Как припаять резистор переменный – Соединение резисторов. Типы соединений и формулы расчёта общего сопротивления резисторов.

Содержание

Урок 3 — Основы монтажа и пайки

Основы монтажа и пайки

Необходимые для работы инструменты и материалы рассмотрены в уроке №1.
Кратко напомню о том, что потребуется для сборки конструктора: паяльник, припой с каналом канифоли, радиотехнические бокорезы, пинцет, держатель платы типа «третья рука», спирт, салфетки, старая зубная щётка, стол, настольная лампа, стул.
Итак, приступим к сборке.
Мы будем собирать набор Мастер Кит NS073 – «Живое сердце», хотя для целей обучения совершенно не важно, сборку какого набора рассматривать.
Вот что должно получиться в итоге:

Мастер Кит Урок 3 - Основы монтажа и пайки

Светодиоды собранного устройства эффектно перемигиваются, создавая очень красивый эффект «бегущего огня».
Но сначала нужно собрать набор. Для этого потребуется установить каждую деталь на своё место, а затем припаять все детали.
Глаза боятся – руки делают. Приступим!

 

Общие требования к рабочему месту. Основы безопасности

Несмотря на то, что мы уже говорили об этом в уроке №1, о таких серьёзных вещах, касающихся безопасности, нелишне напомнить снова:

— рабочее место (стол) не должен быть захламлён. На свободном столе работать приятнее и эффективнее. Кроме того, радиодетали не смогут легко потеряться в окружающем хламе;
— Так как радиодетали мелкие, во избежание излишнего перенапряжения глаз рабочее место должно быть хорошо освещено. Всегда включайте настольную лампу;
— во время пайки предусмотрите хорошую вентиляцию рабочего места. Открывайте форточку, или включайте настольный вентилятор, отгоняющий дым от паяльника в сторону;
— паяльник горячий! Держитесь только за его ручку. Не допускайте прикосновений пальцев к жалу;
— после пайки, как и после любой другой работы, всегда мойте руки.

 

Печатная плата

Печатная плата является основной, шасси всей конструкцией.
Все детали устанавливаются с лицевой стороны платы (с той, где есть надписи), а выводы деталей припаиваются с тыльной стороны (где имеются токопроводящие дорожки).

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Монтаж резисторов

Допустим, мы хотим установить резистор R1. По таблице из инструкции определяем, что R1 должен иметь сопротивление 1 МОм. Находим в наборе резистор соответствующего номинала (как определить номинал резистора, рассказывается в уроке №2). Ищем на печатной плате установочное место R1. Чтобы резистор R1 удобно «улёгся» на предназначенное для него место на печатной плате, выводы резистора нужно отформовать, то есть изогнуть определённым образом. Изгибать выводы можно пальцами или с помощью пинцета. Если с первого раза не получилось изогнуть выводы правильно – ничего страшного, можно поправить формовку. Но надо помнить, что если изгибать вывод в одном месте более нескольких раз, то он может обломиться.

Мастер Кит Урок 3 - Основы монтажа и пайки

Вот так выглядит установленный резистор с разных ракурсов:

Мастер Кит Урок 3 - Основы монтажа и пайки

Резистор R1 установлен «вертикально», то есть его корпус находится над поверхностью платы. Угол между компонентом и корпусом может быть любым, это не влияет на качество работы схемы. Также вспомним из урока №2, что резистор не имеет полярности, то есть может быть установлен как коричневой полосой вверх (как на рисунке), так и коричневой полосой вниз.

Чтобы деталь не выпадала при поворотах платы, с обратной стороны платы выводы резистора загибаем в разные стороны:

Мастер Кит Урок 3 - Основы монтажа и пайки

Мы можем сразу же обрезать излишки вывода резистора и припаять его. Затем установить следующую деталь, опять обрезать его выводы и припаять… Но можно сначала установить все детали, затем обрезать их выводы, а затем все сразу припаять. Так получится быстрее, технологичнее, именно так поступают профессиональные монтажники на производстве. Мы тоже будем действовать таким образом.

Установим резистор R2. Обратите внимание, что этот резистор устанавливается «горизонтально», то есть его корпус вплотную прилегает к плоскости печатной платы. Соответственно, и формовка выводов этого резистора несколько другая.

Мастер Кит Урок 3 - Основы монтажа и пайки

Снова напомню, что резисторы не имеют полярности. В данном случае синяя полоса резистора находится справа. Но можно установить его и в обратную сторону – синей полосой влево.
Таким же образом устанавливаем все остальные резисторы (в данном наборе их 9 штук).

 

Монтаж конденсаторов

Мастер Кит Урок 3 - Основы монтажа и пайки

В данном наборе всего один конденсатор – С1, поэтому перепутать его с каким-то другим невозможно. Но всё-таки проверим, что на конденсаторе в полном соответствии с перечнем компонентов указан код ёмкости 104.
В данном случае выводы конденсатора можно не формовать, так как компонент прекрасно устанавливается на плату в заводском состоянии выводов.
Также мы знаем из урока №2, что керамический конденсатор полярности не имеет и может устанавливаться на плату в любом положении.
Если в каком-то другом наборе будет несколько керамических конденсаторов, необходимо по указанному на компоненту коду ёмкости определить, на какое посадочное место следует его установить – С1, С4 или С17, например.
В наборе NS073 нет других конденсаторов, но в целях обучения на примере другого набора рассмотрим также монтаж электролитического конденсатора.
Помним о том, что электролитический конденсатор должен устанавливаться с учётом его полярности.

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Монтаж диода

Находим на печатной плате посадочное место диода VD1. Вспомним из урока №2, что диод имеет полярность. Обратите внимание, что на печатной плате имеется обозначение «ключа» диода – полоса вблизи одного из выводов. Такая же полоса имеется и на самом диоде. При установке диода необходимо строго придерживаться меток полярности. Если установить диод в неправильной полярности (в данном случае неправильная установка — полосой вверх), то схема не заработает. Более того, диод или другие элементы схемы в таком случае могут выйти из строя.

Мастер Кит Урок 3 - Основы монтажа и пайки

Формовка выводов диода аналогична резистору R2.

 

Монтаж транзистора

В наборе NS073 нет транзисторов, но для полноты изложения материала на примере другого набора рассмотрим монтаж транзистора. Помним о том, что транзистор имеет «ключ», который при установке необходимо совмещать с соответствующей меткой на печатной плате.

Мастер Кит Урок 3 - Основы монтажа и пайки

Кроме того, важно помнить, что разные транзисторы могут быть одинаковыми по внешнему виду. И если в набор входят два или более транзисторов, необходимо проверять маркировку на их корпусах и устанавливать компоненты строго на нужные позиции – VT1, VT2 и т.п.

 

Монтаж микросхем

Мастер Кит Урок 3 - Основы монтажа и пайки

В данный набор входят две микросхемы. При установке необходимо соблюдать их ключи, обозначенные выемками как на печатной плате, так и на самом компоненте.
Загибаем выводы микросхемы – не обязательно все, достаточно двух противоположных. Микросхема зафиксирована и не выпадет.
Кроме того, надо учитывать, что микросхемы DD1 и DD2 разные. Правда, в данном случае у микросхем разное количество выводов: у одной – 14, а у другой – 16, поэтому при установке вы сразу поймёте, если что-то делаете неправильно. Но бывает так, что разные микросхемы имеют одинаковые корпуса с одинаковым количеством выводов. Поэтому всегда обращайте внимание на маркировку на корпусах микросхем и информацию в табличке-перечне компонентов инструкции.

 

Монтаж перемычки

В некоторых наборах, и в NS073 в частности, требуется такая технологическая операция, как установка перемычки. Перемычка на печатной плате обозначается чертой:

 Мастер Кит Урок 3 - Основы монтажа и пайки

Перемычка не является электронным компонентом и в состав набора не входит. Её можно выполнить как из небольшого обрезка провода, так и из обрезка одного из выводов любой радиодетали. Формуют перемычку так же, как и резистор.

 

Монтаж светодиодов

Светодиод – это разновидность диода. И он тоже имеет полярность, которую важно соблюдать при монтаже.

На печатной плате обозначен вывод «+» (анод) светодиода.

Мастер Кит Урок 3 - Основы монтажа и пайки

У самого светодиода вывод «+» (анод) длиннее. Но ориентироваться на этот ключ можно только до обрезки выводов диода. Есть и другая метка полярности – скос на корпусе диода у вывода катода («-»).
Монтируем все светодиоды (в наборе NS073 их 20 штук). Загибаем их выводы с обратной стороны платы. Торчащих выводов становится много, плата принимает неаккуратный вид, но не нужно этого бояться, на следующем этапе мы обрежем лишние выводы. Если же выводы очень мешают – можно обрезать некоторые из них или вообще все в процессе монтажа. Как это делать, рассказывается ниже.

 

Обрезка выводов

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Вот такой «ужас» наблюдается у нас с обратной стороны платы после установки всех компонентов.

Сейчас мы приведём плату в аккуратный вид, обрезав выводы (или, как говорится на жаргоне радиомонтажников, «причешем» плату).

Нам потребуются радиотехнические бокорезы (подробнее об этом инструменте описано в уроке №1). Инструмент держим практически перпендикулярно плате. От каждого вывода оставляем около 1-2 мм. Слишком длинный вывод будет некрасиво торчать. Кроме того, длинные выводы разных компонентов могут в процессе последующей пайки замкнуться друг с другом и образовать паразитные перемычки. Слишком коротко обрезанный вывод может привести к выпадению компонента.
Желательно, чтобы вывод не выходил за пределы контактной площадки.
На картинках ниже излишне длинный вывод и вывод оптимальной длины.

Мастер Кит Урок 3 - Основы монтажа и пайки

Таким образом. обрезаем все выводы. В итоге у нас получится примерно такая картина:

Мастер Кит Урок 3 - Основы монтажа и пайки

Плата готова к пайке.

 

Пайка конструкции

О необходимом для сборки набора паяльном инструменте рассказывается в уроке №1.
Кратко напомню: потребуется паяльник (или паяльная станция) и припой с каналом канифоли. Удобно также применять фиксатор платы – так называемую «третью руку».

Плату удобно зафиксировать с помощью специального держателя типа «третья рука», или каким-либо другим образом.

В одну руку (для правшей – в правую) берём паяльник, в другую – пруток припоя.
Конечно, паяльник должен быть горячим. Таковым он становится не мгновенно после включения в розетку, а через несколько минут после этого.
Если подвести горячее жало к припою, тот начнёт плавиться.

Жало паяльника ставим на точку пайки. Обратите внимание – не на кончик вывода детали, а именно на контактную площадку. Одновременно подаём в эту же точку пруток припоя.
Как и жало паяльника, пруток подаём не на кончик вывода, не на паяльник, а на контактную площадку. Припой начинает плавиться. Немного как бы подаём пруток на точку пайки, при этом слегка перемещая паяльник. Всё, у нас сформировалась точка пайки. Убираем припой, а затем паяльник. Ждём секунду – припой застыл, точка пайки готова. На точку пайки уходит 2-3 миллиметра прутка припоя (это очень ориентировочные данные, зависящие от типа припоя и контактной площадки).
Процесс идёт гораздо быстрее, чем я об этом рассказываю. На одну точку пайки у меня уходит около секунды. Допустимо – до трёх секунд. Если греть точку пайки дольше, теоретически могут возникнуть проблемы: можно перегреть деталь, или контактная площадка или дорожка могут отклеиться от основы платы. Но на практике это маловероятно. В комплекте Мастер Кит только качественные платы, а компоненты в конструкторах для начинающих не такие «нежные» и прощают многие ошибки, в том числе и перегрев.

Качественная пайка блестит и ровная. Если пайка рыхлая, матовая – значит, вы используете некачественный припой (либо припой без канала канифоли), или паяльник либо недостаточно горячий, либо, что чаще всего бывает, слишком горячий.
Я рассказал о технологии пайки, при которой пруток припоя подаётся непосредственно в зону пайки, а жало же используется только как нагреватель. Для современных жал из малообгораемых материалов это единственно правильная техника. Если же вы используете паяльник с обычным медным жалом, можно расплавлять некоторое количество припоя на жале, и переносить жидкий припой в точку пайки на жале, как на лопате. Попробуйте – возможно, так вам будет удобнее.
Всё очень просто. Но это как футбол: требуется практика. Можно прочесть многие тома по теории футбола, но это не значит, что вы научитесь в него играть. Практика – это что-то другое и совершенно необходимое.

 

Промывка платы

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Строго говоря, современные флюсы, входящие в состав припоев, допускают безотмывочный процесс. То есть можно плату не промывать. Но такая печатная плата выглядит некрасиво, на ней плохо видны дефекты пайки, да и вообще есть такое понятие – «культура производства», и каждый уважающий себя производитель платы промывает. На производстве применяют специальные отмывочные машины, но тратить несколько тысяч долларов и приобретать такую машину размером с половину комнаты для радиолюбителя нецелесообразно. Хороших результатов можно достичь с помощью спирта, старой зубной щётки и салфеток. Смачивая щётку, хорошенько надраиваем плату со стороны пайки, на заключительно же этапе удобно применять для очистки и просушки платы салфетки. Теперь наша смонтированная плата чистенькая, красивая, её и людям не стыдно показать.
После отмывки на плате легче найти дефекты. Поэтому ещё раз внимательно посмотрите на плату и убедитесь, что все контактные площадки хорошо припаяны, а паразитных замыканий нет. При необходимости дефекты устраняем.

 

Устранение дефектов пайки

На рисунке ниже имеются два дефекта пайки: один из выводов пропаян неполностью, только с одной стороны. Такой контакт ненадёжный (на профессиональном жаргоне это называется «непропай»). Другой же вывод мы просто забыли припаять.
Собранная с такими дефектами пайки конструкция может или совсем не заработать, или работать нестабильно.

Мастер Кит Урок 3 - Основы монтажа и пайки

Исправим дефекты, заново пропаяв обнаруженные проблемные точки пайки.

Иногда в процессе пайки допускаются паразитные соединения припоем соседних выводов:

Мастер Кит Урок 3 - Основы монтажа и пайки

Если не заметить такие дефекты пайки, то готовая конструкция может не только не заработать, но и вообще выйти из строя сразу же после включения. Поэтому необходимо внимательно проверять монтаж. Допустим, мы обнаружили паразитное замыкание (на радиотехническом жаргоне такой дефект часто называют неблагозвучно – «соплёй»). Я расскажу вам, как восстановить нормальную пайку.


1. С помощью ножа (скальпеля). Прогреваем паяльником дефектную пайку, и проводим острым лезвием между точками пайки. Дефект устранён.
2. С помощью специального инструмента – вакуумной помпы, которая по-другому называется «радиотехнический отсос». Прогреваем место пайки, подносим отсос, нажимаем его кнопку – излишки припоя втягиваются в инструмент. Пайка исправлена!
3. С помощью специальной радиотехнической «оплётки». Прогреваем место пайки, вводим в место пайки многожильную медную «оплётку» — под действием сил натяжения лишний припой впитывается на «оплётку». Пайка исправлена!

В следующем уроке я расскажу о том, как настраивать и подключать собранную конструкцию.

 

Скачать урок в формате PDF

Переменный резистор | Электроника для всех

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.

Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое 🙂 Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно

(R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! 🙂

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Повышение точности.


Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо» вторая «Точно» Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

Соединение резисторов. Типы соединений и формулы расчёта общего сопротивления резисторов.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:

Последовательное соединение резисторов
Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

Схема последовательного соединения резисторов

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Формула для расчёта общего сопротивления резисторов

Общее номинальное сопротивление составного резистора обозначено как R

общ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Что это значит?

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:

Параллельное соединение резисторов
Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Схема параллельного соединения резисторов

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Формула для расчёта сопротивления при параллельном соединении

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Формула для расчёта при параллельном соединении двух резисторов

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Формула для расчёта сопротивления при параллельном соединении одинаковых резисторов

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

Измерение сопротивления
Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.

Измерение сопротивления
Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Разборка и ремонт переменных резисторов на примере советских СПЗ-30 и СП-1

Как известно, переменные резисторы, которые во всевозможной звуковой аппаратуре служат для регулировки громкости, тембра и прочего стереобаланса, со временем изнашиваются. И при вращении ручек регуляторов из колонок раздаётся хрип, треск, щёлканье, и другие немузыкальные звуки.
Причём громкость их по мере износа меняется от едва заметного шороха до треска вполне сравнимого с уровнем полезного сигнала.

Сейчас, когда в продажу хлынула музыкальная техника с цифровым кнопочным управлением, для многих меломанов проблема отошла в прошлое.
Но и сейчас ещё много найдётся любителей музыки предпочитают слушать её через старый добрый советский, импортный или самодельный усилитель со старыми добрыми переменниками.

Надеюсь, что кому-то из вас эта статья пригодится. Хотя возможно, что я очередной раз берусь с умным видом объяснять очевидные вещи.

Содержание / Contents

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.

У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что?
Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.

С точки зрения простоты ремонта переменные резисторы я делю на три типа – разборные, условно неразборные и почти неразборные.
Начну с самого простого – разборного. Например — СПЗ-30а, как довольно крупный и часто встречающийся. К тому же, по моему мнению — вообще один из лучших переменников, созданных в СССР. По крайней мере, по таким параметрам, как защита от попадания «забортного мусора» и ремонтопригодность. А с недостатками, вроде «неполного обнуления» в крайних положениях, или несовпадение сопротивлений (в сдвоенных) между движком и крайними выводами при регулировке, в звуковой технике вполне можно смириться.
Большинство советов подойдут и к более старым СП-1, ВЗР, как одинарным, так и сдвоенным.
Портрет «зверя» крупным планом. Прошу извинить за качество фоток — снимал непосредственно во время «операции», год назад, камерой, оказавшейся под рукой, не заморачиваясь с настройками и освещением.

Будем считать, что сопротивление между крайними выводами измерено, существует, не сильно превышает указанное на корпусе и не «плавает». В противном случае деталь можно спокойно выбросить, ну или пустить на запчасти. Где-то в литературе встречал способ изготовления из деталей СП3, малогабаритного многопозиционного переключателя.

Отгибаем 4 усика, помеченные стрелками, и снимаем крышку. Любуемся на нехитрый внутренний мир:

А пока, небольшое «лирическое отступление».
Почти к каждому, кто связал свою жизнь с радиолюбительством, рано или поздно все знакомые, родственники, родственники знакомых и знакомые родственников тащат на ремонт свою убитую технику. Бывает что и из-за «хрипатого» регулятора.

Приносящие делятся на две категории.
1. Простые пользователи — как правило, несут свой аппарат сразу же, как только неисправность дала о себе знать.
2. Более или менее продвинутые пользователи — перед тем как принести, пытаются исправить сами, пользуясь своими «знаниями» или советами «знающих».
От таких частенько слышал примерно такой монолог: «Я сам пытался сделать. Спиртом, водкой, „тройным одеколоном“ протирал. Маслом капал, карандашом подкову натирал, толчёный карандаш с маслом смешивал и капал. Пара дней и снова то же самое. Сделай что-нибудь! Задолбало, блин!!!»

Вот так и выглядят обычные советы, которые гуляют в народе и даже иногда помогают (иначе б не гуляли).

Действительно — глядя на заляпанную старой почерневшей смазкой угольную «подкову» первая мысль, которая приходит в голову — почистить всё это хозяйство прямо так — через щель между диэлектрической шайбой одетой на вал и стенкой пластмассового корпуса.
Но всё же лучше продолжить разборку. И доступ к очищаемым поверхностям лучше будет, а там глядишь — и ещё что интересное обнаружится.

Разгибаем упорное кольцо:

И вытаскиваем ось, вместе с текстолитовой шайбой с закреплённым на ней подвижным контактом.
Сразу же внимательно рассматриваем состояние угольного слоя на «подкове».

В данном случае неплохо сохранился. Значит, в дальнейших действиях есть какой-то смысл. Если же он стёрся настолько, что на месте где должен быть графит видно текстолитовую основу — «медицина бессильна». Хотя если честно — за время с 80-х годов встречал только два (!) настолько затёртых переменника. Один из них стоял в магнитофоне «Маяк-232», работавшем в одной из школ. Там, видимо из-за заводского брака, рассыпалась угольная щётка на подвижном контакте и подкову просто сточило металлическим пружинным электродом. Я так подумал, потому что переменник был сдвоенный, а второй резистор блока был ещё вполне нормальным. Магнитофону на тот момент лет десять было, если не больше.

Теперь поверхность подковы можно, и даже нужно очистить от «вековой грязи» (особенно после «толчёного карандаша в масле») спиртом или чистым бензином для зажигалок. Заодно нужно почистить пружинные контакты, соединяющие центральный вывод с движком.
А потом внимательно посмотреть на поверхность, по которой эти контакты должны скользить:

Даже при таком качестве фото видно, что выглядит это место, мягко скажем, страшновато. Контакты протёрли заметную «траншею», которая из-за слоя смазки кажется глубже, чем на самом деле. А если разглядеть получше, можно увидеть, что поверхность металла где-то замазалась, где-то окислилась и надёжный контакт видит только во снах о давно ушедшей молодости.

Очищаем металл от старой, иногда затвердевшей до полного сходства с парафином, смазки и грязи, графитной пыли. При необходимости счищаем окись ластиком. Жаль старые добрые советские красные ластики уже не найти. А сколько ими было двоек в дневнике подтёрто, чтобы легче на тройки исправить. А контактов в телевизионных ПТК почищено (часто зря). О прочих тумблерах и П2К вообще молчу.

Пришло время заняться угольной щёткой подвижного контакта

За «долгую счастливую жизнь» поизносилась, конечно. Жаль нет под рукой совершенно нового такого же переменника, чтобы уточнить насколько. Поэтому чаще оценивал степень износа «на глазок».
Если осталось около одного миллиметра — ещё поживёт, если меньше 0,5 мм — делал новую из грифеля карандаша, или угольного стержня от случайно подвернувшейся разряженной пальчиковой батарейки (АА). Вырезал обычно тем ножом, который в этот момент был под рукой, потом выравнивал контактную поверхность об напильник. Что-то похожее когда-то описывалось в журнале «Радио».

Насчёт материала: как-то встречал в Сети спор, что лучше — угольный стержень от батарейки или карандаш. А если карандаш, то какой твёрдости. Сам пока к определённому выводу не пришёл. То, что делал для себя пока работает и то хорошо. А использовал в основном те карандаши, которыми в тот момент пользовался сам, твёрдостью где-то на уровне «ТМ» — «Т». А твёрдость угольных стержней из батареек, кто ж её знает-то.

Перед установкой щётки на законное место я делал ещё одну вещь. Кончик пружинного контакта, примерно от отверстия для щётки, отгибал на небольшой угол (зелёная стрелка на фото). А также стачивал мелкой шкуркой, надфилем или, в крайнем случае, ножом заусенцы на краях этого отверстия и торцах пружины, если были. Как-то спокойней потом, хотя в реальной пользе от этого действия не уверен.

Перед окончательной сборкой все трущиеся поверхности смазывал машинным маслом (самым густым, какое было в наличии), Если была возможность – «Литолом» или «ЦИАТИМ-ом». Что-то другое в наших краях достать сложнее.

После подобных процедур все посторонние звуки обычно пропадают и надолго.


Недавно попало в руки одно устройство, где для регулировки громкости использовался великий и ужасный… СП-1. И та же самая проблема с хрипом треском и пропаданием звука.
А значит, появилась возможность рассказать об одном его отличии от СП3, которое очень даже может служить причиной неполадок, и на которое можно сразу не обратить внимание. В магнитофоне, который у меня был в школьные времена, несколько раз регулятор громкости перебирал, пока случайно не наткнулся.
Кстати разборка происходит точно так же, как и в предыдущем примере.
Но в отличии от СП3, у СП-1 неподвижный контакт, приклёпанный к центральному выводу не пружинный, а плоский, кольцеобразный. Этот самый контакт спокойно себе лежит в предназначенном для него пазу. И если его специально не пошевелить, то можно и не заметить что он иногда свободно болтается на заклёпке.

И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.

Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется.
Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.

Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь — другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.

P.S. Бывает, можно купить новый переменник с описанным дефектом. Неизвестно ведь сколько, где и в каких условиях он хранился до этого. Даже если и выглядит как новый.
На всякий случай, перед установкой в изделие, стоит проделать вышеописанные операции. Анекдот про «доработать напильником» не просто так придумали. Я сам несколько раз сталкивался с тем, что «свежий» регулятор «шуршит» при приближении движка к крайним точкам. Обычно после чистки и смазки «болезнь» пропадает. Недавно поставил свежекупленые малогабаритные СПЗ-40 в темброблок электрогитары, и сразу же пришлось снова снимать все четыре резистора и проводить те же процедуры.
С тех пор работает второй год без нареканий.

Камрад, смотри полезняхи!

Владимир (partizan0018)

РФ, Дальний Восток

Профессиональный «чайник».

 

принцип действия. Как подключить переменный резистор? :: SYL.ru

Большое количество людей обращаются в радиомагазины, чтобы сделать что-то своими руками. Главная задача любителей собирать радиоприемники и схемы – это создавать полезные предметы, которые будут приносить пользу не только себе, но и окружающим. Переменный резистор помогает выполнить ремонт или создать прибор, который работает от электрической сети.

Основные свойства переменных резисторов

Когда человек имеет четкое представление об условных элементах графического отображения на схемах, тогда у него возникает проблема переноса чертежа в реальность. Требуется найти или приобрести отдельные компоненты уже готовой схемы. Сегодня есть большое количество магазинов, которые продают необходимые детали. Найти элементы можно и в старой поломанной радиоаппаратуре.

переменный резистор

Переменный резистор должен присутствовать в любой схеме. Его находят в любых электронных устройствах. Эта конструкция представляет собой цилиндр, который включает в себя диаметральные противоположные выводы. Резистор создает ограничение поступления тока в цепи. В случае необходимости он будет выполнять сопротивление, которое можно измерить в омах. Переменный резистор обозначается на схеме в виде прямоугольника вместе с двумя черточками. Они расположены на противоположных сторонах внутри прямоугольника. Таким образом, человек обозначает на своей схеме мощность.

Аппаратура, которая имеется практически в каждом доме, включает в себя резисторы с определенным номиналом. Они располагаются по ряду Е24 и условно обозначают диапазон от единицы до десяти.

Разновидности резисторов

Сегодня существует большое количество резисторов, которые встречаются в современных бытовых электроприборах. Можно выделить следующие виды:

  • Резистор металлический лакированный теплостойкий. Его можно встретить в ламповых приборах, которые имеют мощность не меньше чем 0,5 ватта. В советской аппаратуре можно отыскать такие резисторы, которые выпускали в начале 80-х годов. Они имеют разную мощность, которая напрямую зависит от размеров и габаритов радиоаппаратуры. Когда на схемах нет условного обозначения мощности, тогда разрешается использовать переменный резистор в 0,125 ватта.
  • Водостойкие резисторы. В большинстве случаев их находят в ламповых электроприборах, которые производились в 1960 году. В черно-белом телевизоре и радиолах обязательно встречаются эти элементы. Их маркировка очень похожа на обозначение металлических резисторов. В зависимости от номинальной мощности они могут иметь разные размеры и габариты.

Сегодня широко используется общепринятая маркировка резисторов, которые разделены на разные цвета. Таким образом, можно быстро и легко определить номинал без использования пайки схемы. Благодаря цветовой маркировке можно значительно ускорить поиск необходимого резистора. Сейчас производством таких элементов для микросхем занимается большое количество зарубежных и отечественных фирм.

как подключить переменный резистор

Основные характеристики и параметры переменного резистора

Можно выделить несколько главных параметров:

  • Номинальное сопротивление.
  • Предельные показатели рассеивания мощности.
  • Температурные коэффициенты сопротивления.
  • Допустимые значения отклонения сопротивления. Его вычисляют от номинальных значений. Когда изготавливаются такие резисторы, производители используют технологический разброс.
  • Предельные показатели рабочего напряжения.
  • Избыточный шум. переменный резистор 10 ком

Во время проектирования представленных устройств используются конкретные характеристики. Эти параметры относятся к приборам, которые работают на высоких частотах:

  • Паразитные емкости.
  • Паразитная индуктивность.

Общепринятая классификация резисторов

Проволочный переменный резистор считается основным и главным элементом в любой электронной аппаратуре. Его применяют в качестве дискретного компонента или составной части к интегральной микросхеме. Он классифицируется по основным параметрам, таким как способ защиты, монтаж, характер изменения сопротивления или технология производства.

Классификация по общему использованию:

  • Общего предназначения.
  • Специального назначения. Они бывают высокоомные, высоковольтные, высокочастотные или прецизионные.

В зависимости от характера изменения сопротивления можно выделить следующие резисторы:

  1. Постоянные.
  2. Переменные, с возможностью регулировки.
  3. Подстроенные переменные.

Если брать во внимание способ защиты резисторов, то можно выделить следующие конструкции:

  • С изоляцией.
  • Без изоляции.
  • Вакуумные.
  • Герметизированные. переменный резистор подключение

Подключение переменного резистора

Большое количество людей не знают, как подключить переменный резистор. Эти элементы зачастую имеют две схемы подключения. Сделать эту работу сможет человек, который хоть немного разбирается в электронике и имел дело с пайкой микросхем.

  • Первый вариант подключения заключается в том, что верхний вывод необходимо подсоединить к основному источнику питания. Нижний припаивается к общему проводу. Специалисты называют его «земля». Стоит отметить, что средние выводы соединяются исключительно с управляющими элементами схемы. Это может быть база или главный затвор транзистора. В таком случае эти конструкции будут играть роль потенциометра.
  • Существует и второй способ, который поможет узнать, как подключить переменный резистор. Верхние выводы необходимо подсоединять к основному источнику питания. Нижние концы конструкции припаиваются к проводу общего назначения, а средние соединяются с нижними или верхними выводами. Именно они способны подавать на управляющие элементы схемы необходимую мощность питания. Этот способ подключения заключается в том, что переменные резисторы будут играть немаловажную роль и регулировать поступающий ток. проволочный переменный резистор

Технология изготовления переменных резисторов

Существует классификация, которая зависит от технологии изготовления резисторов. Во время производственного процесса используются разные этапы и схемы. Сегодня можно выделить следующие конструкции:

  • Проволочный переменный резистор. Подключение производится по простой технологии, которую сможет освоить даже начинающий специалист. Его наматывают из проволоки, где есть высокие показатели удельного сопротивления. При этом используется каркас. Эти конструкции имеют большую паразитную индуктивность. Чтобы значительно снизить этот показатель, нужно применять бифилярную намотку. Проволочные резисторы в некоторых случаях могут изготавливаться из прочного микропровода.
  • Металлопленочные резисторы. Их еще принято называть композитными. В них имеется резистивный элемент, который представлен в виде тонкой пленки. Ее получают из металлических сплавов или композитных материалов. Такие конструкции обладают высокими показателями удельного сопротивления и низким коэффициентом термического сопротивления. Проволоку наносят на цилиндрические керамические сердечники. Сегодня именно этот тип элементов пользуется особенным спросом, поэтому люди чаще всего спрашивают композитный переменный резистор. Подключение выполняется любым из вышеописанных способов. резистор переменный сдвоенный

Особенности переменных резисторов в 10 кОм

Сегодня на радио рынках можно встретить большое количество элементов для составления схемы. Наиболее востребованным является переменный резистор 10 кОм. Он бывает переменным, проволочным или регулировочным. Основная его отличительная особенность – одинарная однооборотность. Этот тип резисторов предназначен для работы в электрической цепи, где есть постоянный или переменный ток.

Номинальные показатели мощности составляют 50 вольт, а сопротивление — 15 кОм. Эти элементы производились в середине восьмидесятых годов, поэтому сегодня их можно найти не только в специализированных магазинах, но также и в старых схемах радиоприемников. Переменный резистор 10 кОм имеет несколько функциональных и возможных аналогов.

резистор переменный сп

Шум переменного резистора

Даже новые и надежные резисторы при высоком температурном режиме, который значительно выше абсолютного нуля, могут стать основным источником появления шума. Резистор переменный сдвоенный применяется в электрической цепи в микросхеме. О появлении шума стало известно из фундаментальной флуктуационно-диссипационной теоремы. Она известна под общепринятым названием «теорема Найквиста».

Если в схеме есть резистор переменный СП с большими показателями сопротивления, то человек будет наблюдать эффективное напряжение шума. Оно будет иметь прямую пропорциональность к корням из температурного режима.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *