Как подключить шунт к амперметру – Как подключить амперметр? Схемы подключения. Как включают в цепь постоянного тока и через трансформатор тока?

Содержание

Подключение амперметра через шунт. Подбор и расчет устройства

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Устройство амперметра

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Формула суммы протекания тока через шунт и рамку амперметра

Соотноситься между собой они будут так:

Соотношение всех протекающих токов по закону Кирхгофа

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Схема подключения шунта и амперметраНо такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Подключение, расчет и выбор шунта для амперметра

Шунт нужен для того, чтобы измерять ток больший за максимально измеряемый ток прибора. Ток разделяется на две ветви, и меньшая величина тока протекает по амперметру, а большая – по шунту.

Шунт представляет собой проводник, катушку или резистор. Если шунт необходим для измерения тока меньше 30А, то его встраивают в сам амперметр. При больших токах шунт делают выносной, чтобы он не нагревал сам прибор.

Шунтирование – это процесс параллельного подключения одного элемента к другому. Шунт подключают параллельно амперметру для расширения шкалы прибора.

При подключенном шунте часть тока, протекает мимо прибора по шунту и тем самым уменьшается нагрузка на прибор.

Расчет шунта для амперметра

Ниже приведена формула для расчета необходимого сопротивления шунта, подключаемого к амперметру для увеличения шкалы измерения.

Где :

  • RА, IA – сопротивление и ток амперметра
  • RШ – сопротивление шунта
  • I – ток, который необходимо измерить

Если измеряемый ток значительно больше максимального измеряемого тока амперметра, то этой величиной в формуле выше можно пренебречь по причине её малого влияния на результат. И мы получим отношение RШ/RА=IА/I.

Если необходимо увеличить предел измеряемого тока в m раз, то можно воспользоваться следующим соотношением – RШ=(m-1)/RА

Разберем пример, где все цифры взяты из головы и не имеют под собой справочной обоснованности.

Задача. Амперметр имеет внутреннее сопротивление 10 Ом и максимальный измеряемый ток 1 А. Какое должно быть сопротивление шунта, чтобы можно было измерить ток 100А. Как его рассчитать?

Решение. При увеличении шкалы по амперметру будет течь ток в 1А как и раньше, а по шунту потечет ток 100-1=99А. Получится, что ток будет делиться в отношении 1:99, а сопротивления будут обратно пропорциональны.

Воспользуемся формулой выше и получим RШ=10*1/(100-1)=0,101 Ом.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Для чего нужен шунт в амперметре, фото и схема подключения своими руками, замеры цифровой техники

Я делал множество обзоров подобного девайса. Были и самоделки. А вот с шунтом обзоров не было. Решил проверить, на сколько хуже измеряет. Совсем небольшой обзор. Я понимаю, что эти измерители уже для многих каменный век. Но ведь есть люди, для кого это актуально. Обзор для них. Если интересно – заходим.
Сразу предупрежу, заказывал не для себя, у меня этого добра больше чем достаточно. Прислали очень быстро, менее 20-ти дней. 7 июля уже получил. Трек полноценный.

Наилучшее применение этому измерительному устройству — автомобильная зарядка (это моё мнение). Может, кто и другое применение найдёт, не столь важно.
Для начала посмотрим, в каком виде оно пришло.

Обычный полиэтиленовый пакет, «пропупыренный» изнутри.
Содержимое было разложено по пакетам с замками.

Измерительный блочок с проводами положили в дополнительный пакет.

Всё в цельности и сохранности, ничего не поломалось.

Размеры просто миниатюрные.
Я не стал рисовать сам, просто взял фото со страницы магазина и добавил один размер, который они забыли указать.

Шунт значительно крупнее.

Блок идикатора/измерителя по форме и размерам ничем не отличается от своих собратьев.
Надписи V и A нанесены краской, поэтому в темноте видны не будут.

Единственно отличие – у него нет встроенного шунта. Контроллер, как обычно, без названия.

Попробую разобраться, что и куда подцеплять. Информации на странице продавца мутная. Спрашивать нет смысла, всё равно не поможет, потому что сам ничего не знает. Учтите ещё издержки двойного перевода.
Снова взял самую подходящую картинку со страницы продавца и немного подправил. Для разных самоделок схема подключения может немного отличатся. Этот вариант подходит для заряжающего устройства аккумулятора.


Мелкий разъём предназначен для запитки схемы.
Разъём с тремя проводами – измерительный.

Есть два регулятора точности показаний. На фото всё понятно. Резисторы стрёмные. Поэтому часто крутить не рекомендую (сломаете). А теперь гляну, какую точность обещает продавец.
Погрешность измерений не более 1%. Многовато для цифровой техники. Особо размусоливать не буду, просто приведу сравнительную таблицу измерений полученного прибора с тем, что должно быть. В качестве образцового прибора – установки П320 и П321.
Сначала подал 1 А и 10 В.

Как-то плоховато. Пришлось крутануть оба резистора. Что крутить я показывал. Единственное дополнение: по часовой — прибавляет, против часовой – уменьшает показания.

Небольшое дополнение. При напряжении питания 3В синий индикатор становится невидим.

При напряжении питания ниже 3,7В начинает сильно врать.
Уже при 3,7В показывает адекватно.

Вывод: если хотите с помощью этого девайса измерять напряжения ниже 3,7В, необходимо запитывать схему от отдельного источника через «разъём с тонкими проводами».
А теперь таблица уже после подгонки.

И по току.
0,3 А→0,23 А
0,5 А→0,45 А
0,8 А→0,76 А
1,0 А→1,00 А
3,0 А→3,16 А
9,0 А→9,61 А
10 А→10,7 А
Хотел бы обратить внимание на то, что казалось бы одни и те же приборы, но от разных продавцов, могут в корне отличаться друг от друга. Будьте внимательны.
Вывод: прибор достаточно точно измеряет напряжение. С измерениями тока есть нюансы. Перед использованием обязательно нужно проверить на более точных приборах.
В отличие от прибора с встроенным шунтом показывает намного хуже.
На этом всё. Удачи!

Шунт | Описание, предназначение, принцип работы.

Что такое шунт

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt –  в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома  для участка электрической цепи? Вот, собственно и он:

где

U – напряжение

I – сила тока

R – сопротивление

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы 

получаем формулу:

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

промышленный амперметрамперметр

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с  расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

промышленный шунт

Те, которые справа внизу  могут пропускать  через себя силу тока  до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать  шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт  встраивается прямо в корпус самого прибора.

Работа шунта на практике

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5  – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется  простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на  Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс 😉

Шунт

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” 😉

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:шунт Алиэкспресс

Для чего к амперметру подключают шунт

Для изменения предела измерения амперметра или вольтметра применяется метод шунтирования, то есть подключения измерительного прибора через шунт.

Шунт — это сопротивление, которе подключается последовательно с вольтметром или параллельно с амперметром для изменения величины тока, текущего через измерительный прибор.

Шунтирование амперметра

Добавление шунта параллельно амперметру вызывает разделение тока Iизм, который протекает через данную цепь и который необходимо измерить, на две составляющие – Iа и Iш.

Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока Iизм или напротив, зная ток Iизм, можно рассчитать необходимое сопротивление шунта Rш.

Измеряемый ток равен сумме токов на амперметре на шунте, а наяпряжения одинаковы:

Формула для расчета сопротивления шунта:

Для увеличения предела измерения амперметра в n раз необходимо подключить шунт с сопротивлением

Шунтирование вольтметра

Вольтметры предназначены для измерения разности потенциалов на участке цепи. Для однородного участка цепи разность потенциалов равна напряжению на участке. Для того чтобы при подключении вольтметра токи в схеме изменялись мало, необходимо, чтобы его внутреннее сопротивление RV было как можно большим. Поэтому к вольтметру последовательно включается добавочное сопротивление.

Пределу измерения вольтметра соответствует максимальный ток вольтметра, а напряжения складываются:

где Uизм/UV — коэффициент изменения предела измерения вольтметра.

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.

Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.

Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.

О том, как произвести расчет шунта для амперметра, смотрите далее.

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Как подобрать шунт для амперметра

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

Как подобрать шунт для амперметраКак подобрать шунт для амперметра

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Как подобрать шунт для амперметра

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практике

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс 😉

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” 😉

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке: Как подобрать шунт для амперметра

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Как подобрать шунт для амперметра

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Как подобрать шунт для амперметра

Соотноситься между собой они будут так:

Как подобрать шунт для амперметра

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Как подобрать шунт для амперметраНо такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Понятия и формулы

Как подобрать шунт для амперметраШунтом называется сопротивление, которое присоединяется параллельно зажимам амперметра (параллельно внутреннему сопротивлению прибора), чтобы увеличить диапазон измерений. Измеряемый ток I разделяется между измерительным шунтом (rш, Iш) и амперметром (rа, Iа) обратно пропорционально их сопротивлениям.

Сопротивление шунта rш=rа х Iа/(I-Iа ).

Для увеличения диапазона измерений в n раз шунт должен иметь сопротивление rш=(n-1)/rа

1. Электромагнитный амперметр имеет внутреннее сопротивление rа=10 Ом, а диапазон измерений до 1 А. Рассчитайте сопротивление rш шунта так, чтобы амперметр мог измерять ток до 20 А (рис. 1).

Как подобрать шунт для амперметра

Измеряемый ток 20 А разветвится на ток Iа=1 А, который потечет через амперметр, и ток Iш, который потечет через шунт:

Отсюда ток, протекающий через шунт, Iш=I-Iа=20-1=19 А.

Измеряемый ток I=20 А должен разделиться в отношении Iа:Iш=1:19.

Отсюда вытекает, что сопротивления ветвей должны быть обратно пропорциональны токам: Iа:Iш=1/rа : 1/rш;

Сопротивление шунта rш=10/19=0,526 Ом.

Сопротивление шунта должно быть в 19 раз меньше, чем сопротивление амперметра rа, чтобы через него проходил ток Iш, в 19 раз больший тока Iа=1 А, который проходит через амперметр.

2. Магнитоэлектрический миллиамперметр имеет диапазон измерений без шунта 10 мА и внутреннее сопротивление 100 Ом. Какое сопротивление должен иметь шунт, если прибор должен измерять ток до 1 А (рис. 2)?

Как подобрать шунт для амперметра

При полном отклонении стрелки через катушку миллиамперметра будет проходить ток Iа=0,01 А, а через шунт Iш:

откуда Iш=I-Iа=1-0,99 A=990 мА.

Ток 1 А разделится обратно пропорционально сопротивлениям: Iа:Iш=rш:rа.

Из этого соотношения найдем сопротивление шунта:

10:990=rш:100; rш=(10х100)/990=1000/990=1,010 Ом.

При полном отклонении стрелки через прибор пройдет ток Iа=0,01 А, через шунт – ток Iш=0,99 А, а по общей цепи – ток I=1 А.

При измерении тока I=0,5 А через шунт пройдет ток Iш=0,492 А, а через амперметр – ток Iа=0,05 А. Стрелка при этом отклоняется до половины шкалы.

При любом токе от 0 до 1 А (при выбранном шунте) токи в ветвях разделятся в отношении rа:rш, т. е. 100:1,01.

3. Амперметр (рис. 3) имеет внутреннее сопротивление rа=9,9 Ом, а сопротивление его шунта 0,1 Ом. В каком отношении разделится измеряемый ток 300 А в приборе и шунте?

Как подобрать шунт для амперметра

Задачу решим при помощи первого закона Кирхгофа: I=Iа+Iш.

Кроме того, Iа:Iш=rш:rа.

Из второго уравнения получим ток Iа и подставим его в первое уравнение:

Ток в приборе Iа=I-Iш=300-297=3 А.

Из всего измеряемого тока через амперметр пройдет ток Iа=3 А, а через шунт Iш=297 А.

Как подобрать шунт для амперметра

Шунт для амперметра

4. Амперметр, внутреннее сопротивление которого 1,98 Ом, дает полное отклонение стрелки при токе 2 А. Необходимо измерить ток до 200 А. Какое сопротивление должен иметь шунт, подключаемый параллельно зажимам прибора?

В данной задаче диапазон измерений увеличивается в 100 раз: n=200/2=100.

Искомое сопротивление шунта rш=rа/(n-1).

В нашем случае сопротивление шунта будет: rш=1,98/(100-1)=1,98/99=0,02 Ом.

Какова роль шунта параллельно подключенного к амперметру — MOREREMONTA

Силу тока в цепи измеряют амперметром. Амперметр представляет собой обычный гальванометр, шкала которого проградуирована в амперах. Включается амперметр в цепь последовательно (рис. 1).

Амперметр должен изменять силу тока в цепи, и поэтому его сопротивление должно быть очень малым, т.е. . В цепи, состоящей из последовательно соединенных проводников, заряд нигде не накапливается и нигде не исчезает. Это значит, что сила тока в такой цепи везде одинакова И амперметр можно включать в любой участок цепи, состоящий из последовательно соединен ных проводников.

Каждый амперметр рассчитан на некоторую максимальную силу тока, при превышении которой прибор может перегореть.

Для расширения пределов измерения амперметра применяется шунт — дополнительное сопротивление, подключаемое параллельно амперметру.

Найдем сопротивление Rsh шунта, который необходимо подключить к амперметру для измерения силы тока в цепи, в n раз превышающей силу тока, на которую рассчитан прибор: I = nIA. Сопротивление амперметра обозначим через RA. При подключении шунта часть измеряемой силы тока Ish пойдет по нему. Через амперметр должен идти ток, не превышающий IA (рис. 2).

Сила тока IA меньше измеряемой в n раз

Следовательно, цена деления прибора возрастет в n раз для случая, если шкала прибора равномерная, т.е. отклонению стрелки на одно деление будет соответствовать в n раз большая сила тока. Иначе говоря, чувствительность амперметра уменьшится в n раз: при подключении шунта стрелка прибора отклонится на угол, в n раз меньший, чем без него.

При параллельном соединении I = nIA = IA + Ish, а напряжение на шунте и амперметре одинаково и, согласно закону Ома, равно: IARA = IshRsh. Исключая силу тока IA из двух последних уравнений, получим

Для измерения напряжения на участке цепи применяют вольтметры. Включают вольтметр параллельно тем точкам цепи, напряжение между которыми надо измерить (рис. 3). Вольтметр не должен изменять напряжение на измеряемом участке цепи, поэтому сила тока, проходящего через вольтметр, должна быть много меньше, чем сила тока в измеряемом участке.

Если сопротивление вольтметра Rv, то после включения его в цепь сопротивление участка будет уже не R, a

Вследствие этого измеряемое напряжение на участке цепи уменьшится. Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение, т.е.

Любой вольтметр рассчитан на предельное напряжение Uv. Но с помощью подключения последовательно с вольтметром добавочного сопротивления Rd можно измерять в n раз большие напряжения: U = nUv. Найдем добавочное сопротивление, необходимое для измерения напряжений, в n раз больших тех, на которые рассчитан прибор.

При включении в цепь вольтметра добавочного сопротивления вольтметр по-прежнему измеряет напряжение Uv, но это составляет лишь 1/n часть измеряемого напряжения . Напряжение на добавочном сопротивлении Ud = U — Uv (рис. 4). Поэтому пределы измерения увеличиваются в n раз, и во столько же раз увеличивается цена деления вольтметра, а следовательно, уменьшается его чувствительность.

В вольтметре и добавочном сопротивлении сила тока одинакова, так как они включены последовательно. Поэтому Uv = IRv , Ud = IRd и U = nUv = nIRv.

При последовательном соединении напряжение на участке равно сумме напряжений на отдельных резисторах участка, т.е. U = ‘Uv + ‘Ud. Следовательно, nIRv = IRv + IRd. Отсюда

Для изменения предела измерения амперметра или вольтметра применяется метод шунтирования, то есть подключения измерительного прибора через шунт.

Шунт — это сопротивление, которе подключается последовательно с вольтметром или параллельно с амперметром для изменения величины тока, текущего через измерительный прибор.

Шунтирование амперметра

Добавление шунта параллельно амперметру вызывает разделение тока Iизм, который протекает через данную цепь и который необходимо измерить, на две составляющие – Iа и Iш.

Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока Iизм или напротив, зная ток Iизм, можно рассчитать необходимое сопротивление шунта Rш.

Измеряемый ток равен сумме токов на амперметре на шунте, а наяпряжения одинаковы:

Формула для расчета сопротивления шунта:

Для увеличения предела измерения амперметра в n раз необходимо подключить шунт с сопротивлением

Шунтирование вольтметра

Вольтметры предназначены для измерения разности потенциалов на участке цепи. Для однородного участка цепи разность потенциалов равна напряжению на участке. Для того чтобы при подключении вольтметра токи в схеме изменялись мало, необходимо, чтобы его внутреннее сопротивление RV было как можно большим. Поэтому к вольтметру последовательно включается добавочное сопротивление.

Пределу измерения вольтметра соответствует максимальный ток вольтметра, а напряжения складываются:

где Uизм/UV — коэффициент изменения предела измерения вольтметра.

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.

Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.

Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.

О том, как произвести расчет шунта для амперметра, смотрите далее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *