Как проверить исправность тиристора ку202н – Как проверять тиристоры и симисторы тестером и мультиметром? Как проверять тиристоры — пошаговая инструкция

Содержание

тестовая схема на примере тиристора ку 202н, проверка без выпаивания

Как проверить динисторДинистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.

Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.

Назначение динистора

Как проверить динистор мультиметромДинистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Как проверить тиристор ку 202Изобретение тиристоров связывают с именем английского физика

Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Принцип работы

Как проверить симистор мультиметром

Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду.

Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Диагностика прибора

Как проверить симистор мультиметром не выпаивая Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

Как проверить тиристорПри этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Как проверить тиристор на исправность Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Как прозвонить тиристор

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Тиристор КУ202Н — технические характеристики, схема включения, цоколевка

 

Технические характеристики кремниевова тиристора КУ202Н, говорят нам что он триодный, не запираемый, изготовлен по планарно-диффузионной технологии. Используется как переключающий элемент в схемах автоматики. Также применяется в управляемых выпрямителях.

Распиновка

Цоколевка КУ202Н выполнена в металлостеклянном корпусе. Он имеет один вывод под резьбу — анод и два вывода под пайку — катод и управляющий электрод. Анодный вывод сделан под гайку М6. Маркировка тиристора нанесена на корпус. Вес — не более 14 грамм.

Цоколевка КУ202Н

Характеристики

Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.

Предельные значения КУ202Н

Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:

Электрические значения КУ202Н

Аналоги

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h30T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Схема подключения

Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.

Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.

Особенности монтажа

К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.

Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +2600С. Время пайки не более 3 с.

Проверка на исправность

Проверить тиристор ку202н на исправность можно мультиметром, начать ее следует с проверки n-p перехода между анодом и управляющим электродом. Он должен прозваниваться так же, как обычный диод,  то есть при прямом подключении (положительное напряжение на управляющий электрод, а отрицательное на катод) сопротивление перехода должно быть небольшим, а при обратном подключении большим.

Для более детальной проверки требуется выполнить такие действия:

  • Переключаем мультиметр в положение для измерения сопротивления до 2 кОм. На щупы прибора должно подаваться напряжение от источника питания.
  • Теперь нужно подключить щупы мультиметра к аноду и катоду тиристора. При этом прибор должен показывать большое сопротивление, близкое к бесконечности.
  • При помощи перемычки соединяем анод и управляющий электрод. Сопротивление между анодом и катодом, показываемое мультиметром, должно упасть.
  • Разъединяем анод и управляющий электрод. Сопротивление должно вырасти.

Можно также проверить тиристор при помощи лампочки и блока питания постоянного тока. Лампочка должна быть рассчитана на то напряжение, которое выдает блок питания. Подключаем положительный полюс блока питания на анод, а отрицательный на катод проверяемого тиристора.

При помощи батарейки, или щупов мультиметра включенного в режиме омметра, подаем отпирающее напряжение на управляющий электрод. Для этого подключаем положительное напряжение к аноду, а отрицательное к управляющему электроду. Если тиристор исправен, лампочка должна зажечься.

Если убрать напряжение между анодом и управляющим электродом лампочка должна продолжать гореть.

Существует способ проверить тиристор ку202н, не выпаивая его из схемы. Для этого нужно:

  • Отключите плату, на которой находится тиристор, от питания.
  • Отключаем от схемы управляющий электрод.
  • Один тестер, настроенный на измерение постоянного напряжения, подключаем к аноду и катоду тиристора.
  • Второй мультиметр включаем между анодом и управляющим электродом.
  • Первый тестер должен показывать небольшое напряжение (десятки милливольт).

Хотя он уже снят с производства, его еще можно купить в некоторых местах. Кроме того он присутствует во многих старых электронных приборах, из которых его при желании можно выпаять. Его DataSheet можно скачать здесь.

 

Как проверить тиристор? — Diodnik

Существует множество приборов и схем, в которых применяются тиристоры. Собирая обычный регулятор накала лампочки или схему зарядного устройства необходимо быть уверенным в том, что тиристор исправен. Сегодня мы расскажем о том, как проверить тиристор самым быстрым и простым способом.

Как проверить тиристор?

Наглядная проверка тиристора будет производиться с самым ходовым отечественным тиристором КУ202Н. Такой метод подойдет для большинства тиристоров. Для самой простой проверки тиристора необходимо использовать схему, очень подобную той, которую использовали для проверки симистора.

Как видим, для проверки тиристора нужен источник постоянного напряжения (блок питания на 12В) и лампочка способная гореть от этого блока.




Плюс от блока питания подаем на анод тиристора, а минус через лампочку подключаем к катоду. При таком подключении лампочка не должна гореть (тиристор закрыт), если лампочка загорится сразу – тиристор пробит.

Дальше кратковременно замыкаем перемычкой анод и управляющий электрод,  после этого исправный тиристор должен открыться – лампочка засветиться.

Свечение лампочки не должно прекращаться после того, как убралась перемычка. Тиристор будет в открытом состоянии до тех пор, пока не поменяется полярность источника питания или пока ток в цепи не станет меньше тока удержания тиристора.

Как проверить тиристор мультиметром?

Иногда для проверки тиристора хочется использовать только то, что есть под рукой: мультиметр или тестер. Проверяя тиристор с помощью мультиметра необходимо использовать следующую схему.

Важно помнить, что не каждый мультиметр или тестер способен открыть тиристор.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как проверить тиристор? | Электрознайка. Домашний Электромастер.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>
   На своем блоге я поместил рассылку на бесплатные уроки на тему: «Тиристоры. Это очень непросто!».
В этих уроках я, в популярной форме, постарался как можно проще изложить суть работы тиристора: как он устроен, как работает в цепи постоянного и переменного тока. Привел много действующих схем на тиристорах и динисторах.

В этом уроке, по просьбе подписчиков, привожу несколько примеров проверки тиристора на целостность.

Как же проверить тиристор?

Предварительная проверка тиристора  проводится с помощью тестера-омметра или цифрового мультиметра.
Переключатель цифрового мультиметра должен стоять в положении проверки диодов.
С помощью омметра или мультиметра, проверяются переходы тиристора: управляющий электрод – катод и переход анод – катод.
Сопротивление перехода тиристора, управляющий электрод – катод, должно быть в пределах 50 – 500 Ом.
В каждом случае величина этого сопротивления должна быть примерно одинакова при прямом и обратном измерении. Чем больше величина этого сопротивления, тем чувствительнее тиристор.
Другими словами, будет меньше величина тока управляющего электрода, при котором тиристор переходит из закрытого состояния в открытое состояние.
У исправного тиристора величина сопротивления перехода анод – катод, при прямом и обратном измерении, должна быть очень большой, то есть имеет «бесконечную» величину.
Положительный результат этой предварительной проверки, еще ни о чем не говорит.
Если тиристор уже стоял где то в схеме, у него может быть «прогорел» переход анод — катод.  Эту неисправность тиристора мультиметром не определишь.

Основную проверку тиристора нужно проводить, используя дополнительные источники питания. В этом случае полностью проверяется работа тиристора.
Тиристор перейдет в открытое состояние в том случае, если через переход, катод – управляющий электрод, пройдет кратковременный импульс тока, достаточный для открытия тиристора.

Такой ток можно получить двумя способами:
1. Использовать основной источник питания и резистор R, как на рисунке №1.
2. Использовать дополнительный источник управляющего напряжения, как на рисунке №2.

    Рассмотрим схему проверки тиристора на рисунке №1.
Можно изготовить небольшую испытательную плату, на которой разместить провода, индикаторную лампочку и кнопки переключения.

Проведем проверку тиристора при питании схемы постоянным током.

    В качестве нагрузочного сопротивления и наглядного индикатора работы тиристора, применим маломощную электрическую лампочку на соответствующее напряжение.
Величина сопротивления резистора R выбирается из расчета, чтобы ток, протекающий через управляющий электрод – катод, был достаточным для включения тиристора.
Ток управления тиристором пройдет по цепи: плюс (+) – замкнутая кнопка Кн1 – замкнутая кнопка Кн2 – резистор R – управляющий электрод – катод – минус (-).
Ток управления тиристора для КУ202 по справочнику равен 0,1 ампера. В реальности, ток включения тиристора, где то 20 – 50 миллиампер и даже меньше. Возьмем 20 миллиампер, или 0,02 ампера.
Основным источником питания может быть любой выпрямитель, аккумулятор или набор батареек.
Напряжение может быть любым, от 5 до 25 вольт.
Определим сопротивление резистора R.
Возьмем для расчета источник питания U = 12 вольт.
R = U : I = 12 В : 0,02 А = 600 Ом.
Где: U – напряжение источника питания; I – ток в цепи управляющего электрода.

Величина резистора R будет равна 600 Ом.
Если напряжение источника будет, например, 24 Вольта, то соответственно R = 1200 Ом.

    Схема на рисунке №1 работает следующим образом.

В исходном состоянии тиристор закрыт, электрическая лампочка не горит. Схема в таком состоянии может находиться сколько угодно долго. Нажмем кнопку Кн2 и отпустим. По цепи управляющего электрода пойдет импульс тока управления. Тиристор откроется. Лампочка будет гореть, даже если будет оборвана цепь управляющего электрода.
Нажмем и отпустим кнопку Кн1. Цепь тока нагрузки, проходящего через тиристор, оборвется и тиристор закроется. Схема придет в исходное состояние.

Проверим работу тиристора в цепи переменного тока.

    Вместо источника постоянного напряжения U включим переменное напряжение 12 вольт, от какого либо трансформатора (рисунок №2).

В исходном состоянии лампочка гореть не будет.
Нажмем кнопку Кн2. При нажатой кнопке лампочка горит. При отжатой кнопке — тухнет.
При этом лампочка горит «в пол – накала». Это происходит потому, что тиристор пропускает только положительную полуволну переменного напряжения.
Если вместо тиристора будем проверять симистор, например КУ208, то лампочка будет гореть в полный накал. Симистор пропускает обе полуволны переменного напряжения.

Как проверить тиристор от отдельного источника управляющего напряжения?

Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.

Смотрим рисунок №3.

    В этой схеме ток управляющего электрода подается от отдельного источника. В качестве него можно использовать плоскую батарейку.
При кратковременном нажатии на кнопку Кн2, лампочка так же загорится, как и в случае на рисунке №1. Ток управляющего электрода должен быть не менее 15 – 20 миллиампер. Запирается тиристор, так же, нажатием кнопки Кн1.
Так проверяются «не запираемые» тиристоры (КУ201, КУ202, КУ208 и др.).

Запираемый тиристор
, например КУ204, отпирается положительным полюсом на управляющем электроде и минусом на катоде. Запирается, отрицательным напряжением на управляющем электроде и положительном на катоде.
Менять полюсовку управляющего напряжения можно с помощью переключателя П.
Нужно обратить внимание на то, что «запирающий ток» тиристора, почти в два раза больше отпирающего. Если вдруг тиристор КУ204 не будет запираться, нужно уменьшить величину сопротивления резистора R до 50 Ом.


data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>

Как проверить тиристор ку202

Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.

Предварительная подготовка

Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.

После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.

Тест на пробой

Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:

  1. Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
  2. Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
  3. Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.

Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.

Проверка открытого и закрытого положения

Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:

  1. Применяемый мультиметр переводится в режим «прозвонки», после чего к нему подключается тиристор. Щуп, который имеет черный провод, подключается к выводу «К», а красный к «А».
  2. При применении подобной схемы подключения измерительный прибор указывает бесконечное сопротивление.
  3. Следующий шаг заключается в подключении «УЭ» с выходом «А». В этом случае происходит частичное падение показателя сопротивления, и после обрыва соединения он снова стремится к значению бесконечности. Тока, проходящего через штыри измерительного прибора, недостаточно для сдерживания тиристора в закрытом состоянии.

Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.

Самодельный пробник

Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.

Схема самодельного пробника представлена сочетанием следующих элементов:

  1. Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
  2. Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
  3. Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
  4. В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
  5. Создается сопротивление с номиналом 47 Ом.
  6. Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.

Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.

Особенности процедуры

Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:

  1. К собранной самодельной конструкции подключается полупроводниковый элемент.
  2. Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
  3. Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
  4. К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
  5. Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
  6. Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
  7. При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.

Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.

Тестирование детали на плате

При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:

  1. Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
  2. При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
  3. Нельзя повредить выходы, так как это может осложнить проводимые тесты.

Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.

Прозвонка динистора

При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:

  1. Для проведения теста требуется источник питания с высоким напряжением, показатель которого выше, чем у динистора.
  2. Ограничить ток можно при подключении резистора с показателем сопротивления от 100 до 1000 Ом.
  3. Плюсовой провод подключается к аноду, а катод к клемме ограничительного резистора. Свободный конец сопротивления соединяется с минусом блока питания.

Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.

Определение исправности устройства

Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:

  1. Источник постоянного тока соединяется через тринистор. В цепь также включается лампа с соответствующим напряжением.
  2. Щупы мультиметра подводятся к катоду и аноду. Следует установить режим измерения, соответствующий постоянному напряжению.
  3. Устройство должно быть рассчитано на измерение показателей, которые превышают значения применяемого источника напряжения.
  4. В качестве источника питания можно использовать батарейку любого номинала.
  5. Осуществляется подача напряжения для теста устройства.

На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.

Выбор мультиметра

Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:

  1. При выборе практически всегда уделяется внимание степени функциональности устройства.
  2. Практически все устройства можно разделить на две основные категории: стрелочные и цифровые. Сегодня стрелочные практически не применяются, так как они отображают небольшое количество информации, точность данных может быть невысокой.
  3. Показатель погрешности может варьировать в довольно большом диапазоне. Качественные модели имеют погрешность не более 3%. Лучше выбирать мультиметр с наименьшим значением погрешности, однако они обходятся дорого.
  4. Степень комфорта при использовании конструкции. Измерительное устройство может иметь самые различные размеры и форму. Если оно будет некомфортным в применении, то могут возникнуть серьезные проблемы.
  5. Уделяется внимание и степени защиты от пыли, влаги, ударных нагрузок. При изготовлении измерительного устройства могут использоваться самые различные материалы, некоторые из них характеризуются высокой защитой от воздействия влаги и пыли.
  6. Класс электробезопасности. По этому показателю устройства классифицируются согласно установленным стандартам.
  7. Популярность бренда. Хорошие производители цифровых тестеров неоднократно проверяют надежность и качество выпускаемой продукции.

Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:

  1. CAT 1 — устройства, подходящие для работы с низковольтными сетями.
  2. CAT 11 — класс устройства, подходящего к сети питания.
  3. CAT 111 — класс, предназначенный для работы внутри сооружений.
  4. CAT 1 V — для работы с цепью, которая расположена вне здания. Устройства этого класса имеют высокую защиту от воздействия окружающей среды.

После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.

Дата: 24.10.2015 // 0 Комментариев

Существует множество приборов и схем, в которых применяются тиристоры. Собирая обычный регулятор накала лампочки или схему зарядного устройства необходимо быть уверенным в том, что тиристор исправен. Сегодня мы расскажем о том, как проверить тиристор самым быстрым и простым способом.

Как проверить тиристор?

Наглядная проверка тиристора будет производиться с самым ходовым отечественным тиристором КУ202Н. Такой метод подойдет для большинства тиристоров. Для самой простой проверки тиристора необходимо использовать схему, очень подобную той, которую использовали для проверки симистора.

Как видим, для проверки тиристора нужен источник постоянного напряжения (блок питания на 12В) и лампочка способная гореть от этого блока.

Плюс от блока питания подаем на анод тиристора, а минус через лампочку подключаем к катоду. При таком подключении лампочка не должна гореть (тиристор закрыт), если лампочка загорится сразу – тиристор пробит.

Дальше кратковременно замыкаем перемычкой анод и управляющий электрод, после этого исправный тиристор должен открыться – лампочка засветиться.

Свечение лампочки не должно прекращаться после того, как убралась перемычка. Тиристор будет в открытом состоянии до тех пор, пока не поменяется полярность источника питания или пока ток в цепи не станет меньше тока удержания тиристора.

Как проверить тиристор мультиметром?

Иногда для проверки тиристора хочется использовать только то, что есть под рукой: мультиметр или тестер. Проверяя тиристор с помощью мультиметра необходимо использовать следующую схему.

Важно помнить, что не каждый мультиметр или тестер способен открыть тиристор.

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят как-то вот так:

А вот и схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uyотпирающее постоянное напряжение управления – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max – обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос срсреднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uyотпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Как проверить исправность тиристора ку202н

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой.

По своей сути, он является силовым электронным ключом без полного управления.

Инструменты и материалы для проверки

Для осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:

  • блок питания или батарея, которые будут выступать в роли источника постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • мультиметр;
  • тестер;
  • паяльный аппарат;
  • тиристор;
  • паяльный аппарат;

Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками.

Для него потребуется наличие следующих материалов и элементов:

  • плата;
  • резисторы, количество 8 штук;
  • конденсаторы, количество 10 штук;
  • диоды, количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • трансформатор;
  • предохранитель;
  • тумблер, количество 2 штуки;

Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:

  1. Соединение всех элементов производится при помощи специальных проводов с зажимами.
  2. Необходимо последовательно контролировать напряжение между различными контактами. Для осуществления проверки допускается подключение переключателей к разным контактным группам.
  3. После сбора схемы необходимо осуществить подключение тиристора, если он находится в исправном состоянии, то лампа накаливания не будет включаться.
  4. Если лампочка не зажигается даже после нажатия пусковой кнопки, то необходимо при помощи установленного переключателя повысить величину управляющего электрического тока.При разрыве соответствующей цепи, лампочка гаснет.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получаетсяс самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие приборапроизойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Устройство и принцип работы

Устройство тиристора выглядит следующим образом:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
  3. Всего имеются не более 2 управляющих электродов, которые подсоединены к внутренним слоям полупроводника.
  4. Если в устройстве полностью отсутствуют управляющие электроды, то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
  5. Данные приборы могут подразделяться на виды, в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
  6. При наличии в конструкции управляющего электрода, тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.

  1. Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
  2. На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала, скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
  4. Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.

принцип работы

Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:

  1. В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
  2. При подключении тиристора в подобные цепи, применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
  3. Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
  4. При использовании фазового управления, кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток, под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток, который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение, определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.

Советы

В завершение можно дать несколько следующих рекомендаций, которые могут пригодиться при осуществлении проверок тиристровых приборов:

  1. В отдельных ситуациях целесообразно проводить не только проверку исправности, но также и отбор тестируемых приборов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложнен тем, что источник питания обязательно должен обладать напряжением на выходе с показателем не менее 1000В.
  2. Зачастую, проверка выполняется при помощи мультиметров или тестеров, поскольку такое тестирование организовать проще всего, но необходимо знать, что не все модели данных устройств способны осуществить открытие тиристора.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели, близкие к нулю. По этой причине, кратковременное соединение анода исправного прибора с управляющим электродом показывает параметры сопротивления, которые свойственны короткому замыканию, а подобная процедура с неисправным тиристором не вызывает подобной реакции.

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 — 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

Схема проверки тиристора

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 — 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. — 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите,» разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.

Аналоговый мультиметр

Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.
Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.

Цифровой мультиметр

Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
  2. аналоговый покажет бесконечность, стрелка не двинется;
  3. цифровой или никак не отреагирует или высветит несколько МОм.
  4. При прозвонке анод-управляющий электрод:
  5. аналоговый покажет от нескольких до десятков кОм;
  6. цифровой выдаст такие же цифры.
  7. При прозвонке катод-управляющий электрод:
  8. то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

8 thoughts on “ Как проверить тиристор мультиметром ”

Согласен с автором в том, что нормальные цифровые мультиметры тиристор прозвонят. Мой, к примеру, DT-838 DM — прозванивает, и довольно мощные надо сказать.
А насчет полярности щупов, катодного или анодного управления — заморачиваться не стоит: взялся за катод и анод и то одним то другим ткнул в управляющий. Не помогло, поменял местами и опять потыкал. В одном из четырех вариантов, точно сработает, если тиристор исправен.
На профпригодность тестер можно проверить прозвонкой одно-двувольтового стабилитрона.

Не согласен с утверждением автора, что миниатюрные цифровые «спичечные» тестеры можно использовать лишь в качестве игрушек. Есть среди них и вполне приличные приборы. Все зависит от цены. 🙂

Ток отпирания тиристоров как правило

Аккумулятор-то держит, — это не каждый тиристор выдержит прямое подключение к управляющему электроду аккумулятора. От многих и сгореть может. У мультиметров ограничивающие цепи стоят для избежания такого КЗ-шного конфуза. Да и измеряет он сопротивление за счет измерения падения напряжения на эталонном сопротивлении. В нормальных тестерах они разные на разных диапазонах, в других — не знаю, может и одно, максимальное. Возможно, именно это и подразумевалось, под упрощенными коммутируемыми цепями.

Вот так я и спалил один, прозванивая тиристоры КУ202Н на светомузыке, так как прямой ток управления на нём около 200 мА, а прямое напряжение управления 10 В.

Правильно. Напряжение — это одно дело, а ток — другое. Хоть закон Ома и увязал их до кучи, но через сопротивление ) А p-n переход управляющего электрода тонюсенький и сопротивления небольшого. Точнее, небольшим оно становится при определенном напряжении. Ему, если пихнуть без ограничения — сразу амба. Такая вот катавасия: кто управляется током, тому надо ограничивать ток, а кто напряжением — напряжение.

В тексте написано про полярность щупов (зeмляной (корпусный или COM) щуп aнaлогового тeстeрa – являeтся плюсовым, a у цифрового мультимeтрa нaоборот) Не у всех стрелочных приборов такая полярность щупов. Дешевые мультиметры — деньги на ветер. Ими часто можно совершать ошибки.
С автором статьи согласен.

Я тиристоры проверял и сейчас проверяю «аркашкой» — пробником из 4,5-вольтовой батарейки и лампочки на 3,5 вольта. Крокодилы пробника на катод и анод, и отверткой управляющий электрод соединяю с анодом. Лампочка зажглась и горит при разрыве цепи управляющего электрода, значит тиристор в порядке. Во всех других случаях (не горит, гаснет после прекращения тока через управляющий электрод, горит постоянно) тиристор в утиль. Никакими более сложными приборами не пользовался.
Сейчас задумался над проектом измерителя параметров транзисторов и диодов для домашней лаборатории. Если что, им можно будет параметры тиристоров (симисторов) измерять, хотя не знаю, где это может мне пригодится.

>

Характеристики и схема включения тиристора КУ202Н

Схема тиристораТиристор КУ202Н принадлежит к группе триодных устройств со структурой p — n — p — n . Переходы созданы путем планарной-диффузии кремния. Тиристор предназначен для осуществления коммутации больших напряжений при помощи небольших уровней посредством дополнительного вывода. В зависимости от схемы включения он может открываться или закрываться, обеспечивая требуемые режимы работы устройства. Он применяется в системах блокировки, защиты, следящих приводах, дистанционно управляемых коммутационных системах, зарядных устройствах в качестве коммутатора или регулятора тока заряда.

Тиристор КУ 202Н купить можно еще во многих местах, потому что он является достаточно распространенным компонентом. Тем более его цена намного ниже, чем импортные аналоги. Также его можно найти во многих советских устройствах, начиная от блоков питания, заканчивая коммутационными приборами.

Конструкция

Устройство тиристораКонструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Особенности схемного подключения

Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.

Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.

Технические параметры тиристора

Параметры тиристоровТиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.

Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.

Проверка в режиме коммутации

Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:

  1. лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
  2. источник малого напряжения, например, пальчиковая батарейка типа АА;
  3. несколько проводников и источник напряжения 12 В.

Для осуществления проверки выполняем следующие шаги:

  1. Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
  2. Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.

После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.

Аналоги КУ202Н

Тиристоры ку202 схемаКак и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Простые схемы управления КУ202Н

На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.

Регулятор мощности

Параметры тиристораВ схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *