Как проверить не555 мультиметром
Теория и практика применения таймера 555. Часть первая.
Часть первая. Теоретическая.
Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.
Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:
Производитель
Название микросхемы
В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.
Начнем с корпуса и выводов.
Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.
Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.
Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.
Итак, выводы (Мяу! Это он про ноги. ):
1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (
7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.
8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.
Впитали? Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.
Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она:
К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.
Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».
Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.
Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический.)
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.
Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.
Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.
Перейдем ко второму режиму.
В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.
Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться. фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;
Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать тут.
Автор: с2. Опубликовано в Все статьи
Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту микросхему.
Микросхема существует с 1971 года, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер»,
Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 39 лет практически каждый уважающий себя производитель полупроводников, считал свои долгом выпустить свою версию этой микросхемы.
Но при этом в функциональности и расположении выводов никаких различий нет. Все они полные аналоги оригинала Signetics Corporation. Новые виды схемных решений находятся и по сей день .
Меня эта микросхема по прежнему часто удивляет , как изменив в схеме подключение одного элемента, схема приобретает новую функциональность.
В статье простые схемы примеры практического применения данной микросхемы
Триггер Шмидта.
Это очень простая, но эффективная схема. Схема позволяет, подавая на вход аналоговый сигнал, получить чистый прямоугольный сигнал на выходе
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Простой таймер.
- Схема простого таймера NE555, видео обзор от пользователя jakson .
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Схема таймера NE555, для получения более точных интервалов.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Простой ШИМ
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Сумеречный выключатель.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Управление устройством с помощью одной кнопки.
- Вариант исполнения такой схемы находится в этом блоге.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог 561TM2)
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Датчик (индикатор) влажности.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Контроль уровня воды.
Два датчика уровня жидкости могут служить для контроля за количеством воды в баке . Один датчик сообщает о малом количестве воды в баке, а второй о том , что бак полный. При небольшой доработке схемы выходные сигналы схемы можно подключить к более серьёзным нагрузкам :).
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
ON/OFF сенсор.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Схема для включения светодиодной подсветки от автономного питания, на 10- 30секунд.
Один вариант из применения, встраивается во входную дверь в районе замочной скважины.
Подсветка включается посредством нажатия кнопки на дверной ручке – в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Кодовый замок на таймере NE555.
Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.
И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности ,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.( в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.
Работа схемы;
— Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
— Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
— Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
— После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся.
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. 🙂
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем )
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Назначение восьми ног микросхемы.
1. Земля.
Вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск.
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход.
Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль.
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов.
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд.
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.
8. Плюс питания.
Напряжение питания таймера может находиться в пределах 4,5-16 вольт.
Программа параметров и расчета NE555.rar 1,3Mb.
Работа схемы таймера NE555 в протеусе.
JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день! |
Anything in here will be replaced on browsers that support the canvas element
Таймер 555 производится многими компаниями: Philips, STMicroelectronics, TexasInstruments… — эта микросхема завоевала огромную популярность среди электронщиков и используется во многих цепях радиоэлектроники, она компактна (выпускается в разных корпусах: DIP8, SO-8), многофункциональна и имеет низкое энергопотребление.
Если у вас есть таймер 555, но вы не знаете можно ли его использовать, работоспособный ли он то для таких случаев и создана простейшая схема для теста таймера 555. Когда вы испытываете полностью исправный таймер, то верхний и нижний светодиоды мигают по очереди, причем один может гореть немного ярче. Если же у вас дефектный 555 timer, то первый или второй светодиод будет просто светиться, ну или оба светодиода будут просто гореть — во всех этих случаях 555 неисправен. Здесь популярный таймер работает в режиме астабильного мультивибратора.
Частота вспышек светодиодов может быть изменена значениями конденсаторов C1 и C2, а также делителем напряжения на резисторах R1, R2.
Питание 9V, к примеру крона, потребление крайне мало.Можно подавать напряжение от 4,5 и до 16 Вольт.
На выводе 5 есть небольшой керамический конденсатор 10нФ. Он просто отфильтровывает шум и его вообще можно не ставить. Конденсатор С2 может иметь ёмкость от 0,001 до 0.01uF, последний является наиболее распространенным и доступным. В справочной информации по 555 (datasheet) указывается разрешение на использование керамического 0.01uF конденсатора общего назначения.
Сопротивления резисторов R3 и R4 должны быть подобраны в зависимости от типа вашего светодиода (Led), нужно начать с 220 Ом и идти вверх или вниз от 100 до 330 Ом, опять же, в зависимости от вашего led (высокий,ультра яркий, 2мм, 3мм, 5мм и т.д.). Светодиоды можно заменить на один RGB с тремя выводами. Данная схема построена на минимальном количестве деталей, в целях простоты и экономии радиодеталей. Панельку 8 DIP берите цанговую, так надежнее. Светодиоды были взяты первый попавшиеся.
Пример положительного теста таймера 555CN (gif анимация). Светодиоды мигают так, как надо. При отсутствии таймера-микросхемы в колодке светодиоды будут просто гореть.
USB тестер для проверки микросхемы ne555
Прочитано: 750
Привет всем с вами снова ITSpec.
Сегодня хочу рассказать об известной микросхеме ne555. Применение этой микросхемы очень обширно и многие на ней собирали таймеры, металлодетекторы и преобразователи напряжения. И часто когда собираешь какой-то проект нужно проверить рабочая ли микросхема. Поэтому я решил собрать тестер для этой микросхемы.
Для тестера я выбрал вот эту схему.
Работа этой схемы напоминает мультивибратор. Схема начинает работать от напряжения 3,3 вольта правда свечение светодиодов очень тусклое так что питать схему лучше от 5 до 15 вольт. Я собираюсь запитать схему от USB порта чтобы специально не искать питание когда понадобиться тестер.
Для схемы нам понадобятся 2 резистора на 390 Ком этими резисторами регулируется частота мигания светодиодов их номинал может быть от 1 кОМ до 1 МОм Еще нам понадобятся два токоограничивающих резистора на 300 Ом, два светодиода и два конденсатора один электролитический на 1 мкф и один керамический на 10 нф. Еще нам пригодится колодка для микросхемы для DIP8 и монтажная плата. Ссылки на все комплектующие я оставлю в описании
Для проверки работоспособности схемы сначала я собрал ее на Bredborde и она заработала без всякой наладки.
Теперь спаяем ее на монтажной плате.
Получился вот такой маленький гаджет.
Если после включения питания мигают оба светодиода значит микросхема рабочая. Если же один из светодиодов не мигает или постоянно светится то микросхему можно выкинуть.
Мой лабораторный блок питания: http://got.by/360hea
Коврик для пайки: http://got.by/360i3y
Паяльная станция на картриджах T12 рекомендую: http://got.by/360idv
Фен для начинающих: http://got.by/360ior
Лучший фен по моему мнению: http://got.by/360ixi
Паяльная паста которой пользуюсь для реболла чипов: http://got.by/360j4w
Пинцеты дешевые набор: http://got.by/360jac
Микроскоп бюджетный: http://got.by/360jms
Микроскоп на который я снимаю: http://got.by/360k61
Оборудование для замены дисплеев:
Сепаратор как у меня: http://got.by/360ks0
Клей B7000: http://got.by/360kze
Карточки для демонтажа экрана: http://got.by/360l5t
Салфетки безворсовые: http://got.by/360ljm
Получить cashback с любой покупки — http://got.by/360mxl
Мы в контакте http://vk.com/itspe
Мы в Одноклассниках: https://ok.ru/group/58196774682666
Тестер для таймеров NE555/КР1006ВИ1 | Random stuff
Дядюшка Ляо пообещал прислать немного таймеров NE555 для пищалок и моргалок, но если кто желает поддержать и протестировать отечественного производителя — КР1006ВИ1.
В основе схемы лежит тот же таймер, что мигал светодиодом для индикатора разряда батареи. Частота и скважность регулируются номиналами R3, R4, и C2. Калькулятор для тех, кто хочет, чтобы у него моргало чуть иначе.
Это слайд-шоу требует JavaScript.
Выход «3» микросхемы умеет как отдавать «плюс» питания (горит VD2), так и «всасывать» его (горит VD1), становясь «минусом». Можно представить, что внутри таймера стоит переключатель, который коммутирует то одно, то другое напряжение.
Если же микросхема неисправна или не установлена, то ток будет сквозить через оба светодиода.
Прямо как тут. У меня маленькой DIP-панельки не нашлось, так что пришлось делать спаренную версию. Диод по питанию — дело вкуса.
N. B. Другие показания для того, чтобы выбросить таймер в окошко — один из светодиодов не загорается или горит постоянно.
В столе заболтались две КР1006ВИ1. Питание — 8,2 вольта с литиевых батарей.
Мигает. Значит, исправны. Значит, зря они мне раньше не попались, а магазин «Аматор» зря получил десятку за две NE555.
cxema.org — Стенд для тестирования таймеров 555
Таймер 555 производится многими компаниями: Philips, STMicroelectronics, TexasInstruments… — эта микросхема завоевала огромную популярность среди электронщиков и используется во многих цепях радиоэлектроники, она компактна (выпускается в разных корпусах: DIP8, SO-8), многофункциональна и имеет низкое энергопотребление.
Если у вас есть таймер 555, но вы не знаете можно ли его использовать, работоспособный ли он то для таких случаев и создана простейшая схема для теста таймера 555. Когда вы испытываете полностью исправный таймер, то верхний и нижний светодиоды мигают по очереди, причем один может гореть немного ярче. Если же у вас дефектный 555 timer, то первый или второй светодиод будет просто светиться, ну или оба светодиода будут просто гореть — во всех этих случаях 555 неисправен. Здесь популярный таймер работает в режиме астабильного мультивибратора.
Частота вспышек светодиодов может быть изменена значениями конденсаторов C1 и C2, а также делителем напряжения на резисторах R1, R2.
Питание 9V, к примеру крона, потребление крайне мало.Можно подавать напряжение от 4,5 и до 16 Вольт.
На выводе 5 есть небольшой керамический конденсатор 10нФ. Он просто отфильтровывает шум и его вообще можно не ставить. Конденсатор С2 может иметь ёмкость от 0,001 до 0.01uF, последний является наиболее распространенным и доступным. В справочной информации по 555 (datasheet) указывается разрешение на использование керамического 0.01uF конденсатора общего назначения.
Сопротивления резисторов R3 и R4 должны быть подобраны в зависимости от типа вашего светодиода (Led), нужно начать с 220 Ом и идти вверх или вниз от 100 до 330 Ом, опять же, в зависимости от вашего led (высокий,ультра яркий, 2мм, 3мм, 5мм и т.д.). Светодиоды можно заменить на один RGB с тремя выводами. Данная схема построена на минимальном количестве деталей, в целях простоты и экономии радиодеталей. Панельку 8 DIP берите цанговую, так надежнее. Светодиоды были взяты первый попавшиеся.
Пример положительного теста таймера 555CN (gif анимация). Светодиоды мигают так, как надо. При отсутствии таймера-микросхемы в колодке светодиоды будут просто гореть.
Печатная плата 555-timer-tester.lay для программы sprintlayout. Размеры готовой платы у меня вышли 3,5 см x 2,5 см.
Список деталей:
R1 = 68кОм
R2 = 39кОм
R3 = от 100 до 330 Ом в зависимости от LED
R4 = Так же само, как и R3
C1 = 1мкФ/16V
С2 = 0.01uF
LED 1 = светодиод любого цвета
LED 2 = светодиод любого цвета
8-контактный DIP разъем (панелька)
Скачать плату в формате lay
Как проверить оптрон мультиметром не выпаивая
Рассуждения весьма общие, но вопросы появляются достаточно часто, поэтому – почему бы и нет, почему бы не затронуть самые вершки?
Берем очень условный кусочек схемы с очень условной оптопарой, но, тем не менее, в большинстве случаев эта схема или соответствует действительности, или близка к ней:
Может быть питание не 5 вольт, а 3,3 (что последнее время чаще), может быть другого типа оптопара – что уже реже.
Тем не менее, рассмотрим то, что есть.
Имеем: оптопара DA, разъем, через который она соединена со схемой XT, балластное сопротивление светодиода R1 и резистор оттяжки сигнала на питание R2. Ну, и некуда деваться – землю и питание.
Питание в большинстве случаев сейчас 3,3 В, но особой роли в данном случае это не играет.
В этом случае мы имеем на светодиоде –напряжение порядка 1,2-2 В, остальное упадет на балластном резисторе R1.
На коллекторе фототранзистора — в зависимости от того, освещен его переход или нет, то бишь – открыта шторка или закрыта:
- Шторка открыта – имеем напряжение, близкое к 0, на практике – не больше 0,2-0,5 В.
Шторка закрыта – имеем 5 В через сопротивление оттяжки R2.
Почему может не работать? А почему угодно. Наиболее слабое место – разъем.
Допустим, обрыв верхнего по рисунку контакта – не будет тока через светодиод (и падения напряжения на нем – тоже, что сразу будет видно любым, даже самым дешевым тестером), фототранзистор будет всегда закрыт, на его коллекторе будет всегда напряжение +5 (+3,3) В, как ни дергай флажком.
То же самое – при обрыве в схеме R1, но редко…
Обрыв среднего по рисунку контакта – на коллекторе фототранзистора ничего не будет. Хоть он закрыт – тогда вообще контакт в воздухе, хоть открыт – тока через него все равно нет, поэтому он тоже висит в воздухе, да даже если и будет что то чеорз какие то утечки – грязи в принтерах и копирах обычно хватает – все равно на коллекторе фототранзистора будет ноль.
Вне зависимости от положения шторки.
Обрыв нижнего по схеме контакта – нет земли на оптроне.
На двух остальных контактах оптрона будет +5 (+3,3) В – на светодиоде мы просто будем измерять напряжение питания через резистор, номинал у него небольшой, поэтому питание и увидим, на коллекторе фототрнзистора – то же самое: даже если он открыт, цепи нет – провод оборван.
Более редкая штука, но все таки иногда случающаяся – неисправность оптопары.
Если напряжение на светодиоде в норме – то есть в пределах 1,2-2 В, то он, скорее всего, исправен.
При нулевом напряжении – пробит (не встречал), при напряжении питания – в обрыве.
Неисправен фототранзистор – или пробит (напряжение на коллекторе – 0), или в обрыве – напряжение равно питанию.
При грязном зазоре оптопары – там есть щель как у светодиода, так и фототранзистора – напряжение будет всегда, как при закрытом зазоре то есть равно (или близко) напряжению питания.
В принципе, если что не ясно или хочется дополнить и/или исправить – милости просим, написано все быстро, шустро, и не очень внимательно…
![]() |
Этот пробник, предназначен для проверки большого количества видов оптопар: оптотранзисторов, оптотиристоров, оптосимисторов, опторезисторов, а также микросхемы таймера NE555, отечественным аналогом которой является микросхема 1006ВИ1
Модифицированный вариант пробника для проверки оптронов
Сигнал с третьего вывода микросхемы 555 через резистор R9 поступает на один вход диодного моста VDS1, при условии, что к контактам Анод и Катод подсоединен рабочий излучающий элемент оптопары, в таком случае через диодный мост потечет ток, и будет мигать светодиод HL3, при условии что фотоприемник исправен, будет открываться VT1 и загораться HL3, который будет проводить ток, HL4 при этом будет моргать
![]() |
Данный принцип можно использовать для проверки практически любого оптрона:
Около 570 мили вольт должен показать мультиметр, если оптрон исправен в режиме прозвонки диода, т.к в этом режиме с щупов тестера поступает около 2 вольт, но этого напряжения не достаточно для открытия транзистора, но как только мы подадим питание на светодиод, он откроется и мы увидим на дисплее напряжение которое падает на открытом транзисторе.
![]() |
Описываемое ниже устройство покажет не только исправность таких популярных оптронов как PC817, 4N3x, 6N135, 6N136 и 6N137, но и их скорость срабатывания. Основа схемы микроконтроллер серии ATMEGA48 или ATMEGA88. Проверяемые компоненты можно подключать и отключать прямо во включенный прибор. Результат проверки покажут светодиоды. Так элемент ERROR светится при отсутствии подключенных оптопар или их неработоспособности. Если элемент исправен, то загорится светодиод OK. Одновременно с ним загорится один или несколько светодиодов TIME, соответствующих скорости срабатывания. Так, для самой медленной оптопары, PC817, будет светится только один светодиод — TIME PC817, соответствующий ее скорости. Для быстрых 6N137 будут гореть все четыре светодиода. Если это не так, то оптопара не соответствует данному параметру. Значения шкалы скорости PC817 — 4N3x — 6N135 — 6N137 соотносятся как 1:10:100:900.
Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.
Печатную плату и прошивку можно скачать по ссылке выше.
Основной составляющей частью современной радиоэлектронной аппаратуры являются импульсные источники питания. Стабилизированное напряжение вторичной цепи источника питания зависит в целом от эффективности схематического решения первичной цепи, работы задающего генератора, как правило, выполненного на микросхеме. Не маловажную роль в работе источника питания выполняет оптопара, т.е .