая учитывает:

  • Ток удержания
  • Критическое значение срабатывания dV / dt
  • Ток срабатывания затвора
  • Напряжение срабатывания затвора
  • Напряжение в открытом состоянии
  • Ток в открытом состоянии
  • Время включения

Это было изменено для исследования критических свойств симистора. Модель SPICE достаточно хорошо предсказывает поведение реальной схемы, как показано в сравнении между измеренным падением напряжения симистора и смоделированным падением, показанным на рисунке 2.

Нагрузка симистора при увеличении количества соленоидов

Моделирование SPICE для 1-3 подключенных соленоидов показано на рисунках с 3 по 5. Как показано на рисунках, ток увеличивается пропорционально количеству подключенных симисторов. Предполагалось, что соленоиды имеют индуктивность 0,100 Гн и сопротивление 40 Ом.

Для моделирования была выбрана схема с одним соленоидом, так как это наихудший случай для операций включения. Из-за повышенной индуктивности катушки длина провода между симистором и соленоидом не учитывалась.

При работе от переменного тока включение симистора в первую очередь является функцией тока триггера затвора. Ток триггера затвора необходим для повторного смещения переходов в симисторе каждые полупериод, когда ток нагрузки проходит через ноль. Во-вторых, если удерживающий ток слишком мал и в симисторе или линии возникают ток утечки или шум, соответственно, происходит непреднамеренное включение симистора при отсутствии сигнала запуска затвора. Время включения является проблемой только в высокочастотных цепях и не является проблемой при использовании 60 Гц.

Ток срабатывания затвора

Чтобы более точно отобразить требуемые значения тока затвора, было выполнено моделирование SPICE с различными токами запуска затвора. Результат показывает, что ток срабатывания затвора, равный 16,7 мА, является максимальным значением Igt, при котором включение происходит правильно. На рисунках 6 и 7 показано правильное включение при токе 16,7 мА.

При токах триггера затвора выше 16,7 мА наблюдается неправильное включение. На Рисунке 8 пики напряжения на симисторе каждые полупериод, а также большие пики, присутствующие при включении, подробно показаны на Рисунке 9.

Дальнейшее увеличение параметров тока триггера затвора испытательного симистора приводит к ухудшению характеристик включения. См. Рис. 10 и Рис. 11. Скачки напряжения на симисторе указывают на прерывистую подачу питания, приводящую в действие электромагнитные клапаны, что может препятствовать нормальной работе соленоидов.

При дальнейшем увеличении тока триггера затвора скачки напряжения становятся более серьезными. При токе срабатывания 17,2 мА симистор активен только в течение половины цикла (Рисунок 12 и Рисунок 13).Это функция квадрантной специфичности тока запуска затвора.

Полный отказ в работе при подаче стробирующего сигнала происходит, когда ток триггера затвора симистора достигает 17,3 мА, как показано на Рисунке 14.

Специфический для квадранта номинальный ток триггера затвора симистора обычно актуален только для работы на постоянном токе, когда смещение триггерных напряжений, а также смещение для напряжения нагрузки известны и постоянны. Система управления — это система переменного тока с индуктивной нагрузкой.По этой причине симистор должен работать во всех квадрантах. По достижении порога номинального тока затвора один или, возможно, два квадранта выйдут из строя раньше других, что приведет к полуволновой работе.

Шум на затворе симистора может дополнительно снизить требуемый параметр Igt на величину, равную значениям, измеренным в типичной рабочей среде.

Ток удержания

Ток удержания был найден путем установки тока срабатывания затвора на 15 мА. Минимальный рабочий ток удержания оказался равным 0.302 мА. При 0,301 мА частичное включение наблюдалось в отсутствие тока триггера затвора, как показано на рисунках 15 и 16. Шум на линии нагрузки увеличит минимальное значение тока удержания на величину, равную этому шумовому току. Регулировка тока триггера до значений ниже максимума 16,7 не повлияла на полученное значение.

ОБСУЖДЕНИЕ / ЗАКЛЮЧЕНИЕ

Характеристики включения зависят от номинального тока срабатывания затвора и минимального номинального тока удержания.При моделировании без шума критические значения следующие:

  • Igt: 16,7 мА (максимум)
  • Ih: 0,302 мА (минимум)

Продолжение анализа свойств схемы и симистора с точки зрения отключения симистора и надежности в течение срока службы может еще больше ограничить эти значения. При установлении соответствующих полей следует также учитывать проблемы шума.

Фигурки

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ

DfR означает, что были предприняты разумные усилия для обеспечения точности и надежности информации, содержащейся в этом отчете.Тем не менее, DfR Solutions не дает никаких гарантий, явных или подразумеваемых, в отношении содержания этого отчета, включая, помимо прочего, наличие каких-либо скрытых или патентных дефектов, товарной пригодности и / или пригодности для конкретного использования. DfR не несет ответственности за потерю использования, выручку, прибыль или любые особые, случайные или косвенные убытки, возникшие в результате, связанные с информацией, представленной в этом отчете, или возникшие в результате ее использования.

Анализ отказов симистора — Gideon Labs

Анализ отказов симистора — Gideon Labs

Обновление COVID-19: Компания Gideon Labs открыта и продолжает предоставлять услуги.

тиристоры представляют собой однонаправленные (односторонние) устройства тока, что делает их полезными только для управления постоянным током. Если два тиристора соединяются последовательно параллельно, так же, как два диода Шокли были соединены вместе, чтобы сформировать DIAC, у нас есть новое устройство, известное как TRIAC. TRIAC — это трехконтактный полупроводниковый прибор для управления током. По сути, это развитие SCR или тиристора, но в отличие от тиристора, который может работать только в одном направлении, TRIAC является двунаправленным устройством.

Истории успеха

Компания Gideon получила шесть вышедших из строя полевых МОП-транзисторов STMicroelectronics STW37N60DM2AG 600 В для анализа отказов. Эти высоковольтные N-канальные силовые полевые МОП-транзисторы являются частью серии быстро восстанавливающихся диодов MDmesh ™ DM2. Они предлагают очень низкий заряд восстановления (Qrr) и время (trr) в сочетании с низким RDS (on), что делает его подходящим для наиболее требовательных высокоэффективных преобразователей и идеальным для мостовых топологий и преобразователей с фазовым сдвигом ZVS. Они были установлены на H-мосту с гарантированной инженерной поддержкой, исключающей наложение сигналов во время перехода.

Gideon Analytical Laboratories получила два акриловых пленочных конденсатора для электронного анализа отказов. Также для сравнения были предоставлены шесть хороших конденсаторов. Конденсатор — это пассивный двухконтактный электрический компонент, который накапливает потенциальную энергию в электрическом поле. Эффект конденсатора известен как емкость. Хотя некоторая емкость существует между любыми двумя электрическими проводниками, находящимися поблизости в цепи, конденсатор — это компонент, предназначенный для добавления емкости в схему.

Компания Gideon Analytical Laboratories получила пять вышедших из строя симисторов ST Microelectronics BTA16-800 и один исправный симистор ST Microelectronics BTA16-800 для сравнения.Симистор — это общий товарный знак для электронного компонента с тремя выводами, который проводит ток в любом направлении при срабатывании триггера. Его формальное название — двунаправленный триодный тиристор или двухсторонний триодный тиристор. Целью было определить причину этих сбоев. Компания Gideon Analytical Laboratories сразу приступила к работе, проводя анализ отказов симисторов ST Microelectronics BTA16-800.

Gideon Analytical Laboratories получила два фототриака Vishay 4208 для анализа отказов. TRIAC — это общий товарный знак для электронного компонента с тремя выводами, который проводит ток в любом направлении при срабатывании триггера.Его формальное название — двунаправленный триодный тиристор или двухсторонний триодный тиристор. Тиристор аналогичен реле в том смысле, что небольшое напряжение и ток могут управлять гораздо большим напряжением и током. TRIAC являются подмножеством тиристоров и связаны с кремниевыми выпрямителями (SCR).

Gideon Analytical Labs получила один неисправный симистор ST Microelectronics BTA06 и корпус TO-220AB. Сообщается, что устройство не удалось после прожига. Этот симистор подходит для коммутации переменного тока общего назначения в соответствии с ST Micro.Их можно использовать в качестве функции ВКЛ / ВЫКЛ в таких приложениях, как статические реле, регулировка нагрева, цепи запуска асинхронных двигателей или для управления фазой в регуляторах освещенности, регуляторах скорости двигателя. Специально рекомендованы для использования с индуктивными нагрузками благодаря своим высоким коммутационным характеристикам.

Gideon Analytical Laboratories получила одну неисправную оптопару, а также две оптопары для сравнения. В качестве изолятора, предпочитаемого производителями, оптопары служат защитой от шума во многих электронных устройствах.Эта оптопара имеет минимальное напряжение изоляции 5300 В среднеквадратического значения, типичное входное напряжение 1,16 В и пиковое выходное напряжение 600 В. Целью было выявить причину сбоя. Оптрон был электрически испытан. Вход нормально работал с VF 1.

Как проверить симисторы и тиристоры универсальным мультиметром. Как проверить тиристоры и симисторы тестером и мультиметром

В основе любых электроприборов и печатных плат лежит комплекс различных радиоэлементов, которые являются основой нормального функционирования всей разнообразной электротехники.Одним из основных элементов любой электросхемы является симистор, который является одним из типов тиристоров.

Говоря о тиристоре, мы также будем иметь в виду симистор. Его назначение — переключение нагрузки в сети переменного тока. Внутренняя организация включает три электрода для передачи электрического тока: контрольный и 2 силовых.

Назначение и применение симисторов в радиоэлектронике

Особенностью тиристора является прохождение тока от одного контакта (анода) к другому (катоду) и в обратном направлении.Любой тиристор управляется как положительным, так и отрицательным током. Для его работы необходимо подать на управляющий контакт низковольтный импульс. После подачи такого сигнала симистор открывается и переходит из закрытого состояния в открытое, пропуская через себя ток. При прохождении тока разблокировки через управляющий контакт он размыкается. А также разблокировка происходит, когда напряжение между электродами превышает определенное значение.

При подаче переменного тока тиристор изменяет состояние , вызывает изменение полярности напряжения на силовых электродах.Он замыкается при изменении полярности между клеммами питания, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора из-за различных радиомеханических помех используемые устройства имеют дополнительную защиту. Для этого обычно используется RC-демпферная схема (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Он служит для ограничения скорости изменения тока во время переключения.

Симисторы в электрической цепи

Если говорить о симисторах, необходимо учитывать тот факт, что это один из типов тиристоров, который также имеет трех и более p — n переходов . Их отличие только в управляющем катоде, который определяет соответствующие переходные характеристики передаваемого тока и, в принципе, работу в электрических цепях. Обычно они начинают свою работу сразу после подачи напряжения питания на нужный контакт.

Цепь управления симистором

Схема управления тиристором проста и надежна. Они значительно упростят принципиальную схему своим наличием, избавив ее от ненужных электрических компонентов и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и дозвон) в случае необходимости или выхода из строя электронных компонентов с их участием.

Практическое применение симисторов

Необходимые знания для проверки, замены и последующего ремонта различных электронных компонентов с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

У домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости вращения роторов электродвигателей, в регуляторах мощности осветительных приборов и других устройствах.

Принцип работы диода и тиристора

Перед тем, как описывать способы проверки, напомним о тиристорном устройстве, которое недаром называют управляемым диодом. Это означает, что оба полупроводниковых элемента имеют практически одно и то же устройство и работают абсолютно одинаково, за исключением того, что у тиристора есть ограничение — управление через дополнительный электрод путем пропускания через него электрического тока.

Тиристор и диод пропускают ток в одном направлении, что во многих конструкциях советских диодов обозначается направлением угла треугольника на мнемоническом символе, расположенном непосредственно на корпусе. В современных диодах в керамическом корпусе маркировку катода обычно наносят кольцевой полосой рядом с катодом.

Проверьте работоспособность и тиристор, пропустив через них ток нагрузки. Для этого разрешается использовать лампочку накаливания от старых фонарей, нить которой светится от силы тока порядка 100 мА и менее.Когда ток проходит через полупроводник, свет будет гореть, но если нет, то нет.

Подробнее о работе диодов и тиристоров читайте здесь:,

Как проверить исправность диода

Обычно для оценки исправности диода используются омметр или другие устройства, предназначенные для измерения активных сопротивлений. Подавая напряжение на электроды диода в прямом и обратном направлении, судите о величине сопротивления.При открытом переходе p-n омметр покажет нулевое значение, а при закрытом переходе — бесконечность.

Если омметр отсутствует, то диод можно проверить на исправность при помощи батарейки и лампочки.


Перед тем, как проверять диод таким способом, необходимо учесть его мощность. В противном случае ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и снизить ток нагрузки до 10-15 мА.

Как проверить тиристор

Есть несколько методов оценки производительности тиристора. Рассмотрим три самых распространенных и доступных в домашних условиях.

Аккумулятор и метод освещения


При использовании этого метода токовая нагрузка 100 мА, создаваемая лампочкой на внутренних цепях полупроводника, также должна быть оценена и применена в течение короткого времени, особенно для цепей управляющих электродов.

На рисунке не показана проверка на короткое замыкание между электродами. Эта неисправность практически не встречается, но чтобы быть полностью уверенной в ее отсутствии, следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлениях. Это займет всего несколько секунд.

При сборке схемы по первому варианту полупроводниковый переход устройства не пропускает ток, и свет не горит.В этом его главное отличие в работе от обычного диода.

Для открытия тиристора достаточно приложить положительный потенциал источника к управляющему электроду. Этот вариант показан на второй диаграмме. В исправном устройстве разомкнется внутренняя цепь, и через нее будет протекать ток. Об этом будет свидетельствовать свечение нити лампы накаливания.

На третьей диаграмме показано отключение питания от управляющего электрода и прохождение тока через анод и катод.Это происходит из-за избыточного тока, удерживающего внутренний переход.

Эффект удержания используется в схемах управления мощностью, когда для размыкания тиристора, регулирующего величину переменного тока, от фазовращающего устройства на управляющий электрод подается кратковременный импульс тока.

Лампочка в первом случае или отсутствие ее свечения во втором говорит о неисправности тиристора. Но потеря люминесценции при снятии напряжения с контакта управляющего электрода может быть вызвана величиной тока, протекающего по цепи анод-катод, меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод переводит тиристор в закрытое состояние.

Методика испытаний самодельным прибором

Снизить риски повреждения внутренних цепей полупроводниковых переходов при проверке тиристоров малой мощности можно подбором значений токов в каждой цепи. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, рассчитанное на работу от 9-12 вольт.При использовании других напряжений питания следует выполнить расчет значений сопротивления R1-R3.

Рис. 3. Схема устройства для проверки тиристоров

.

Через светодиод HL1 достаточно тока около 10 мА. При частом использовании устройства для подключения электродов тиристорного ВС желательно делать контактные розетки. Кнопка SA позволяет быстро переключать цепь управляющего электрода.

Светодиод загорается перед нажатием кнопки SA или отсутствие его свечения является явным признаком повреждения тиристора.

Метод с помощью тестера, мультиметра или омметра

Наличие омметра упрощает процесс поверки тиристора и напоминает предыдущую схему. В нем батареи устройства служат источником тока, а вместо свечения светодиода используется стрелка отклонения для аналоговых моделей или цифровых показаний на табло для цифровых устройств. При показаниях высокого сопротивления тиристор закрыт, а при малых значениях — открыт.


Здесь те же три этапа теста оцениваются с отключенной кнопкой SA, нажатой на короткое время и снова отключенной.В третьем случае тиристор, скорее всего, изменит свое поведение из-за малого значения проверяемого тока: его недостаточно для его удержания.

Низкое сопротивление в первом случае и высокое во втором говорят о нарушениях полупроводникового перехода.

Метод омметра позволяет проверить исправность полупроводниковых переходов, не испаряя тиристор с большинства печатных плат.

Конструкцию симистора условно можно представить как состоящую из двух тиристоров, соединенных друг с другом против часовой стрелки.Его анод и катод не имеют строгой полярности, как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Обычно проверка тиристора включает измерение сопротивления между его анодом и катодом. В исправном тиристоре он всегда бесконечно велик. Между управляющим выводом и одним из контактов (тиристор имеет катод) низкое сопротивление (от 25 до 390 Ом, в зависимости от типа полупроводника) — параметр, который сравнивают с рабочим полупроводником.

Если симистор или тиристор внешне кажется исправным, но тем не менее есть подозрение на его неисправность, то его необходимо проверить. Но как проверить симистор и тиристор на работоспособность? Среди большинства методов диагностики тиристора или симистора два метода проверки считаются довольно простыми (не требующими использования специальных пультов).

Первый способ проверить тиристор или симистор

Может использоваться при наличии двух омметров круговой шкалы.Эти устройства должны быть подключены, как показано ниже.

Следует отметить, что измеренное сопротивление между катодом и анодом исследуемого полупроводника должно стремиться к бесконечности, пока мы не подключим щупы другого омметра к управляющему контакту (необходимо соблюдать полярность). Под действием напряжения, поступающего с омметра, рабочий тиристор разблокируется и его сопротивление между катодом и анодом мгновенно уменьшается до нескольких десятков Ом.

Второй способ проверки

Этот метод проверки работоспособности полупроводника заключается в том, что отпирающее напряжение подается через кнопку с анода.

Следует отметить, что после однократного нажатия кнопки маломощный полупроводник будет приходить в разомкнутом состоянии до тех пор, пока мы не отсоединим щуп омметра от анода тиристора.

Для такой проверки исправности отпаивать симистор от платы не нужно — нужно только отключить управляющий контакт от цепей устройства.

Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для конструкции трансформаторов и зарядных устройств.

Симисторы — разновидность тиристоров, которые по корпусу являются аналогами кремниевых выпрямителей. Но, в отличие от тиристоров, которые являются однонаправленными устройствами, то есть пропускают ток только в одном направлении, симисторы двусторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять слоев тиристоров, снабженных электродами. На первый взгляд отечественные симисторы напоминают структуру pnp, но имеют несколько участков с проводимостью n-типа. Последняя область, расположенная после этого слоя, имеет прямое соединение с электродом, что обеспечивает высокую проводимость сигнала.Иногда их также сравнивают с выпрямителями, но стоит помнить, что диоды передают электрический сигнал только в одном направлении.

Фото — использование тиристора

Симистор считается идеальным устройством для использования в коммутационных сетях, поскольку он может контролировать ток, проходящий через обе половины переменного цикла. Тиристор управляет только полупериодом, а вторая половина сигнала не используется. Благодаря такой особенности работы симистор отлично передает сигналы любых электрических устройств, часто вместо реле используется симистор.Но в то же время симистор редко используется в сложных электрических устройствах, таких как трансформаторы, компьютеры и т. Д.


Фото — симистор

Видео: как работает симистор

Принцип действия

Принцип работы симистора очень похож на тиристорный, но его легче понять, основываясь на работе тринисторного аналога этого компонента электрических сетей. Обратите внимание, что четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

  1. Контролировать работу катода и анода;
  2. При необходимости поменять их местами, что позволяет менять полюса работы.

В данном случае работу устройства можно рассматривать как комбинацию двух встречно направленных тиристоров, но работающих по полному циклу, т. Е. Без обрыва сигналов. Обозначение на схеме соответствует двум подключенным тиристорам:

Фото — тринистор аналоговый симистор

Согласно чертежу на электрод передается сигнал, который является управляющим, что позволяет размыкать контакт детали. В момент, когда напряжение на аноде положительное, соответственно на катоде отрицательное — электрический ток начнет протекать через тринистор, который находится на левой стороне схемы.Исходя из этого, если полярность полностью изменена, что меняет местами заряды катода и анода, ток, передаваемый через контакты, будет проходить через правый тринистор.

Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряжение на контактах и, сравнивая его, перенаправляет ток на конкретный тринистор. Непосредственно к этому, если сигнал не поступает, то все тринисторы замкнуты и прибор не работает, то есть никаких импульсов не передает.

Если есть сигнал, есть подключение к сети и ток должен куда-то течь, то симистор в любом случае проводит полярность направления, в данном случае это продиктовано зарядом и полярностью полюсов, катода и анода. .

Обратите внимание, что на приведенной выше диаграмме показана вольт-амперная характеристика (ВАХ) симистора на рисунке 3. Каждая из кривых имеет параллельное направление, но в противоположном направлении. Они повторяют друг друга под углом 180 градусов.Такой график позволяет говорить, что симистор является аналогом динистора, но при этом очень легко преодолеваются участки, через которые динисторы не передают сигнал. Параметры устройства можно регулировать, подавая ток разного напряжения, это позволит разблокировать контакты в нужном направлении, просто изменив полярность сигнала. На чертеже места, которые могут отличаться, обозначены пунктирными линиями.


Фото — Симисторы

Благодаря этой ВАХ становится понятным, почему стабилизированный тиристор получил такое название.Симистор — означает «симметричный» тиристор, в некоторых учебниках и магазинах его можно назвать симистором (зарубежный вариант).

Область применения

Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им управлять большими потоками электроэнергии, проходящей через небольшие контактные полюса. Кроме того, можно контролировать даже процент индуктивного тока нагрузки.


Фото — работа симистора

Устройства используются в радиотехнике, электромеханике, механике и других отраслях промышленности, где может потребоваться регулирование протекания тока.Оптосимисторы часто используются в системах охранной сигнализации и диммерах, где для корректной работы устройств требуется полный цикл, а не полупериод. Хотя довольно часто использование этой радиокомпоненты оказывается неэффективным. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить тиристоры малой мощности, которые обеспечат одинаковую работу обоих периодов.

Проверка, распиновка и использование симисторов

Для того, чтобы использовать прибор в работе, необходимо уметь проверять симистор мультиметром или «прозвонить» его.Для проверки нужно оценить характеристики управляемых кремниевых диодов. Такие выпрямители позволяют корректировать нужные показания и проводить испытания. Отрицательный контакт омметра подключается к катоду, а положительный — к аноду. После нужно выставить показатель на омметре на единицу, а контрольный электрод подключить к выходу анода. Если данные находятся в диапазоне от 15 до 50 Ом, значит, деталь работает правильно.


Фото — управление светом симисторами

Но при этом при отключении контактов от анода показания омметра должны сохраняться на приборе.Убедитесь, что простой измерительный прибор не показывает остаточного сопротивления, иначе это будет свидетельствовать о том, что деталь не работает.

В быту симисторы часто используются для создания устройств, продлевающих жизнь различных устройств. Например, для ламп накаливания или счетчиков можно сделать регулятор мощности (нужен тиристор MAC97A8 или ТК).


Фото — схема регулятора мощности на симисторе

На схеме показано, как собрать регулятор мощности.Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой части вырабатывается около 5 импульсов, которые являются полупериодами одного сигнала. Импульсы управляются резисторами, а транзистор с выпрямительными диодами контролирует момент включения симистора.


Фото — измерение симистора

Этот транзистор открыт, исходя из этого, сигнал подходит для входа генератора, в то время как симисторы и остальные транзисторы закрыты.Но если в момент размыкания контактов состояние генератора не изменится, то элементы накопителя будут генерировать небольшой импульс для запуска распиновки. Такую схему диммера на симисторе можно использовать для управления работой осветительных приборов, стиральной машины, оборотов пылесоса или ламп накаливания с датчиком движения. Тестером проверьте работу схемы и можно пользоваться.


Фото — работа симистора

Для улучшения системы можно организовать управление симистором через оптрон, чтобы включение элемента в работу происходило только после сигнала.Учтите, что при прокрутке барабана движения происходят очень резко — значит неисправен электронный модуль. Чаще всего перегорает симистор, импортные проводники часто не выдерживают скачков напряжения. Чтобы заменить его, просто возьмите такую ​​же деталь.


Фото — тиристорное зарядное устройство

Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований достаточно купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB — VTB, BTA — BTA. тоже буду делать).В условиях отечественного импорта используются симисторы зарубежного производства, цены на которые несколько выше.

Динисторы, тиристоры, симисторы — полупроводниковые приборы четырехслойной структуры рпнрп. Часто при объяснении принципа работы их изображают как соединенные между собой, как показано на рис. 1, транзисторы разной проводимости. Как видно из рисунка, тиристор имеет три выхода: анод (A), катод (K) и управляющий электрод (RE). Напряжение, приложенное к pn переходу одного из транзисторов, обеспечивает разблокировку тиристора.

Самая частая и характерная неисправность симисторов, тиристоров и динисторов — это межэлектродный пробой — анод1-анод2, анод-катод, анод-управляющий электрод, катод-управляющий электрод. По этой причине в первую очередь следует проверить сопротивление между электродами омметром. В исправных симисторах, тиристорах, динисторах секция АК (А1-А2) не называется. Тиристор и симистор, кроме того, можно проверить на правильность pn перехода между RE и K, за исключением устройств со встроенным резистором.

Наилучшие результаты испытаний тиристоров и симисторов дает испытательная схема , показанная на рис. 2. Для питания схемы используется источник постоянного тока 12 В с допустимым током нагрузки не менее 200 мА. Резистор R1 ограничивает ток через тестируемый прибор, а резистор R2 — через его управляющий электрод. В схеме предусмотрена проверка тиристоров и симисторов малой и средней мощности. Для проверки устройства необходимо:

1. Включите его в схему, как показано на рис.2.

2. Подключите на короткое время его RE к резистору R2. Устройство должно открыться, напряжение + U test станет близким к нулю. Устройство остается открытым даже при отключении управляющего электрода от R2.

3. Разомкните цепь питания анода (RE подключен к K) и снова замкните. Прибор должен быть закрыт. + U тест 12 В.

При тестировании симисторов повторить p.p. 2, 3 и R2 в этом случае должны получать питание от отрицательного полюса источника питания.

Результат такого тестирования позволяет проверить исправность устройства.Тем не менее 100% результатом тестирования следует считать правильную работу полупроводникового прибора в том устройстве, где он установлен.

Динисторы (или диаки и сидаки, как их еще называют) не имеют выхода UE, и они открываются, когда напряжение на аноде превышает определенное значение, указанное в параметрах для этого типа устройства. Как уже было сказано выше, мультиметром динистор можно проверить только на пробой перехода. Чтобы точно знать, исправен динистор или нет, его следует проверить, включив в тестовую схему (рис.3), который питается от регулируемого источника переменного напряжения.

Диод D1 — однополупериодный выпрямитель, конденсатор C1 — сглаживающий резистор, а резистор R1 ограничивает ток через динистор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *