Трансформатор для светодиодных ламп 12 вольт, понижающий напряжение
Особенностью светодиодных лампочек является низкое напряжение питания. В этом кроется секрет долговечности и экономичности приборов. Использование ламп на 220 В возможно не всегда, поэтому часто приходится выбирать низковольтные аналоги. Например, для установки во влажные помещения.
Для питания каждого из них требуется собственный источник, или драйвер. Его функции может выполнять трансформатор для светодиодных ламп 12 вольт, способный одновременно подавать энергию на несколько устройств. Рассмотрим вопрос внимательнее.
Какие трансформаторы лучше использовать для светодиодов
Для питания светодиодов нужны трансформаторы, преобразующие переменное напряжение 220 В (стандартное сетевое значение) в постоянный ток (в нашем случае —12 В). При этом, надо, чтобы никаких пульсаций напряжения после диодного моста не возникало, для чего используются сглаживающие конденсаторы. Это ограничивает возможности обычных блоков питания, которые не могут обеспечить достаточного качества и мощности выдаваемого напряжения.
Рассчитывать на то, что можно подключить лампу к стандартному выпрямителю, не следует — можно испортить светильник или получить неравномерное свечение, с пульсациями или мигающим режимом. Стандартный электронный драйвер, установленный в LED лампу на 220 В, тоже не подойдет — его мощность рассчитана только на единственный прибор и не позволит присоединить дополнительную нагрузку.
Необходимо учитывать недостатки:
- большие габариты;
- во время работы он издает гул, который со временем усиливается;
- сложность скрытого монтажа — объемный блок непросто куда-то спрятать.
Эти минусы ограничивают применение трансформаторов в пользу импульсных источников. Однако, среди любителей и домашних мастеров они получили широкое распространение из-за надежности, дешевизны и простоты применения.
Важно! Нередко трансформаторами называют драйвера или источники другого типа. Это неверно, но на практике используется достаточно часто. Поэтому всегда надо уточнять, о каком именно устройстве идет речь.
Понижающие ток трансформаторы для светодиодных ламп и лент с 220 вольт до 12
Для подключения светодиодных лент или ламп используются специальное устройство (драйвер электронный), преобразующее 220 В в постоянное напряжение 12 В с заданной мощностью. Приобрести такой драйвер отдельно возможно не всегда, и обходится он не дешево. Это стало причиной изготовления альтернативных источников питания на базе трансформатора.
Здесь необходимо сразу учесть, что одним только подключением устройства вопрос решить не удастся. Дело в том, что на выходе трансформатора будут необходимые 12 В, но переменного тока. Поэтому после трансформатора понадобится установить диодный мост, который выдает пульсирующее напряжение. Это уже не переменка, но и от постоянной осциллограммы еще очень далеко.
Для того, чтобы получить качественную прямую на осциллограмме, надо параллельно выходу диодного моста поставить конденсатор такого номинала, чтобы полностью исключить пульсации тока. Чем больше его емкость, тем ровнее будет график, но слишком большие значения емкости также вредны. Возникает большой пусковой ток, который может быть опасным для осветительных приборов. Поэтому надо подбирать номинал так, чтобы график получался максимально ровным, но не более того.
Основным преимуществом трансформаторного источника является полная гальваническая развязка с сетью питания 220 В. Это важно именно для домашних мастеров и любителей украшать свои комнаты светодиодными лампами. Если при выполнении каких-либо работ человек прикоснется рукой к оголенным контактам, ничего страшного не произойдет.
Подключение при помощи обычного трансформатора
Использование обычного трансформатора в комплекте с диодным мостом и сглаживающим пульсации конденсатором является неплохим альтернативным вариантом питания светодиодных приборов. Схема работает в обычном режиме — трансформатор понижает напряжение до нужного значения, диодный мост выпрямляет его, а конденсатор устраняет пульсации, окончательно стабилизируя график.
Однако, у такой схемы есть серьезный недостаток — она не способна ограничивать силу тока. То есть, при последовательном подключении лампочек будет теряться яркость свечения — одно значение напряжения будет делиться на число светодиодных ламп. Если включить их параллельно, напряжение на каждой будет одинаковым, но ток потребления возрастет вдвое.
Важно! Если потребителей будет достаточно много, есть серьезная опасность сжечь источник питания (и хорошо, если дело ограничится только им). Это обстоятельство делает расчет и подключение блока питания на базе трансформатора довольно ответственным делом.
При подключении важно не перепутать контакты на обмотках трансформатора. Их предварительно прозванивают и отмечают маркером, чтобы не перепутать. Диодный мост либо собирают из отдельных элементов, либо используют готовые полупроводниковые сборки. При этом, важно сразу уточнить, какой тип имеется в наличии, так как существуют полумосты и полноценные сборки. Первые дают низкое напряжение и очень сильные пульсации, поскольку оставляют только колебания одной стороны графика. Вторые более предпочтительны, их график ровнее, а напряжение может быть выше.
Специальные трансформаторы для светодиодных светильников
Альтернативным вариантом источника напряжения, который некоторые пользователи тоже называют трансформатором, является импульсный блок. Он устроен совершенно иным образом. В частности, отсутствует массивный и шумный входной трансформатор. Основным узлом является преобразователь, изменяющий сетевую синусоиду на импульсный график. Схема работы такого устройства довольно сложна и заслуживает отдельного рассмотрения.
Иногда предпринимаются попытки подключать 12 В светодиодные лампочки через трансформатор для галогенок. На первый взгляд, напряжение подходит, все должно нормально работать. На практике получается, что светодиодные лампы дают несвойственный им оттенок, при увеличении нагрузки начинают пульсировать, мигать. Оказывается, на таких блоках не напрасно наносится эта предупреждающая надпись — там установлены высокочастотные трансформаторы, не подходящие для нормальной работы светодиодных ламп.
Обычная частота сетевого тока — 50 Гц, а у источников питания для галогенок рабочее значение находится в диапазоне 30000-50000 Гц. Кроме того, они предназначены для работы с определенной минимальной нагрузкой. Если мощности светодиодных ламп не будет хватать, блок просто отключится. Дополнительной проблемой становится полярность — для галогенок она не имеет значения, поэтому на выходе плюс и минус не указываются.
Схемы подключения
Существуют две схемы подключения источника питания к светодиодным лампам:
- источник со стабилизированным током;
- блок со стабилизированным напряжением.
В случае использования трансформатора для светодиодных ламп 12 В следует выбирать схему со стабилизацией по току. Количество приборов потребления будет определяться только мощностью устройства, что легко рассчитать простым делением общего значения на величину показателей единицы. Второй вариант также может быть использован, но в этом случае понадобится установить дополнительный токоограничивающий резистор. Его номинал рассчитывается для каждого случая отдельно. Самым простым способом расчета станет использование онлайн-калькулятора, обладающего вполне достаточной точностью.
Простейшая схема подключения выглядит следующим образом:
- TV1 — трансформатор, подключенный к источнику 220 В;
- VD — диодный мост;
- C1 — конденсатор, сглаживающий пульсации.
К контактам «+» и «-» подключаются лампы. Трансформаторы для светодиодных светильников просты в сборке и практически не нуждаются в настройке.
Основные выводы
Использование трансформаторов для светодиодных ламп имеет некоторые особенности:
- доступность, дешевизна трансформаторов;
- есть возможность переделать устройство с другими параметрами под нужное напряжение;
- схема безопасна при выполнении каких-либо работ, так как гальванически развязана с сетью питания.
Однако, есть и некоторые недостатки:
- прибор получается громоздким и тяжелым;
- во время работы он издает гул;
- требуется надежное ограничение по силе тока, иначе трансформатор сгорит от перегрузки.
Суммируя эти особенности, можно сделать вывод об ограниченной сфере использования такого источника. Он подойдет для несложных экспериментов или опытов с подсветкой. В то же время, трансформатор недорог, прост в изготовлении и ремонте, что делает его наиболее предпочтительным для домашних мастеров, любителей технического творчества.
Свои варианты конструкции или другие замечания излагайте в комментариях.
ПредыдущаяСветодиодыМигающий светодиод: как сделать, подключить и где применять
СледующаяСветодиодыКак правильно паять светодиоды SMD
Схема подключения точечных светильников 220В и 12В – RozetkaOnline.COM
В зависимости от типа используемых ламп, в точечным светильниках, существует две основных схемы подключения — это:
– схема подключения точечных светильников 220в
– схема подключения точечных светильников 12в
Два основных стандарта питания точечных светильников существует не просто так, каждый вариант подключения имеет свои положительные и отрицательные стороны и выбирается в зависимости от существующих условий.
Схема подключения точечных светильников 220в
Схема подключения точечных светильников 220в, при аналогичном стандарте бытового напряжении принятом в нашей стране, кажется наиболее естественной и правильной. Обычно, схема подключения через выключатели выглядит так (см. изображение ниже):
Электрический ток проходя через счетчик электроэнергии и защитную автоматику приходит в распределительную коробку, в которой рабочий ноль и земля (защитный ноль) идут напрямую к точечному светильнику, а вот фазный провод идет на выключатель. В зависимости от типа выключателя (одно-, двух- или трехклавишный) из него выходит соответствующее количество питающих проводов к группа точечных светильников. На изображениях ниже представлены схемы подключения точечных светильников 220в к одноклавишному и двухклавишному выключателю.
Схема подключения точечных светильников 220В к одноклавишному выключателю:
Схема подключения точечных светильников 220В к двухклавишному выключателю:
Основные преимущества использования точечных светильников 220в:
– Простая схема подключения, соответственно максимально надежная
– Отсутствие ограничений по длине цепи, точечные светильники одной группы могут располагаться на любом расстоянии друг от друга без потери эффективности освещения.
– Низкие токи в цепи с напряжением 220в позволяют использовать в проводке кабель меньшего сечения, чем в сетях 12в.
Минусы использования точечных светильников 220в:
– Высокое напряжение источник повышенной опасности, требует квалификации при монтаже и особой осторожности при обслуживании и эксплуатации
– Без дополнительных защитных устройств, лампы подвержены более быстрому разрушению, чем 12В.
Как видите, основной недостаток у точечных светильников 220в, это как ни странно их достаточно высокое напряжение, опасное для человека, как при непосредственном контакте, так и возможностью возникновения возгорания. Из-за этого накладывается множество ограничений при установке и эксплуатации, что достаточно неудобно.
Схема подключения точечных светильников 12в
Использование для питания точечных светильников напряжения 12 вольт, решает эту проблему. Ведь такое низкое напряжение считается условно безопасным и практически исключает возгорания и поражения человека электрическим током. Кроме этого, при напряжении 12 вольт, стало возможным сделать нити накаливания у ламп толще, рассчитанных на больший ток, а следовательно более надежных и долговечных.
Для работы точечных светильников на 12в, в схему добавляются трансформатор, преобразующий стандартное напряжения бытовой сети 220 Вольт в необходимые 12 Вольт. Чаще всего в продаже вы встретите электронные трансформаторы,
к их основным достоинствам относятся:
– малый габаритный размер и вес
– встроенные системы защиты такие как от короткого замыкания, плавный пуск значительно продлевающий срок жизни ламп и т.п.
– автоматическая регулировка напряжения
– постоянное напряжение на выходе
– низкий уровень шума
Выбор трансформатора (блока питания) для точечных светильников.
К основным характеристикам трансформаторов для точечных светильников относятся:
– Выходное напряжение
– Номинальная мощность
– Выходной ток
Выходное напряжение для галогенных ламп в точечных светильниках обычно должно быть 12В.
Номинальная мощность трансформатора рассчитывается исходя из суммарной мощности подключаемых к нему светильников, плюс небольшой запас.
Так например, при параллельном подключении к трансформатору трех точечных светильников по 50Вт каждый, номинальная мощность трансформатора должна быть больше 150Вт, значит берем 210Вт.
Следует отметить, что трансформаторы для точечных светильников на 12в выпускаются стандартных мощностей это: 60Вт, 70Вт, 105Вт, 150Вт, 210Вт, 250Вт, 400Вт.
Очень важная характеристика трансформатора для точечных светильников это выходной ток. Ведь малое напряжение предполагает высокий ток, который соответственно вызывает падение напряжения в проводах и если их неправильно подобрать, возможны очень неприятные последствия. Ниже представлена таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины.
Таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины
Если рассмотреть на нашем примере, описанном выше, где мы выбрали трансформатор на 210Вт, выходной ток такого трансформатора достигает 18 Ампер! В нашей таблице для такого тока, подбираем минимальное сечение кабеля, которое равно 1.5 кв. мм., при этом максимальная длина его не должна превышать 3,4 метра.
Чтобы свечение было равномерное у всех точечных светильников на 12в, запитанных от одного трансформатора, при параллельном подключении длины всех проводов должны совпадать (последовательная схема подключения для точечных светильников 12В не применяется).
Даже если один точечный светильник расположен совсем близко к трансформатору, а два других дальше, все равно длины каждого из проводов идущих от трансформатора к точечному светильнику 12в должны быть равны.
Если же, допустим, расстояние оказывается большим, чем минимально возможное из таблицы, то необходимо брать провод большего сечения, так например если в нашем примере мы проложим кабель 2.5. кв.мм., то он может быть длинной уже до 5,7 метра.
Схема параллельного подключения точечных светильников на 12В выглядит так:
Самый оптимальный вариант подключения точечных светильников на 12В, это когда на каждую точку стоит свой понижающий трансформатор, это несколько повышает стоимость набора освещения, но несомненно стоит того. Отпадает проблема с расчетом длин и сечений проводов, а главное при выходе из строя одного трансформатора, остальные лампы группы продолжат гореть. Схема подключения точечных светильников 12 Вольт, каждый через свой трансформатор, представлена ниже.
Обе представленные схемы, верны как для светильников на 12В постоянного, так и переменного тока. В случае с лампами на 12 Вольт переменного тока, полярность подключения проводов не важна, пусть вас не смущает маркировка клемм на схеме “+” и “-“.
Основные преимущества точечных светильников 12В:
– Безопасность, низкая вероятность поражения током человека или возникновения возгорания
– Больший срок службы ламп, в связи с их особенностями, а так же с дополнительными защитами реализованными в трансформаторе.
Основные минусы точечных светильников на 12В:
– Необходимость установки в схему трансформатора и связанные с этим сложности.
– Необходимость точного расчета и подбора сечений и длин проводов, из-за высокого тока.
Решать, какие именно выбрать точечные светильники на 220В или на 12В вам, но сейчас общая тенденция выражается в отказе от схем с отдельными трансформаторами. У многих производителей уже есть в линейке продуктов надежные галогенные лампы с питанием 220В для точечных светильников, а производители диодных ламп пошли еще дальше, и встраивают преобразователи напряжения в корпуса ламп, так что для их работы не требуется никаких изменений в проводке, подробнее об этом мы уже писали в статье «Замена ламп на светодиодные».
Схемы подключения светодиодов к 220В и 12В
Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.
Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.
Содержание
- 1. Типы схем
- 2. Обозначение на схеме
- 3. Подключение светодиода к сети 220в, схема
- 4. Подключение к постоянному напряжению
- 5. Самый простой низковольтный драйвер
- 6. Драйвера с питанием от 5В до 30В
- 7. Включение 1 диода
- 8. Параллельное подключение
- 9. Последовательное подключение
- 10. Подключение RGB LED
- 11. Включение COB диодов
- 12. Подключение SMD5050 на 3 кристалла
- 13. Светодиодная лента 12В SMD5630
- 14. Светодиодная лента RGB 12В SMD5050
Типы схем
Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:
- светодиодный драйвер со стабилизированным током;
- блок питания со стабилизированным напряжением.
В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.
Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.
Калькулятор учитывает 4 параметра:
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи;
- количество вольт на выходе блока питания.
Разница кристаллов
Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.
Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.
Обозначение на схеме
Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.
Подключение светодиода к сети 220в, схема
Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.
Схема драйвера для светодиодов бывает двух видов:
- простая на гасящем конденсаторе;
- полноценная с использованием микросхем стабилизатора;
Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.
Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.
Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.
Подключение к постоянному напряжению
..Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:
- 3,7В – аккумуляторы от телефонов;
- 5В – зарядные устройства с USB;
- 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
- 19В – блоки от ноутбуков, нетбуков, моноблоков.
Самый простой низковольтный драйвер
Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.
Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.
Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.
Драйвера с питанием от 5В до 30В
Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.
В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.
Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.
Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.
Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.
Включение 1 диода
Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.
Параллельное подключение
При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.
Рациональность применений каждого способа рассчитывают исходя из требований к изделию.
Последовательное подключение
Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.
Такое соединение применяют в любой светотехнике:
- светодиодные лампах для дома;
- led светильники;
- новогодние гирлянды на 220В;
- светодиодные ленты на 220.
В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.
Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.
Подключение RGB LED
Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.
Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.
Включение COB диодов
Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.
Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.
Подключение SMD5050 на 3 кристалла
От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.
При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.
При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.
Светодиодная лента 12В SMD5630
Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.
Светодиодная лента RGB 12В SMD5050
В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.
отличия от блока питания, назначение
На чтение 6 мин Просмотров 1.4к. Опубликовано Обновлено
При установке светодиодных ламп на место галогенных часто возникает необходимость замены старого источника питания. Галогенные лампы подключаются к электротрансформаторам на 12В, светодиодные требуют установки специальных блоков питания, имеющих аналогичное выходное напряжение. В связи с этим важно разобраться, можно ли использовать старый трансформатор или следует его поменять.
Что представляет собой электронный трансформатор
Электронный трансформатор для галогенных лам не используется для светодиодовЭлектронный трансформатор – это схема импульсного источника питания, в основу которой входит высокочастотный генератор, работающий на полупроводниковых ключах, и непосредственно сам трансформатор. Питание такой схемы обеспечивается стандартной сетью переменного тока с напряжением 220В, но на выходе действующее значение находится в области 12В. Сначала питание из электросетей подается на выпрямитель, а затем уже выпрямленное напряжение отправляется в узел генератора и силовых ключей.
Стандартный вариант реализации такой схемы – использование автогенераторного двухтактного типа, ключевой особенностью которого является отсутствие необходимости в использовании каких-либо специальных импульсных источников питания наподобие ШИМ-контроллеров. Автоматический генератор в данном случае переключает транзистор под воздействием напряжений, которые наводятся на обмотки трансформатора, а также обеспечивает положительную обратную связь.
Чтобы обеспечить нормальную работу светодиодных ламп, потребуется любой источник, обеспечивающий стабильное напряжение 12В на постоянной основе и минимизирующий пульсации. Для этого чаще всего используются именно упомянутые выше ИМС.
Обе схемы предусматривают использование интегрального ШИМ-контроллера, которым обеспечивается регулировка работы биполярных или полевых транзисторов. Помимо этого, выходной каскад схемы включает в себя выпрямитель, а также конденсаторы, которыми обеспечивается сглаживание пульсаций — они выступают в роли своеобразного фильтра.
В конечном итоге получается стабилизированный источник питания, пульсации которого соответствуют текущей нагрузке, а также емкости фильтрующих конденсаторов. При необходимости можно обеспечить его реализацию на автогенераторной схеме по аналогии с электронным трансформатором, используя дополнительно цепи обратной связи, чтобы обеспечить необходимую стабилизацию выходного напряжения.
Почему нельзя использовать ЭТ со светодиодными лампами
Есть пять причин, по которым нельзя обеспечивать питание светодиодных ламп, используя стандартные электронные трансформаторы:
- Светодиодные лампы предусматривают необходимость постоянного напряжения, что обусловлено их нелинейной вольтамперной характеристикой и чувствительностью к любым отклонениям от номинального показателя напряжения. При малейшем превышении такие лампы в итоге могут быстро выйти из строя.
- Электронные трансформаторы являются источниками переменного напряжения с высокой частотой, а показатели всплесков и пиков в некоторых ситуациях достигают 40В, что в итоге часто приводит к полной поломке светодиодов или же драйверов, использующихся в конструкции современных LED-ламп. Помимо этого, подобный подход чреват их нестабильной работой.
- Электронные трансформаторы отличаются наличием в них минимальной нагрузки. Таким образом, если нагрузка подключенной лампы не будет достигать уровня, указанного на блоке питания, трансформатор может вообще не начать работать или же будет работать с повышенными пульсациями, отключаться. Это является критичным моментом, так как потребляемая мощность галогенных ламп значительно превышает аналогичные показатели у светодиодных.
- Блоки питания, предназначенные для энергоснабжения светодиодных ламп, обеспечивают стабилизированное и постоянное напряжение.
- Галогенные лампы отличаются непривередливостью к тому, идет через сеть постоянный или переменный ток. Роль играет только его напряжение. В связи с этим их можно подключать к любым источникам питания.
Классические электронные трансформаторы не могут использоваться в качестве источника питания любых светодиодных светильников. При замене ламп нужно будет обязательно подбирать специальный блок, обеспечивающий стабилизированное напряжение. Если проигнорировать это, можно столкнуться с преждевременным выходом из строя всех ламп.
Понижающий трансформатор
Понижающий трансформатор для LED-лампСтандартный срок службы светодиодных ламп в соответствии с характеристиками, заявленными производителями, составляет 4000 рабочих часов. Если не использовать в работе таких устройств специализированные понижающие трансформаторы, оставляя в качестве основы работы диод, период эксплуатации сокращается до 1200 часов бесперебойной работы.
Если лампы устанавливаются в помещения с повышенной концентрацией влаги или постоянными перепадами температуры (сауны, бассейны), нужно использовать специальный понижающий трансформатор, оснащенный защитой от воздействия воды. Также важно убедиться в том, что общая нагрузка светодиодных ламп находится в пределах 60%.
Как выбрать
В выборе понижающего трансформатора для светодиодных ламп нет ничего сложного. При возникновении каких-нибудь трудностей всегда можно проконсультироваться с менеджерами компаний, которые продают такое оборудование. Самое главное – правильно рассчитать мощность.
Вычисляется сумма всех светодиодных светильников, установленных в помещении, к полученному результату добавляется 20%, так как в преимущественном большинстве случаев трансформатор используется только один.
К примеру, в комнате будет шесть ламп 12В, их сумма 72В. Устройства, имеющие номинал 60В, уже не могут использоваться. Нужно приобретать оборудование на 100В или сокращать количество источников света. Если поставить мощный трансформатор, можно добавить еще лампу.
Экономия зависит не от мощности используемых источников света, а от напряжения. Она обеспечивается за счет использования трансформатора, который значительно увеличивает срок службы LED-ламп.
Особенности установки
Трансформатор представляет собой выносное устройство, но такой тип установки не всех устраивает, так как не хочется портить интерьер дополнительным оборудованием. Скрыть такое устройство и при этом обеспечить себе нормальное взаимодействие с ним не составит труда, если в доме есть подвесные потолки или накладные стены.
В идеале устройства закрепляются на бетонной плите. Чтобы обеспечить к ним простой доступ, в поверхности стены или потолка делается маленький люк. Нужно учесть, что с течением времени устройство нужно будет менять, поэтому врезное отверстие должно соответствовать его габаритам.
Решение спрятать трансформатор в кладовке не всегда целесообразно, особенно если будет устанавливаться несколько устройств. До источника нагрузки должно идти не более 2 метров провода, поэтому расположить трансформатор далеко от светильника не получится. Чтобы избежать всех этих проблем, рекомендуется покупать светильники со встроенным трансформатором.
Трансформатор нагревается при работе
Если куплен новый трансформатор, который после подключения и включения начал сильно нагреваться, нужно провести несколько операций:
- Проверить нагрузку энергопотребления в помещении и соответствие допустимого номинала трансформатора количеству подключенных к нему ламп.
- Проверит разводку розеток и освещения по группам.
- Проверить идет ли нагрузка на устройство.
- Посмотреть отзывы в интернете по купленному устройству. Вполне возможно, приобретен некачественный трансформатор.
Если нагревается трансформатор, который используется уже несколько лет, это показатель износа оборудования. Следует поменять его на новый. Лучше не игнорировать эти сигналы, так как можно столкнуться с оплавлением корпуса, а это создаст риск пожароопасной ситуации.
Понижающие трансформаторы 220 12 для светодиодных ламп
предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.
Каждый из представленных светодиодных трансформаторов 220 – 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.
Каталог трансформаторов 220 – 12 вольт
Как определить нужную мощность понижающего трансформатора?
Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.
Диапазон мощностей, имеющихся у нас в продаже понижающих трансформаторов 220 – 12/24/36 вольт, позволяет подобрать трансформатор для любого случая.
Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.
Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.
Зачем трансформатор, если проще установить лампы на 220 вольт?
Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока. Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора. Но при этом Вы получаете существенный плюс – надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.
Где купить понижающий трансформатор 220 – 12/24/36 вольт?
В нашем интернет-магазине Вы можете выбрать и купить понижающий трансформатор 220 – 12/24/36 вольт. Мы осуществляем доставку по России и СНГ.
Вы спрашивали – мы отвечали
- Здравствуйте! Подскажите, если в 2-х комнатную квартиру установить встроенные потолочные светодиодные светильники, то насколько далеко можно разнести местоположения трансформаторов и светодиодных ламп?
Не повлияет ли удалённость трансформатора от светодиодной лампы на срок службы и работу последней, если расстояние между ними составляет 10-15 метров?Обычно рекомендуется не превышать 5 метров длины от трансформатора до лампы. - Рассматриваю вопрос установки трансформатора 220/12 и использования светодиодных ламп в помещении парилки и помывочной комнаты в бане. Подскажите, есть ли у трансформаторов гальваническая развязка? Возможно ли их применение в таких условиях?Нет, трансформаторы нельзя использовать в помещениях с повышенной влажностью.
- Здравствуйте, не подскажете, как правильно подключить трансформатор ps200w?Клеммы всех трансформаторов 220-12 подписаны одинаково.
- У меня в люстре стоят 12 ламп галогеновых 12v цоколь G4. Хочу заменить галоген на LED.
При замене галогенок (12шт х 20ватт) на LED (12шт х 2 ватт) хочу поменять трансформатор на понижающий 220 -12 вольт постоянного тока.
Хватит ли мне трансформатора 30 ватт или запас нужно делать больше? Спасибо большое.Если речь идёт о наших светодиодных лампах G4 на 2 ватта, то трансформатора такой мощности заведомо хватит. - Для 50 светильников со светодиодными лампами 5вт какой мощности нужен понижающий трансформатор?Мощность трансформатора рассчитать просто: нужно сложить мощности всех подключённых светодиодных ламп и увеличить .
- У меня установлен трансформатор на 150 Ватт, к нему подключено 4 точечных светильника по 35 Вт (4х35=140Вт). Хочу заменить лампы на LED. Мощность ламп будет, например 4х3=12 Ватт. Вопрос: что делать с трансформатором?Мы уже отвечали на подобный вопрос, но касательно ламп с цоколем G4.
- У меня в квартире установлено много галогеновых ламп на 12 вольт. Это лампы с отражателем диаметром 50мм и маленькие пальчиковые лампы, цоколь у них, кажется, G4. При замене этих ламп на LED G4 нужно ли мне будет менять установленные понижающие трансформаторы?Если у Вас установлены старые электронные трансформаторы (их легко опознать – они всегда маленькие, трансформатор на 50 .
Задайте свой вопросРАСПРОДАЖА! Цены снижены до 60%! Подходят для:Светодиодные лампы Е27 на 12, 24, 36 вольтСветодиодная лента 12 вольтСветодиодные прожекторы 12 вольт, 24 вольтаРасстояние от трансформатора до ленты или лампыВопросы покупателей Вы спрашивали – мы отвечалиНаши ответы на несколько сотен самых распространённых вопросов: как не ошибиться при выборе, как правильно подключить, решения проблем.Популярные статьи
- Чем грозит покупка дешевых светодиодных ламп?Зачем платить больше, если лампу той же мощности можно на рынке купить дешевле? Мы купили на рынке три дешёвые лампы, разобрали их и покажем Вам, что Вы реально получите вместе с подобными «изделиями».
- Что такое светодиодная лампа?Короткий ответ на этот вопрос и несколько слов о наших светодиодных лампах ТАУРЭЙ.
- Недостатки светодиодных лампУ светодиодных ламп есть и недостатки. Для кого-то они могут оказаться существенными.
- Температура света – что это?Популярно о цветовой температуре, что это такое, и как получилось, что свет измеряется в градусах.
Новости и акции
- 05.11.2019Поступление в продажу новой ландшафтной светодиодной лампы F18-2S на 24, 36, 48 вольт
- 05.06.2019Ожидается поступление светодиодных матриц и прожекторов мощностью до 500 ватт с белым нейтральным светом, для сетей 110/127/220 вольт и для 12-24 вольт.
- 02.10.2018Очередное поступление низковольтных светодиодных ламп Е27 на 12, 24, 36 вольт мощностью от 3 до 12 ватт.
Новые мощные прожекторы на 500 ватт. - 01.10.2018Новая продукция – линейка низковольтных светодиодных прожекторов на 12-24 вольт пополнилась моделями на 60 ватт. Также в продаже новые драйверы на 70 и 80 ватт.
- 28.09.2018Поступление новых недорогих светодиодных ламп Е27 на 24/36/48 вольт. Две модели бренда «Край Света» на 8 и 10.5 ватт.
Особенностью светодиодных лампочек является низкое напряжение питания. В этом кроется секрет долговечности и экономичности приборов. Использование ламп на 220 В возможно не всегда, поэтому часто приходится выбирать низковольтные аналоги. Например, для установки во влажные помещения.
Для питания каждого из них требуется собственный источник, или драйвер. Его функции может выполнять трансформатор для светодиодных ламп 12 вольт, способный одновременно подавать энергию на несколько устройств. Рассмотрим вопрос внимательнее.
Какие трансформаторы лучше использовать для светодиодов
Для питания светодиодов нужны трансформаторы, преобразующие переменное напряжение 220 В (стандартное сетевое значение) в постоянный ток (в нашем случае —12 В). При этом, надо, чтобы никаких пульсаций напряжения после диодного моста не возникало, для чего используются сглаживающие конденсаторы. Это ограничивает возможности обычных блоков питания, которые не могут обеспечить достаточного качества и мощности выдаваемого напряжения.
Рассчитывать на то, что можно подключить лампу к стандартному выпрямителю, не следует — можно испортить светильник или получить неравномерное свечение, с пульсациями или мигающим режимом. Стандартный электронный драйвер, установленный в LED лампу на 220 В, тоже не подойдет — его мощность рассчитана только на единственный прибор и не позволит присоединить дополнительную нагрузку.
Необходимо учитывать недостатки:
- большие габариты;
- во время работы он издает гул, который со временем усиливается;
- потребление энергии довольно высокое, поскольку КПД устройства составляет 50-70%, все остальное — потери на нагрев и гул;
- сложность скрытого монтажа — объемный блок непросто куда-то спрятать.
Эти минусы ограничивают применение трансформаторов в пользу импульсных источников. Однако, среди любителей и домашних мастеров они получили широкое распространение из-за надежности, дешевизны и простоты применения.
Важно! Нередко трансформаторами называют драйвера или источники другого типа. Это неверно, но на практике используется достаточно часто. Поэтому всегда надо уточнять, о каком именно устройстве идет речь.
Понижающие ток трансформаторы для светодиодных ламп и лент с 220 вольт до 12
Для подключения светодиодных лент или ламп используются специальное устройство (драйвер электронный), преобразующее 220 В в постоянное напряжение 12 В с заданной мощностью. Приобрести такой драйвер отдельно возможно не всегда, и обходится он не дешево. Это стало причиной изготовления альтернативных источников питания на базе трансформатора.
Здесь необходимо сразу учесть, что одним только подключением устройства вопрос решить не удастся. Дело в том, что на выходе трансформатора будут необходимые 12 В, но переменного тока. Поэтому после трансформатора понадобится установить диодный мост, который выдает пульсирующее напряжение. Это уже не переменка, но и от постоянной осциллограммы еще очень далеко.
Для того, чтобы получить качественную прямую на осциллограмме, надо параллельно выходу диодного моста поставить конденсатор такого номинала, чтобы полностью исключить пульсации тока. Чем больше его емкость, тем ровнее будет график, но слишком большие значения емкости также вредны. Возникает большой пусковой ток, который может быть опасным для осветительных приборов. Поэтому надо подбирать номинал так, чтобы график получался максимально ровным, но не более того.
Основным преимуществом трансформаторного источника является полная гальваническая развязка с сетью питания 220 В. Это важно именно для домашних мастеров и любителей украшать свои комнаты светодиодными лампами. Если при выполнении каких-либо работ человек прикоснется рукой к оголенным контактам, ничего страшного не произойдет.
Подключение при помощи обычного трансформатора
Использование обычного трансформатора в комплекте с диодным мостом и сглаживающим пульсации конденсатором является неплохим альтернативным вариантом питания светодиодных приборов. Схема работает в обычном режиме — трансформатор понижает напряжение до нужного значения, диодный мост выпрямляет его, а конденсатор устраняет пульсации, окончательно стабилизируя график.
Однако, у такой схемы есть серьезный недостаток — она не способна ограничивать силу тока. То есть, при последовательном подключении лампочек будет теряться яркость свечения — одно значение напряжения будет делиться на число светодиодных ламп. Если включить их параллельно, напряжение на каждой будет одинаковым, но ток потребления возрастет вдвое.
Важно! Если потребителей будет достаточно много, есть серьезная опасность сжечь источник питания (и хорошо, если дело ограничится только им). Это обстоятельство делает расчет и подключение блока питания на базе трансформатора довольно ответственным делом.
При подключении важно не перепутать контакты на обмотках трансформатора. Их предварительно прозванивают и отмечают маркером, чтобы не перепутать. Диодный мост либо собирают из отдельных элементов, либо используют готовые полупроводниковые сборки. При этом, важно сразу уточнить, какой тип имеется в наличии, так как существуют полумосты и полноценные сборки. Первые дают низкое напряжение и очень сильные пульсации, поскольку оставляют только колебания одной стороны графика. Вторые более предпочтительны, их график ровнее, а напряжение может быть выше.
Специальные трансформаторы для светодиодных светильников
Альтернативным вариантом источника напряжения, который некоторые пользователи тоже называют трансформатором, является импульсный блок. Он устроен совершенно иным образом. В частности, отсутствует массивный и шумный входной трансформатор. Основным узлом является преобразователь, изменяющий сетевую синусоиду на импульсный график. Схема работы такого устройства довольно сложна и заслуживает отдельного рассмотрения.
Иногда предпринимаются попытки подключать 12 В светодиодные лампочки через трансформатор для галогенок. На первый взгляд, напряжение подходит, все должно нормально работать. На практике получается, что светодиодные лампы дают несвойственный им оттенок, при увеличении нагрузки начинают пульсировать, мигать. Оказывается, на таких блоках не напрасно наносится эта предупреждающая надпись — там установлены высокочастотные трансформаторы, не подходящие для нормальной работы светодиодных ламп.
Обычная частота сетевого тока — 50 Гц, а у источников питания для галогенок рабочее значение находится в диапазоне 30000-50000 Гц. Кроме того, они предназначены для работы с определенной минимальной нагрузкой. Если мощности светодиодных ламп не будет хватать, блок просто отключится. Дополнительной проблемой становится полярность — для галогенок она не имеет значения, поэтому на выходе плюс и минус не указываются.
Схемы подключения
Существуют две схемы подключения источника питания к светодиодным лампам:
- источник со стабилизированным током;
- блок со стабилизированным напряжением.
В случае использования трансформатора для светодиодных ламп 12 В следует выбирать схему со стабилизацией по току. Количество приборов потребления будет определяться только мощностью устройства, что легко рассчитать простым делением общего значения на величину показателей единицы. Второй вариант также может быть использован, но в этом случае понадобится установить дополнительный токоограничивающий резистор. Его номинал рассчитывается для каждого случая отдельно. Самым простым способом расчета станет использование онлайн-калькулятора, обладающего вполне достаточной точностью.
Простейшая схема подключения выглядит следующим образом:
- TV1 — трансформатор, подключенный к источнику 220 В;
- VD — диодный мост;
- C1 — конденсатор, сглаживающий пульсации.
К контактам «+» и «-» подключаются лампы. Трансформаторы для светодиодных светильников просты в сборке и практически не нуждаются в настройке.
Основные выводы
Использование трансформаторов для светодиодных ламп имеет некоторые особенности:
- доступность, дешевизна трансформаторов;
- есть возможность переделать устройство с другими параметрами под нужное напряжение;
- схема безопасна при выполнении каких-либо работ, так как гальванически развязана с сетью питания.
Однако, есть и некоторые недостатки:
- прибор получается громоздким и тяжелым;
- во время работы он издает гул;
- требуется надежное ограничение по силе тока, иначе трансформатор сгорит от перегрузки.
Суммируя эти особенности, можно сделать вывод об ограниченной сфере использования такого источника. Он подойдет для несложных экспериментов или опытов с подсветкой. В то же время, трансформатор недорог, прост в изготовлении и ремонте, что делает его наиболее предпочтительным для домашних мастеров, любителей технического творчества.
Свои варианты конструкции или другие замечания излагайте в комментариях.
Трансформатор LED BLV Trafo Luxia 0-60W 230-12V IP44 для светодиодных ламп Артикул: 456001 Трансформатор BLV для светодиодных ламп мощностью 60 Ватт с напряжением 12 Вольт. BLV (БЛВ) |
Артикул: 456002
Трансформатор BLV для светодиодных ламп мощностью 105 Ватт с напряжением 12 Вольт.
BLV (БЛВ)
Трансформаторы для светодиодных ламп 12В
В нынешнее время светодиодное освещение получило большое распространение и применение в различных сегментах повседневной деятельности человека, которая может быть как рабочей, так и бытовой сферой. Благодаря своей безвредности и экономичности светодиодные лампы в ближайшем будущем вытиснут устаревшие источники света (лампы накаливания, люминесцентные источники света) из обихода. Однако для стабильной и безотказной работы светодиодных ламп необходимы некоторые устройства, которые обеспечивают их свечение. Одним из таких модулей является трансформатор. В основном используются 12В трансформаторы, хотя есть и более мощные модули, такие как 24В и более мощные.
Трансформатор нужен для того, чтобы светодиодный источник света можно было подключить к центральной электросети, в которой напряжение равно 220В. Фактически трансформатор понижает сетевое напряжение равное 220В до необходимого лампе 12В. Благодаря трансформатору, пользователь может быть уверенным в том, что на светодиодную лампу будет подаваться стабильное напряжение в 12В, без каких-либо колебаний, которые могут присутствовать в центральной электросети. Трансформатор производит сглаживание любых колебаний напряжения, и выдаёт стабильную величину в 12В. За счёт этого, пользователь может быть уверенным в том, что его светодиодная лампа не сгорит, или не уменьшит свой запас работы/часов, который заложен производителем на протяжении всего срока эксплуатации.
Трансформатор на 12В может быть различной формы и отличаться дополнительными характеристиками. Все без исключения устройства обладают двумя основными показателями: мощность, защита корпуса. В основном применяются трансформаторы со степенью защиты IP20, хотя есть образцы и IP44, IP65. За счёт своей различной степени защиты, у пользователя есть возможность применять трансформатор отдельно от источника света и устанавливать его как в закрытом пространстве, так и в открытом, где он может быть подвержен различным воздействиям окружающей среды. Существует множество разработок и технологий, с помощью которых производитель способен выпускать герметичные трансформаторы, прекрасно подходящие для подводных светодиодных источников света (декоративное освещение бассейнов). Относительно мощности, пользователь должен чётко понимать какое количество светодиодных ламп будет у него подключено к трансформатору, и соответственно рассчитать их общую мощность. К примеру, если человек приобретёт трансформатор, имеющий минимальную нагрузку 15W, а подключит к нему две лампы по 6W, которые в сумме дадут всего лишь 12W, тогда ни какой стабильной работы источников света не будет. Данный пример показывает, что при выборе трансформатора, пользователь должен знать какие потребители питания будут к нему подключены, дабы избежать избыточности или несовместимости устройств. При выборе трансформаторов 12В для светодиодных ламп, так же стоит обратить внимание на фактор диммирования и защищённости устройств от перегрева, а так же короткого замыкания. В основном все ведущие фирмы по электрооборудованию, предоставляют данные опции и модификации в своих трансформаторах, которые предлагают пользователю.
Трансформатор для галогенных ламп | Заметки электрика
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Речь в сегодняшней статье пойдет о расчете и выборе понижающего трансформатора для галогенных ламп, а также о схемах его подключения.
Галогенные лампы нашли широкое применение для освещения разного вида помещений. Они обладают идеальной цветопередачей и имеют постоянную яркость на протяжении всего периода работы. Срок службы таких ламп в 3-4 раза дольше (до 2-4 тыс. часов), чем у ламп накаливания.
Всего существует два типа галогенных ламп:
- на переменное напряжение 220 (В)
- на переменное напряжение 6, 12 и 24 (В)
Первый тип ламп включаются в сеть 220 (В) напрямую (непосредственно) без применения каких-либо понижающих трансформаторов.
Вот фотография галогенной лампы JCDR на 220 (В) мощностью 35 (Вт) с цоколем GU5.3 (значение 5.3 — это расстояние между выводами в миллиметрах).
Вот еще пример «галогенки» ЭРА на 220 (В) мощностью 35 (Вт) с цоколем GY6.35.
Для подключения второго типа ламп необходим понижающий трансформатор 220/6 (В), 220/12 (В) и 220/24 (В) соответственно.
В данной статье мы более подробно остановимся именно на этих типах галогенных ламп.
Напомню Вам, что применение ламп на 6, 12 или 24 (В) обеспечивает дополнительную электробезопасность. Почитайте статью про требования к светильникам и розеткам, установленных в ванной комнате или в помещении парилки.
Электромагнитный или электронный трансформатор? Что выбрать?
На сегодняшний день понижающие трансформаторы делятся на 2 типа:
- электромагнитные (тороидальные)
- электронные (импульсные)
Электромагнитные трансформаторы для галогенных ламп достаточно надежны и не очень дорогие по стоимости.
Их принцип работы основан на электромагнитной связи первичной и вторичной обмоток (катушек).
Также они имеют весомые недостатки — это значительный вес (массу) и габаритные размеры, поэтому их применение несколько ограничено. Посмотрите сами. Электромагнитный трансформатор 220/12 (В) HBL-250 имеет вес около 3,2 (кг).
Хочу сказать еще о двух их недостатках — это нагрев во время работы и чувствительность к скачкам напряжения, что отрицательно сказывается на сроке службы галогенных ламп.
Вес и габаритные размеры электронных трансформаторов в несколько раз меньше, чем у электромагнитных. Они имеют стабилизированное напряжение на выходе и особо не нагреваются во время работы (по сравнению с электромагнитными).
Некоторые типы электронных трансформаторов обладают встроенной защитой от короткого замыкания, перегрева, плавным пуском, что значительно увеличивает срок службы галогенных ламп, поэтому они и нашли более широкое применение, особенно для светильников и люстр для натяжных и подвесных потолков, корпусной мебели и т.п.
Электронные трансформаторы имеют совершенно другой принцип работы, основанный на преобразовании электрической энергии за счет электронных устройств и полупроводниковых приборов.
Электронный трансформатор запрещено включать без нагрузки в связи с особенностями его внутренней схемы. Вы наверное замечали, что на корпусах некоторых моделей указаны два значения мощности: минимальная и максимальная. Например, 40-105 (Вт). Так вот общая мощность ламп, питающихся от этого трансформатора, должна быть не меньше 40 (Вт).
Как рассчитать мощность трансформатора для галогенных ламп?
Итак, Вы определились с типом понижающего трансформатора. Теперь нужно выбрать его мощность. В продаже имеются трансформаторы с разными значениями мощностей. Покупать трансформатор с завышенной мощностью совсем не целесообразно, или наоборот, можно купить с недостаточной мощностью, что вызовет его перегруз и выход из строя.
Рассмотрим на реальном примере.
Предположим, что на кухне необходимо установить 6 галогенных точечных светильников напряжением 12 (В) мощностью 35 (Вт). Общая мощность всех ламп составит 210 (Вт). Введем коэффициент запаса (надежности), увеличив значение 210 (Вт) на 10-15%. Получаем мощность, равную 231 (Вт). Таким образом, нам нужно приобрести понижающий трансформатор 220/12 (В) мощностью не ниже 231 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 250 (Вт).
Вот стандартный ряд номинальных мощностей: 50, 60, 70, 105, 150, 200, 250, 300, 400 (Вт).
Схема подключения галогенных ламп. Вариант 1
Вот схема подключения галогенных ламп для нашего варианта:
Схема подключения трансформатора на стороне 220 (В) осуществляется через одноклавишный выключатель. Отходящие от распределительной коробки оранжевый и синий проводники (читайте о цветовой маркировке проводов) подключаются на первичные клеммы трансформатора L и N «Input» («Вход»).
На стороне 12 (В) все галогенные лампы подключаются на вторичные клеммы трансформатора «Output» («Выход») отдельными медными проводами (кабелями) сечением не менее 1,5 кв.мм и только параллельно. Сечение и длина питающих проводов должны быть одинаковыми, иначе яркость свечения «галогенок» будет отличаться друг от друга.
Если клеммных зажимов на трансформаторе не достаточно для подключения 6 ламп, то можно применить специальные соединительные клеммы.
Длина проводов (кабелей) между трансформатором и галогенными лампами должна быть в пределах от 1,5 до 3 (м). Почему? Если это расстояние увеличить, то в линии возникнут большие потери (провод начнет греться), т.к. при одной и той же мощности лампы и разных питающих напряжениях (220 и 12 В) ток в проводах будет отличаться в десятки раз, соответственно, уменьшится яркость ламп.
Если по каким-то причинам длина от трансформатора до лампы превышает 3 метров, то необходимо увеличивать сечение питающего провода (кабеля).
Подключение галогенных светильников. Вариант 2
Можно сделать немного по-другому. Разобьем 6 светильников на 2 группы, т.е. в первой группе — 3 штуки, и во второй группе — 3 штуки.
Для каждой группы установим свой понижающий трансформатор 220/12 (В). Такое решение будет целесообразно, т.к. при выходе из строя одного из понижающего трансформаторов, вторая группа светильников будут продолжать работать, а покупка нового трансформатора обойдется несколько дешевле, нежели покупать один общий трансформатор, как в первом примере — ведь с ростом мощности пропорционально ей увеличивается и цена на товар.
Общая мощность каждой группы составит 105 (Вт). Аналогично, введем коэффициент запаса (надежности), увеличив значение 105 (Вт) на 10-15%. Получаем мощность, равную 115,5 (Вт).
Таким образом, нам нужно приобрести два понижающих трансформатора 220/12 (В) мощностью не ниже 115,5 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 150 (Вт).
Вот схема для варианта 2.
Рекомендую Вам каждый понижающий трансформатор запитывать отдельными проводами (кабелями) и соединять их в распределительной коробке (читайте о всех разрешенных способах соединения проводов). Этим советом некоторые пренебрегают и соединяют провода прямо под потолком. Так делать не нужно, т.к. все места соединений проводов должны иметь постоянный и беспрепятственный доступ для обслуживания и ремонта (ПУЭ, п.2.1.23).
Если Вы хотите управлять каждой группой ламп отдельно, то используйте для этого двухклавишный выключатель.
Внимание!!! Применять диммер совместно с электронными (импульсными) понижающими трансформаторами не рекомендуется, т.к. он нарушает правильную работу электронного преобразователя, что в итоге скажется на уменьшении срока службы галогенных ламп.
Рекомендации по месту установки понижающего трансформатора
В конце статьи я хочу дать Вам несколько рекомендаций по установке трансформаторов для галогенных ламп.
Я уже говорил в начале статье, что понижающие трансформаторы для галогенных ламп во время работы могут достаточно сильно нагреваться, поэтому их необходимо устанавливать на негорючей поверхности.
Расстояние от трансформатора до «галогенки» должно составлять не менее 20 (см).
Для лучшей вентиляции трансформатор рекомендуется устанавливать в закрытой полости (нише) объемом не меньше 12 литров, иначе необходимо уменьшить его нагрузку.
P.S. На этом все. Спасибо за внимание. Если у Вас имеются вопросы по материалу данной статьи, то задавайте их в комментариях.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Как выбрать трансформатор для светодиодной лампы . Электропара
Светодиодные лампы плотно заняли свою нишу на рынке светотехники и уже бьют рекорды по популярности среди других источников света. Преимущества несомненны – низкое потребление электроэнергии, долговечность, экологическая чистота изделий, которые используются во всех областях освещения, от бытового до производственного. Однако для стабильной и долгой работы нужно правильно выбрать трансформатор для светодиодной лампы.
Выбираем трансформатор для светодиодной лампы
Среди бытовых светодиодных источников света можно выделить светодиодную ленту и лампы различных характеристик. Чаще всего в лампу уже встроен трансформатор и она может использоваться при стандартном напряжении 220 Вольт. Но некоторые модели исполняются под рабочее напряжение 12 В или 24 В, и для них потребуется трансформатор, особенно это касается светодиодных лент, которые нельзя напрямую запитать к розетке.
Назначение трансформатора – обеспечение стабильного напряжения на выходе, преобразование напряжения до нужной величины. Только в этом случае можно уверенно сказать, что прибор прослужит долго и будет радовать качественным светом без мерцаний и пульсаций. Трансформатор на 12 Вольт позволяет приспособить светодиодную лампу к реальным условиям сети. При выборе трансформатора нужно обратить внимание на следующие характеристики:
- защита от влаги;
- напряжение;
- мощность.
Помните, универсальных трансформаторов не существует, это значит, что для каждого конкретного источника света нужно подбирать свой прибор: для 24 Вольтовых ламп не подойдет блок питания на 12 Вольт.
Защита от влаги – важная характеристика, однако не стоит за нее переплачивать, если вы планируете использовать прибор в сухом помещении, такие модели подходят для применения в уличных или влажных условиях. Максимальная степень защиты IP67, но и трансформаторы IP65 также могут использоваться на улице.
Напряжение указывается производителем в маркировке трансформатора – например, 12 Вольт или 24 Вольт.
Мощность рассчитывается с учетом запаса в 30%. Так, на лампу мощностью 12 Вт потребуется трансформатор от 15 Вт.
Схема подключения трансформатора также указывается в документации на изделие.
Немного о производителях
OSRAM – ведущий производитель светотехнического оборудования, предлагает светодиодные трансформаторы, стабилизаторы, контроллеры. Продукция этой марки известна во всем мире.
FOTON LIGHTING делает акцент на производство инновационных изделий и уделяет особое внимание внедрению энергосберегающих технологий.
Vossloh Schwabe – немецкая компания, чьи светодиодные драйверы в пластиковом или металлическом корпусе обеспечивают правильный рабочий ток.
Ecola – один из признанных лидеров на российском рынке светотехники, предлагает широкий ассортимент трансформаторов, блоков и адаптеров питания для светодиодных ламп, а также контроллеры с инфракрасным пультом управления.
Navigator – это качественные источники питания, контроллеры, драйверы и трансформаторы для светодиодных ламп.
Объяснение 4 простых схем бестрансформаторного источника питания
В этом посте мы обсудим 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного сетевого напряжения переменного тока. Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .
Концепция бестрансформаторного источника питания
Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или катушки индуктивности.
Он работает за счет использования высоковольтного конденсатора для понижения сетевого переменного тока до необходимого более низкого уровня, который может быть подходящим для подключенной электронной схемы или нагрузки.
Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасное функционирование конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:
Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.
Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и не позволяет сетевому переменному току превысить заданный уровень, определяемый номиналом конденсатора.
Однако, несмотря на то, что ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.
Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана соответствующим образом в соответствии с допустимым уровнем тока конденсатора.
ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения
Преимущества использования цепи бестрансформаторного источника питания
Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.
Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.
Однако одним из недостатков использования трансформатора является то, что вы не можете сделать его компактным.
Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.
Схема бестрансформаторного источника питания, описанная здесь, очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.
Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения напряжения сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.
Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться в качестве источника питания постоянного тока 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеупомянутой конструкции, стоит сосредоточиться на нескольких серьезных недостатках, которые эта концепция может включать.
Недостатки схемы бестрансформаторного источника питания
Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.
Еще один недостаток, который, безусловно, требует некоторого рассмотрения, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, в которых все находится в непроводящем корпусе.
Поэтому начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проходить через нее, что может вызвать серьезное повреждение цепи с питанием и самой цепи питания.
Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.
Этот конденсатор заземляет мгновенные скачки высокого напряжения, тем самым эффективно защищая связанную с ним электронику.
Как работает схема
Работу этого источника питания без преобразования можно понять по следующим пунктам:
- Когда вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
- Тем не менее, напряжение не ограничено, и поэтому полные 220 В или что-то еще, что может быть на входе, может достигать следующей ступени мостового выпрямителя.
- Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
- Это 310 В постоянного тока мгновенно понижается до постоянного низкого уровня с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
- C2 наконец фильтрует 12 В постоянного тока с пульсациями в относительно чистый 12 В постоянного тока.
1) Базовая бестрансформаторная конструкция
Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:
- Конденсатор C1 становится наиболее важной частью схемы, так как он является единственной. который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратиться к этой статье.
- Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 имеет способность сохранять в себе сетевой потенциал 220 В, когда он отключен от сети, и может подвергнуться риску поражения высоким напряжением любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любой подобный сбой.
- Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока от конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
- Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле.Поэтому стабилитрон подходящего номинала используется для шунтирования 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
- Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам нужен R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока войти в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом может быть использование NTC вместо R2.
- C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.
Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я добавил место для MOV также на печатной плате со стороны входа сети.
Пример схемы для светодиодного декоративного освещения.
Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как небольшие светодиодные лампы или светодиодные гирлянды.
Идею запросил г-н.Jayesh:
Требования к спецификации
Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампочки составляет 4 дюйма в окончательной веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полный канат, состоящий из 6 струн.
у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому размещение лампы получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полная веревка из 3-х струн вместе.
Пожалуйста, предложите лучшую надежную схему с сетевым фильтром и посоветуйте, какие дополнительные вещи необходимо подключить для защиты цепей.
, и обратите внимание, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.
Конструкция схемы
Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В 5 мм светодиоды:
Здесь вход конденсатор 0,33 мкФ / 400 В определяет величину тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.
Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.
Следовательно, для 2-х цепочек, параллельно подключенных, требуемое значение будет 0,68 мкФ / 400 В, для 3-х цепочек вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.
Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности.Его можно было вставить в любом месте последовательно с отдельными струнами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ переменного тока, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC …….. Теперь давайте посмотрим, как обычный емкостный источник питания может быть преобразован в бестрансформаторный источник питания без перенапряжения или стабилизированного напряжения, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти. Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге. Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт, 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, следовательно, мне нужен двойной источник питания. Примерная спецификация: Номинальный ток 300 мAP1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода) Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V Буду рад, если вы любезно поможете. Спасибо, Функционирование различных компонентов, используемых на различных этапах показанной выше схемы управления напряжением, можно понять из следующих точек: Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В. Выходное напряжение 10 мкФ / 400 В теперь достигает примерно 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети. Сеть делителей напряжения, сконфигурированная в основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания. Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности. Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого через эмиттер / землю TIP122. Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы поддерживать ее в выключенном состоянии и защищать от начального скачка напряжения. Катушка индуктивности также обеспечивает высокое сопротивление катушки в течение периода включения и предотвращает попадание пускового тока внутрь цепи, предотвращая возможное повреждение цепи. Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC. Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно улучшена за счет применения источника питания истокового повторителя МОП-транзистора вместе с дополнительным каскадом регулирования тока с использованием транзистора BC547. Полную принципиальную схему можно увидеть ниже: Третий интерес объясняет важность обнаружения пересечения нуля в емкостных бестрансформаторных источниках питания для полной защиты от бросков импульсных токов при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом. Я с большим интересом читал статьи о безтрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема — это возможный пусковой ток в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль). Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через ноль, почему бы не использовать компонент перехода через нуль для управления им, например, оптотриак с переходом через ноль. Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться TRIAC, который включается при переходе через нуль. Если это применимо, это также решит проблемы с высокими требованиями к току, поскольку Optotriac, в свою очередь, может без каких-либо затруднений управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током. Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту. С уважением, Как справедливо указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания. Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложным делом и может быть легко реализовано с использованием этих устройств. Драйверы симисторов серии MOC имеют форму оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль. Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения для контроля перенапряжения в емкостных источниках питания. Обнаружение и выполнение перехода через нуль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним, чтобы засвидетельствовать предполагаемое управляемое срабатывание интегральной схемы симистора при переходе через нуль. Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через нуль, давайте сначала кратко разберемся, что такое переход через нуль, и связанные с ним особенности. Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые растут и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале.Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое + 310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл. Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки. Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, потому что конденсаторы имеют характеристики короткого замыкания в течение доли секунды при воздействии напряжения питания, после чего они заряжаются и настраиваются до заданного значения. выходной уровень Возвращаясь к проблеме пересечения нулевого уровня сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения. Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока. Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что при каждом включении питания он срабатывает и инициирует подключенный симистор только во время первого перехода фазы переменного тока через ноль, а затем поддерживает нормально включенным переменный ток до тех пор, пока питание не будет отключено и снова не включено. Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур. Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, которая может светодиод. При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети. Напряжение питания, полученное на выходе конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света … и как только обнаруживается, что цикл питания переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшееся время до выключения и повторного включения агрегата. При описанной выше настройке при каждом включении питания оптоизолирующий симистор MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку. безопасный и свободный от опасного всплеска спешки. Здесь обсуждается комплексная схема емкостного источника питания, имеющая детектор перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена г-ном Чами. Обнаружение пересечения нуля Привет, Свагатам. Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения. 1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока. 2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381. 3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и это моя ошибка 4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, 10 кОм нужно меньше? Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно). Спасибо, что нашли время и просмотрели мою полную неисправностей схему. Хорошего дня. Chamy Оценка конструкции Здравствуйте, Chamy, мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы: 1) да BT136 следует заменить на симистор с более высоким номиналом. Swagatam Ссылка: Zero Crossing Circuit Это 4-е простое, но интеллектуальное решение реализовано здесь с использованием IC 555 в моностабильном режиме для управления резкими скачками напряжения без трансформатора. питание через схему переключения при переходе через нуль, при которой входная мощность от сети может поступать в цепь только во время перехода сигнала переменного тока через нуль, что исключает возможность скачков напряжения.Идею подсказал один из заядлых читателей этого блога. Может ли бестрансформаторная схема с нулевым переходом предотвращать начальный пусковой ток, не позволяя включаться до точки 0 в цикле 60/50 Гц? Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность. Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, что конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ??? Как считывать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять. Вышеупомянутый запрос побудил меня искать связанную конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения. Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без перенапряжения. Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала. После этого положительного цикла форма сигнала опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке. Вышеупомянутая операция происходит примерно от 50 до 60 раз в секунду в зависимости от технических характеристик электросети. Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после которого экспоненциальный рост нагрузки не представляет никакой угрозы для нагрузки. Именно это мы и попытались реализовать в предлагаемой схеме. Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсации 100 Гц по линии. Вышеупомянутый потенциал также прикладывается к базе Q1 через резистор 100 кОм. IC 555 сконфигурирован как моностабильный MV, что означает, что на его выходе будет высокий уровень каждый раз, когда его контакт №2 заземлен. В течение периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0.6 В, Q1 включает заземляющий контакт №2 ИС и обеспечивает положительный выход контакта №3 ИС. Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл. Время включения моностабильного может быть установлено изменением предустановки 1M. Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот. Условия включения этой схемы бестрансформаторного источника питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или схемы. Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиода на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь. Шаг 1. Рассчитайте энергопотребление полосы, которую вы хотите –Мы можем рассчитать мощность каждой полосы, зная тип светодиода и его номинальную мощность для каждого светодиода.Формула для расчета: Потребляемая мощность = Мощность каждого светодиода * Количество светодиодов на длине полосы. Например, для модели SMD3528 длиной 100 см, 150 светодиодов на рулон, это 30 светодиодов на 100 см, поэтому его потребляемая мощность составляет 30 * 0,08 = 2,4 Вт. ПРИМЕЧАНИЕ. Этот метод позволяет получить данные о номинальной потребляемой мощности. На самом деле, после того, как полоса будет запущена в длительную эксплуатацию, произойдет падение напряжения, которое приведет к потере мощности. Чем длиннее полоса, тем меньше реальная мощность она вырабатывает. Полоса длиной 5 метров по сравнению с полосой длиной 1 метр той же модели, реальная мощность будет на 40-50% меньше. Чем короче полоса, тем реальная мощность будет намного ближе к номинальной. И снова, некоторые производители будут использовать разные резисторы для регулировки выходной мощности полосы. Например, если светодиодный компонент номиналом 60 мА, для увеличения срока службы будет использоваться большой резистор, ток светодиода будет меньше номинального. A: одиночный чип SMD3528 0,08 Вт / светодиод Примечание: теперь SMD3528 заменен на имя SMD2835, 0.1W. Лента, изготовленная из этого светодиода 3528, модели, которые мы продаем в Интернете, имеют: Полоса Модель 3528,150LED / Рулон 3528,300LED / Рулон 3528,600LED / рулон 3528,1200LED / Рулон 30 светодиодов на метр 60 светодиодов на метр 120 светодиодов на метр 240 светодиодов на метр 500см 12 Вт 24 Вт 48 Вт 96 Вт 300см 7.2 Вт 14,4 Вт 28,8 Вт 57,6 Вт 200см 4,8 Вт 9,6 Вт 19,2 Вт 38,4 Вт 100см 2,4 Вт 4,8 Вт 9.6 Вт 19,2 Вт 50см 1,2 Вт 2,4 Вт 4,8 Вт 9,6 Вт 1 фут (30 см) 0,8 Вт 1,6 Вт 3,2 Вт 6.4 Вт Примечание: 1 Катушка ленты производится через 5 метров (16.4 футов). 1 фут = 30 см. 1 дюйм = 2,54 см. B: одиночный чип SMD2835 0,2 Вт / светодиод Лента, изготовленная с использованием этого светодиода, в моделях, которые мы продаем в Интернете, есть: Полоса Модель 2835,300LED / рулон 2835,600LED / рулон 2835,1200LED / Рулон 60 светодиодов на метр 120 светодиодов на метр 240 светодиодов на метр 500см 60 Вт 120 Вт 240 Вт 300см 36 Вт 72 Вт 144 Вт 200см 24 Вт 48 Вт 96 Вт 100см 12 Вт 24 Вт 48 Вт 50см 6 Вт 12 Вт 24 Вт 1 фут (30 см) 3.6 Вт 7,2 Вт 14,4 Вт B: Вид сбоку SMD335 0,08 Вт / светодиод Лента, изготовленная из этого светодиода 335, модели, которые мы продаем в Интернете, имеют: Полоса Модель 335,300LED / рулон 335,600LED / рулон 60 светодиодов на метр 120 светодиодов на метр 500см 24 Вт 48 Вт 300см 14.4 Вт 28,8 Вт 200см 9,6 Вт 19,2 Вт 100см 4,8 Вт 9,6 Вт 50см 2.4 Вт 4,8 Вт 1 фут (30 см) 1,6 Вт 3,2 Вт Примечание: 1 Катушка ленты производится с шагом 5 метров (16,4 фута). 1 фут = 30 см. 1 дюйм = 2,5 см. C: Вид сверху SMD5050 0.24 Вт / светодиод Лента, изготовленная с использованием этого светодиода 5050, модели, которые мы продаем через Интернет, имеют: Полоса Модель 5050,150LED / Рулон 5050,300LED / рулон 5050,600LED / рулон 30 светодиодов на метр 60 светодиодов на метр 120 светодиодов на метр 500см 36 Вт 72 Вт 144 Вт 300см 21.6 Вт 43,2 Вт 86,4 Вт 200см 14,4 Вт 28,8 Вт 57,6 Вт 100см 7,2 Вт 14,4 Вт 28.8 Вт 50см 3,6 Вт 7,2 Вт 14,4 Вт 1 фут (30 см) 2,16 Вт 4,32 Вт 8,64 Вт Примечание: 1 Катушка ленты производится через 5 метров (16.4 футов). 1 фут = 30 см. 1 дюйм = 2,5 см. Шаг 2: Выберите трансформатор подходящего типа A: Водонепроницаемый трансформатор, 12 В постоянного тока, от 1 А (12 Вт) до 8 А (96 Вт) B: Водонепроницаемый адаптер серии Heavy Duty Industrial, 12 В постоянного тока, от 8,5 А (102 Вт) до 30 А (360 Вт) C: Водонепроницаемый трансформатор для светодиодов, 12 В постоянного тока, начиная с 2.От 5 ампер (30 Вт) до 8,3 ампер (100 Вт) Шаг 3. Выберите правильный AMP A: если вы заказали 1 катушку SMD3528 с 300 светодиодами (24 Вт) и вам нужен водонепроницаемый источник питания, проверьте трансформатор Waterproof LED и выберите 2,5 А (30 Вт) B: если вы заказали 2 катушки SMD5050 с 300 светодиодами (всего 0,24 * 600 = 144 Вт) и хотите, чтобы работал только один трансформатор, тогда вы можете выбрать негерметичный сверхмощный адаптер и 15 А (180 Вт) PS: Усилители или мощность источника питания должны быть выше фактического потребления энергии, например.г. Для одной катушки светодиодной ленты SMD3528 с 300 светодиодами потребляемая мощность составляет 24 Вт, но мы рекомендуем вам выбрать для нее источник питания DC12V 3AMP 36 Вт. Если у вас возникли проблемы, свяжитесь с нами! Выбранное напряжение зависит от личных предпочтений и ситуации, в которой необходимо обеспечить освещение. У каждого из этих двух вариантов есть свои преимущества и недостатки. Если расстояние между прожектором и трансформатором меньше или равно 2 метрам, можно установить электронный трансформатор.Однако, если расстояние превышает 2 метра, необходимо установить трансформатор в оболочке. По мере увеличения расстояния и увеличения мощности вам необходимо выбрать более толстый кабель. Чем больше расстояние между трансформатором и прожектором, тем больше потерь. Расход у обеих версий одинаковый. Для всех светодиодных ламп с питанием от сети требуется трансформатор.В зависимости от типа лампы трансформатор / драйвер может быть встроен в корпус лампы или может быть расположен снаружи. Назначение трансформатора — снизить сетевое напряжение (240 В) до желаемого уровня относительно запитанной лампы (например, 12 В или 24 В). Причина описания трансформатора как «драйвера» по отношению к бытовым светодиодным лампам заключается в том, что, хотя термин «светодиодный трансформатор» стал популярным обобщающим термином для всех драйверов и трансформаторов, термин «трансформатор» следует зарезервировать для более крупных Проекты светодиодного освещения, требующие более мощного внешнего источника питания (подробнее см. Ниже). При установке между сетью питания и светодиодной лампой в электрической цепи драйверы светодиодов и светодиодные трансформаторы выполняют одну и ту же функцию (то есть каждый из них служит для уменьшения мощности, подаваемой в лампочку). Однако между двумя электрическими компонентами есть четкое различие. Напряжение электросети в британских домах составляет около 240 В. Учитывая, что светодиодные лампы, предназначенные для домашнего использования, для правильной работы в течение ожидаемого срока службы требуют значительно ограниченного источника питания, поэтому для защиты лампы в цепи необходимо установить драйвер / трансформатор.Основное различие между драйверами светодиодов и трансформаторами светодиодов — это выходная мощность: Обычно драйверы светодиодов ограничены максимальной выходной мощностью от 100 Вт до 200 Вт. Это означает, что драйверы светодиодов являются предпочтительным источником питания для небольших светодиодных осветительных установок в доме, поскольку для отдельных светодиодов может потребоваться только 2–4 В постоянного тока. Когда светодиоды соединены последовательно — или «массив» — требуется гораздо более высокое напряжение. В этом случае может быть установлен светодиодный трансформатор (например, для питания световой ленты). способны управлять большим потоком электроэнергии. Таким образом, трансформаторы обеспечивают «тяжелое» решение по источникам питания для крупномасштабных проектов светодиодного освещения, таких как ленточное освещение (также известное как «светодиодная лента»). См. Ниже дальнейшие соображения по использованию светодиодного трансформатора со светодиодной лентой. Да. Питание нескольких светодиодных лент может осуществляться через один светодиодный трансформатор при условии, что общая мощность, требуемая для лент, не превышает предельных значений электрической нагрузки трансформатора.Если нагрузка превышает возможности трансформатора, это повлияет на выход (что может привести к затемнению или мерцанию света). Лампы, предназначенные для использования во влажных зонах (например, светильники в ванной комнате), должны иметь степень защиты IP для такого использования. Это означает, что каждая герметичная лампочка будет содержать драйвер, и внешний трансформатор не потребуется. При установке светодиодных точечных светильников в других частях дома, например, на кухонных потолках, необходимо учитывать электрическое соединение — например, если светильник предназначен для размещения лампы MR16 (двухштыревой лампы), необходимо установить отдельный драйвер с лампой .Консультации относительно драйверов для ламп MR16 можно получить в информации о продукте производителя и у качественных поставщиков продукта в момент покупки. Напротив, переменный ток лучше работает на расстоянии, поэтому этот метод используется для подачи электроэнергии в дома и предприятия по всему миру.Переменный ток позволяет очень просто использовать трансформаторы для понижения напряжения до 240 В или 120 В переменного тока по сравнению с киловольтами, используемыми в линиях электропередач, но с постоянным током это гораздо более проблематично. Для работы светодиодного светильника от сети (например, 120 В переменного тока) требуется, чтобы электроника между источником питания и самими устройствами обеспечивала постоянное напряжение (например, 12 В постоянного тока), способное управлять несколькими светодиодами. Новый подход заключается в разработке светодиодов переменного тока, которые могут работать непосредственно от источника питания переменного тока. Это дает несколько преимуществ, как объясняет Боб Коттриш из Lynk Labs, одной из компаний, которая является авангардом этого подхода: «При переменном токе энергия передается и используется гораздо более эффективно», — говорит он.«Если вы можете поставить свои светодиоды прямо на торец без необходимости включать сложную электронику для преобразования переменного тока обратно в постоянный ток, то вы получите двойное преимущество: вы эффективно управляете мощностью в среде распределения, и вы доставили это более эффективно без вмешательства электроники ». Конечно, если вы также можете получить больше света при меньшем энергопотреблении, как Lynk Labs заявляет со своим подходом AC-LED, тогда у вас еще более положительная позиция. Работа светодиодов от источника переменного тока Есть несколько вариантов управления светодиодами от источника переменного тока.Многие автономные светодиодные светильники просто имеют трансформатор между настенной розеткой и светильником для обеспечения необходимого постоянного напряжения. Ряд компаний разработали светодиодные лампы, которые ввинчиваются непосредственно в стандартные розетки, но они неизменно содержат миниатюрные схемы, преобразующие переменный ток в постоянный перед подачей на светодиоды. Другой подход — сконфигурировать светодиоды или сами умереть в мостовой схеме постоянного тока. Хотя переменный ток вводится в эту конфигурацию светодиодной мостовой схемы, светодиоды по-прежнему управляются постоянным током, и этот подход требует большей мощности привода, чем «настоящая» конструкция светодиодов переменного тока. Однако были предприняты попытки разработать «настоящие» светодиоды переменного тока на уровне сборки или комплектного устройства. В авангарде этих разработок находятся Lynk Labs, Seoul Semiconductor и III-N Technology. Технология, разработанная Seoul Semiconductor и отдельно III-N Technology, использует подход рождественской елки на уровне кристалла.Светодиодное устройство переменного тока фактически состоит из двух цепочек последовательно соединенных кристаллов, соединенных в разных направлениях; одна струна светится в течение положительной половины цикла переменного тока, а другая — в течение отрицательной. Строки попеременно включаются и отключаются на частоте 50/60 Гц источника питания переменного тока, и, таким образом, светодиод всегда выглядит включенным. Технология, разработанная Сеулом и III-N, специально предназначена для светодиодных устройств, предназначенных для работы от сети переменного тока высокого напряжения 50/60 Гц. Lynk Labs technology Lynk Labs, однако, разработала и запатентовала альтернативную технологию AC-LED для высокого и низкого напряжения переменного тока. Lynk использует существующие светодиоды или кристаллы с различными запатентованными конструкциями драйверов на основе продукта AC-LED. Компания утверждает, что владеет широчайшим портфелем патентов на устройства, сборки, драйверы и системы AC-LED. Кроме того, Lynk и Philips по отдельности придерживаются фундаментальных принципов IP в управлении светодиодами с помощью высокочастотных драйверов инверторного типа. В отличие от Сеула или III-N, подход Lynk Labs заключался в разработке технологии AC-LED, которая объединяет всего 2 кристалла или светодиода в одной сборке или корпусе вместе с соответствующей технологией драйверов для конкретного AC-LED. «Производители освещения заинтересованы в предложении светодиодных осветительных приборов, а не в том, чтобы стать экспертами в области электроники или полупроводников», — говорит Майк Мискин, генеральный директор Lynk Labs. «Подход Lynk заключается в предоставлении нашим клиентам комплексных решений plug-and-play.» Технология светодиодов переменного тока Lynk Labs используется на обоих концах системы. Драйверы компании предназначены для обеспечения светодиодов переменного тока (а) постоянным напряжением или (б) постоянным напряжением и постоянной частотой. Устройство или сборка AC-LED предназначены для подключения к драйверу без каких-либо дополнительных инженерных работ, за исключением приспособления, предоставляемого производителем светильника или конечным пользователем. Однако для устройства или сборки AC-LED доступны различные конструкции все они происходят от использования драйверов светодиодов переменного тока, обеспечивающих либо постоянное напряжение, либо постоянное напряжение и постоянную частоту. С драйверами постоянного напряжения переменного тока Lynk Labs светодиоды управляются в конфигурации встречно-параллельной цепи на различных частотах в зависимости от приложения. Здесь высокочастотный / низковольтный драйвер используется для управления устройством или сборкой AC-LED, которые соответствуют драйверу постоянного напряжения. В качестве альтернативы, другие устройства и сборки предназначены для прямого подключения к электросети или низковольтным трансформаторам, например, к тем, которые используются в ландшафтном освещении. Емкостные светодиоды управления током В драйверах постоянного напряжения / постоянной частоты светодиод C 3 (светодиод управления емкостным током) имеет емкостную связь с драйвером и управляется им.Конденсатор заменяет любые резистивные компоненты в системе, тем самым уменьшая нагрев и повышая эффективность. По сравнению с использованием того же кристалла в схеме на основе резистора, управляемой постоянным током, светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности (или, альтернативно, использует более низкую мощность при той же яркости) в зависимости от устройства или системы дизайн. Стандартное светодиодное устройство обычно питается от источника постоянного тока, и в простейшей форме схема драйвера включает в себя резистор для обеспечения правильного падения напряжения на эмиттере (, рис. 1а, ). Напротив, подход C 3 от Lynk Lab использует четное количество светодиодов или кристалл в цепи, которая также содержит конденсатор и подключена к источнику переменного тока (, рис. 1b, ). Система спроектирована таким образом, что оба полупериода волны переменного тока используются эффективно. Майк Мискин объясняет роль конденсатора в цепи. «Подобно резистору в цепи постоянного тока, конденсатор снижает напряжение и подает требуемый ток на светодиоды в зависимости от напряжения и частоты, поступающих на конденсатор от источника переменного тока. Когда источник переменного тока, такой как сеть переменного тока или запатентованный нами драйверы высокочастотного инвертора (технология BriteDriver от Lynk Labs) обеспечивают постоянное напряжение и постоянную частоту, конденсатор подает постоянный ток на светодиоды, но также изолирует светодиоды от других светодиодов в системе и от драйвера в случае сбоя. происходить.» Хотя оба устройства, указанные выше, требуют разных напряжений и токов, они оба могут быть подключены к одному и тому же драйверу светодиодов переменного тока или источнику питания без необходимости в дополнительной электронике или компонентах. , эффективность за счет устранения резистивной составляющей, которая необходима в цепи постоянного тока. Надежность системы Существует также проблема дополнительной надежности. Светоотдача Предварительные результаты показывают, что светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности или, в качестве альтернативы, может потреблять меньше энергии для достижения того же уровня яркости. Происхождение этих результатов не совсем понятно, но отчасти связано с тем, что светодиоды имеют более низкую температуру перехода, потому что они включены только в течение одной половины цикла переменного тока. Дальнейшая оценка и данные независимых тестов должны служить для подтверждения правильности подхода Lynk Labs к AC-LED. В этой категории представлены, в основном, блоки питания высокой мощности 12 В и водонепроницаемые блоки питания. Существуют блоки питания мощностью 150, 200, 350, 600 Вт и выше для средней или крупномасштабной установки светодиодных лент. Для небольшой установки, такой как установка одной светодиодной ленты 12 В или 24 В длиной 5 метров или меньше или двух полос низкой мощности, вы можете выбрать небольшой источник питания, есть 12 В 1 А, 2 А, 3 А, 5 А, 6 А, 8 А, или блок питания 10A, или блок питания 24V 2A, 3A, 4A, 5A.Пожалуйста, обратитесь к категории адаптеров питания для этих небольших блоков питания. Наши адаптеры питания внесены в список UL, класс 2. Если вам нужен источник питания 24 В, см. Категорию «Блок питания для светодиодов на 24 В.». Наши блоки питания на 12 В или 24 В. легко установить. При установке источника питания для стороны переменного тока используйте наш трехконтактный шнур для настенной розетки для подключения к розетке или розетке или используйте проводные кабели (провод 14AWG или провод 16AWG) для жесткого подключения источника питания к источнику переменного тока.Для стороны постоянного тока подключайтесь к светодиодным лентам или контроллерам светодиодов с помощью проводов (провод 16AWG, 18AWG или 20AWG, в зависимости от длины и текущей нагрузки). Большинство наших источников питания 12 В или 24 В подходят для установки как в Северной Америке, так и в Европе. Они имеют широкий диапазон входных напряжений или переключатель входного напряжения для выбора 115 В (также называемого 110 В или 120 В) или 230 В (220 В или 240 В). Ответ заключается в совокупном рассмотрении следующих факторов: 1.Источник постоянного напряжения или постоянный ток? В основном, постоянное напряжение для светодиодных лент. 2. Для источника питания постоянного напряжения это 12 В или 24 В? Зависит от рабочего напряжения светодиодных лент. 3. Нужен ли мне блок питания с регулируемой яркостью? Это зависит от того, хотите ли вы уменьшить яркость на стороне переменного тока или на стороне постоянного тока источника питания. 4. Нужен ли мне водонепроницаемый блок питания? Зависит от окружающей среды. 5. Входное напряжение 120 В или 277 В для источника питания? В основном 120В.В некоторых местах используется 277В. 6. Нужен ли мне блок питания класса 2? Для некоторых приложений требуются блоки питания класса 2. Наши малые блоки питания сертифицированы по классу 2. Блок питания 12 В — один из важнейших компонентов светодиодного освещения. На рынке представлено множество типов источников питания 12 В, таких как источники постоянного напряжения или постоянного тока, источники питания без и с регулировкой яркости и т. Д.Выбор подходящего источника питания требует тщательного рассмотрения. Выбор неправильного блока питания (БП) приведет к повреждению не только светодиодной продукции, но и самого устройства. Кроме того, слишком слабый источник питания приведет к выделению сильного тепла, что может стать причиной дополнительной опасности. Здесь мы представляем блоки питания Mean Well. Источники питания торговой марки Mean Well обеспечивают высокую надежность и гарантию от 3 до 7 лет.За его супер качество мы много лет продаем блоки питания Mean Well. Компания Mean Well предлагает водонепроницаемые источники питания для установки внутри и снаружи помещений с коррекцией коэффициента мощности или без нее, источники питания с регулируемой или нерегулируемой яркостью, входное напряжение 110 В или 277 В. Диапазон мощности широк, включая 60 Вт, 100 Вт, 150 Вт, 200 Вт, 350 Вт, 600 Вт, 1000 Вт и даже выше. Входное напряжение 12 В светодиодных лент или светодиодных ламп 12 В составляет 12 В постоянного тока, и можно использовать только источники питания 12 В для светодиодов. Важное примечание: ни в коем случае нельзя использовать трансформаторы более высокого напряжения. Например, никогда не используйте источник питания 24 В для подключения светодиодной ленты или светильника на 12 В. Если вы выберете слишком высокое напряжение, светодиодная лента или светодиодная лампа будут повреждены. Если вы устанавливаете две светодиодные ленты, каждая из которых имеет длину 5 м (16,4 фута) и рабочую мощность 50 или 60 Вт, мы рекомендуем использовать блок питания мощностью 150 Вт. При установке лучше использовать параллельную установку, то есть разместить точку подачи питания посередине двух светодиодных лент, например, для питания двух светодиодных лент посередине. По возможности лучше не устанавливать две светодиодные ленты последовательно, то есть соединить две светодиодные ленты вместе и запитать их с одного конца. Ниже приводится подробное объяснение того, как определить мощность блока питания, которую вы должны выбрать. Источник питания 12 В должен обеспечивать выходную мощность, достаточную для приложения.Здесь нам нужно знать мощность световой полосы. Рассчитать мощность, необходимую для приложения, несложно. Мощность на единицу длины светодиодной ленты, умноженная на длину, составляет общую мощность. Например, если светодиодная лента работает с мощностью 12 Вт на метр, а в витрине имеется установка длиной 4 метра, то мощность 4-метровой светодиодной световой ленты составляет 12 Вт x 4 = 48 Вт. В идеале блок питания должен работать на 80% своей максимальной мощности.Поскольку при включении светодиодной ленты за короткий период времени требуется больше энергии, источник питания должен обеспечивать достаточную мощность для кратковременной операции включения света. Обычно мы добавляем 20% к мощности светодиодной ленты. Следовательно, мощность необходимого блока питания для витрины составляет 48 Вт x 1,2 = 57,6 Вт. На рынке нет блока питания этой мощности, следующий уровень мощности — 60 Вт. Итак, мы выбрали блок питания на 60 Вт. В большинстве случаев светодиодные ленты используют нерегулируемый источник питания. Для обычных проектов светодиодный диммер или контроллер устанавливается между источником питания и светодиодной лентой. В это время сам блок питания не должен иметь функцию затемнения, и функция затемнения выполняется диммером или контроллером. Если вам нужно затемнить перед блоком питания, тогда вам понадобится блок питания с регулируемой яркостью. Функция диммирования источника питания обычно указывается на этикетке параметра.Если он не отмечен, значит, он не регулируется. установка источника питания с регулируемой яркостью — схема подключения установка блока питания без диммирования — схема подключения Решающим фактором является расположение источника питания 12 В постоянного тока. Для внутреннего применения светодиодных лент на 12 В или светодиодных фонарей на 12 В мы обычно выбираем внутренний источник питания. Если установить водонепроницаемую светодиодную ленту на открытом воздухе, источник питания можно разместить на улице или в помещении.Если блок питания ставится на открытом воздухе, нужно выбирать водонепроницаемый блок питания. Или вы помещаете блок питания в сухое место и используете водонепроницаемую светодиодную ленту на 12 В на открытом воздухе. Например, рассмотрим применение, когда светодиодная лента освещает балкон. Обычно блок питания и контроллер светодиодной ленты можно установить в соседней комнате. В ванной комнате, если вы не можете найти водонепроницаемое место для блока питания, мы рекомендуем разместить блок питания светодиодной ленты за пределами ванной комнаты.Помните, что источник питания — это трансформатор, переход от высоковольтной сети к низковольтной. Из-за высокого напряжения безопаснее использовать источник питания для светодиодных лент 12 В или 24 В вне ванной комнаты. Примечание. По указанным выше причинам, когда вы покупаете блок питания для водонепроницаемой ленты на 12 В или 24 В, вы можете подумать о том, нужен ли вам водонепроницаемый источник питания, исходя из фактического места установки. Как правило, во влажной или влажной среде требуется водонепроницаемый источник питания.Если вы можете защитить трансформатор от воды, например, с помощью блока питания, или поместить блок питания в сухое место, не проблема выбрать негерметичный блок питания. Да, оно может. Фактически драйвер светодиода сам по себе является источником питания. Это просто еще одно название блока питания, обеспечивающего питание светодиодных лент и других светодиодных осветительных приборов. К вашему сведению, его также часто называют силовым трансформатором светодиодов. Как подключить светодиодную ленту к источнику питания? Есть много способов подключиться.См. Статью: Как выбрать блок питания для светодиодной ленты? Для получения дополнительной информации об установке светодиодной ленты прочтите: Как установить светодиодные ленты? Мы также продаем электроэнергию оптом. Если вы ищете оптового продавца источников питания, свяжитесь с нами. Вам нужна батарея на 12 В для вашего приложения, но вы не знаете, какого размера? Этот калькулятор разработан, чтобы помочь вам найти аккумулятор глубокого разряда при постоянной нагрузке, а не для запуска или запуска.Если вы знаете, сколько энергии требуется вашему приложению для работы и сколько времени вы хотели бы его запустить, мы порекомендуем батарею на 12 В с безопасным количеством Ач (ампер-часов), которое обеспечит вам необходимое время работы. Выберите аккумулятор 2). к бестрансформаторному источнику питания со стабилизированным напряжением
Я решил использовать вашу вторую цепь, как упоминалось https://www.homemade-circuits.com/2012/ 08 / high-current-transformerless-power.html Конструкция
Принципиальная схема
Использование полевого МОП-транзистора
Видео-подтверждение защиты от перенапряжения
3) Цепь бестрансформаторного источника питания с нулевым переходом
Технические характеристики
Francis Конструкция
О оптопарах MOCxxxx
Что такое переход через нуль в сети переменного тока
Как это работает
Как контролируется импульсный ток
Улучшение вышеуказанной конструкции
(я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)
, я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
работать будет?
2) TIP31 можно заменить транзистором Дарлингтона на 200 В, например, BU806 и т. Д., Иначе он может работать неправильно.
3) при использовании Дарлингтона базовый резистор может быть высокого номинала, может быть, резистор 1 кОм / 2 ватт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишним, гораздо более простую версию можно увидеть ниже https://www.homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С уважением 4) Импульсный бестрансформаторный источник питания с использованием IC 555
Что такое переключение с переходом через нуль:
Поскольку именно эта форма сигнала входит в цепь, любая точка формы сигнала, кроме нуля, представляет потенциальную опасность выброса при включении из-за наличия в форме сигнала высокого тока.
Вышеупомянутая частота 100 Гц сбрасывается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. По этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1. Принципиальная схема
для приложения драйвера светодиода
Как выбрать подходящий трансформатор для светодиодных лент 12 В: LEDLIGHTSWORLD.COM — LEDLightsWorld
SMD3528-150 SMD3528-300 SMD3528-600 SMD3528-1200 SMD2835-300 SMD2835-600 SMD2835-1200 Какие плюсы и минусы у 12В и 230В? — служба поддержки клиентов
Недостатки:
230V Преимущества:
Недостатки: Нужен ли трансформатор для светодиодных ламп? — LED Hut
Переход на светодиоды — для каких ламп нужен трансформатор?
Большинство людей, которые решат переключиться на светодиоды, сделают это для домашнего использования. В большинстве случаев корпус отдельной светодиодной лампы содержит соответствующий драйвер, подходящий для питания этой лампы.Это означает, что лампочка готова к использованию и не требует дополнительных затрат на драйверы / трансформаторы. Лампочки, которые содержат драйвер светодиода и поэтому могут использоваться без добавления внешнего трансформатора, включают: В чем разница между светодиодным «драйвером» и светодиодным «трансформатором»?
Драйверы светодиодов
Светодиодные трансформаторы
Светодиодные трансформаторы Как далеко я должен разместить светодиодный трансформатор?
В рамках рассмотрения вопроса о покупке осветительной ленты или светодиодной ленты необходимо решить вопрос о максимальном расстоянии, на котором источник питания должен быть размещен от световой ленты.Это связано с тем, что светодиодный трансформатор, который подключен к цепи на слишком большом расстоянии от светодиодной ленты, может привести к провалу источника питания, достигающего полосы. В зависимости от свойств электрических кабелей, подключенных к осветительной полосе (и, следовательно, в зависимости от электрической нагрузки, которую кабель может выдерживать), ответы будут следующими: Электропроводка Максимальное рекомендуемое расстояние светодиодного трансформатора от осветительной ленты 0.75 мм 5 мес. 1 мм 10 мес. 1,5 мм 15 мм 2,5 мм 20 мес. Можно ли запитать несколько светодиодных лент от одного трансформатора?
Нужен ли для всех светодиодных даунлайтов отдельный драйвер?
Могу ли я установить светодиодный трансформатор?
Всегда обращайтесь за советом к квалифицированному электрику, прежде чем приступать к крупномасштабным проектам освещения, которые требуют планирования и безопасного выполнения внешнего источника питания, питаемого через светодиодный трансформатор. Работа светодиодов от источника переменного тока
светодиод обычно считается устройствами постоянного тока, работающими от нескольких вольт постоянного тока.В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от батареи постоянного тока. Но другие приложения, например, линейная система ленточного освещения, протянувшаяся на 100 м вокруг здания, требуют других соображений. Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высоких напряжений привода при запуске, а также дополнительных регуляторов, которые тратят энергию. Как выбрать источник питания 12 В для светодиодной ленты
Источники питания для средних и крупных предприятий
Блоки питания для небольших проектов
Простая установка и подходит для Северной Америки и Европы
Какой блок питания мне нужен?
Как выбрать подходящий блок питания для светодиодов 12 В?
Источник питания Mean Well
Важные факторы, которые следует учитывать при выборе подходящего блока питания для светодиодов 12 В
1. Выберите правильное рабочее напряжение.
2. Мощность (выходная мощность).
3. Источник питания 12 В без диммирования или диммирования.
4. Нужен ли мне водонепроницаемый блок питания 12 В для установки внутри или вне помещений?
Можно ли использовать драйвер светодиода в качестве источника питания?
Источник питания оптом
Подбор 12-вольтовой батареи к нагрузке
Прохождение
Пример Первое поле для ввода информации называется «Размер загрузки». Обычно он находится на используемом вами устройстве; для лампочек это будет в ваттах, и вам нужно разделить на напряжение, которое вы используете, обычно 12 вольт.Другие устройства постоянного тока должны быть рассчитаны на силу тока. (Примечание *, если вы используете устройства переменного тока, вам нужно будет вычислить силу постоянного тока с помощью нашего калькулятора переменного тока в постоянный) . В нашем примере мы используем болотный охладитель на 12 вольт и 15 ампер.
Пример Второе поле помечено как «Продолжительность загрузки», что полностью зависит от пользователя. Если вы хотите, чтобы ваша нагрузка работала в течение 5 часов, укажите 5, как в нашем примере, показанном здесь.
Пример Третье поле, «Регулировка температуры», предназначено для корректировки расчетов для экстремальных температур.Для нашего примера это выше 85 град. F, так что поставьте галочку. (Примечание **, если вы используете гелевые батареи при температурах ниже 0 ° F и выше -60 ° F, нет необходимости устанавливать флажок.)
Пример Четвертое поле предназначено для корректировки возраста рассматриваемой батареи. Так как калькулятор чаще всего используется для определения того, какую батарею покупать, обычно флажок не устанавливается, как в нашем примере, но он есть на тот случай, если доступные батареи более старые.
Пример Следующие три поля предназначены для выбора типа батареи, которую вы собираетесь использовать. Выбирайте из Gel, AGM и Flooded. Для нашего примера мы выберем AGM Battery.
Пример Последнее Поле — это место, где калькулятор взмахивает волшебной палочкой и сообщает вам, что вам нужно. Это число округляется до ближайшего целого числа, и оно подскажет вам, какой номинал батареи в ампер-часах следует искать при выбранном типе батареи. В нашем примере наш кулер на 15 ампер будет безопасно работать в течение 5 часов с аккумулятором AGM мощностью 180 Ач, рассчитанным на 20 часов.