Как подключается в цепь омметр – 38. Схема омметра с последовательным включением измеряемого сопротивления. Определение омметра, устройство, принцип калибровки и измерения сопротивлений.

Содержание

Как подключается омметр в цепь

Сущность действия омметра заключается в том, что при включении в цепь, составленную из электроизмерительного прибора и источника постоянного тока, резисторов различных сопротивлений или других деталей, обладающих активным сопротивлением, значение тока этой цепи изменится. Соответственно изменится и угол отклонения стрелки прибора.

Чтобы лучше разобраться в принципе действия омметра, проведи такой опыт. Составь из любого миллиамперметра, батареи 3336Л и добавочного резистора замкнутую электрическую цепь, как показано на рис. 114, а. Сопротивление добавочного резистора подбери так, чтобы стрелка прибора отклонилась на всю шкалу (рассчитать сопротивление можно по той же формуле, по которой мы рассчитывали сопротивление добавочного резистора к вольтметру).

Подобрав добавочный резистор, разорви цепь образовавшиеся при этом концы проводников будут входом получившегося простейшего омметра (рис. 114,6). Подключи к щупам R

х (на схеме они обозначены стрелками) резистор небольшого сопротивления, например 10 Ом. Полное сопротивление цепи теперь стало больше на сопротивление этого резистора. Соответственно и ток в цепи уменьшился стрелка прибора не отклоняется до конца шкалы. Это положение стрелки можно пометить на шкале черточкой, а около нее написать число 10. Потом к выводам Rх подключи резистор сопротивлением 15 Ом. Стрелка прибора отклонится еще меньше. И это положение стрелки на шкале можно отметить соответствующим числом. Далее присоединяй поочередно резисторы сопротивлением в несколько десятков ом, сотен ом, килоом и отмечай получающиеся в каждом случае отклонения стрелки. Если теперь к выводам оградуированного таким способом простейшего омметра присоединить резистор неизвестного сопротивления, стрелка прибора укажет деление на шкале, соответствующее сопротивлению этого резистора. Когда ты будешь замыкать выводы R
х
накоротко, стрелка прибора должна устанавливаться на самом правом делении шкалы. Это соответствует нулю омметра. Нуль же бывшего миллиамперметра в омметре будет соответствовать очень большому сопротивлению, обозначаемому знаком оо бесконечность. Но показания такого омметра будут правильными до тех пор, пока не уменьшится напряжение батареи вследствие ее разрядки. При уменьшении напряжения батареи стрелка прибора уже не будет устанавливаться на нуль и омметр будет давать неправильные показания. Этот недостаток легко устраним в омметре по схеме на рис. 115. Здесь последовательно с прибором и добавочным резистором R1 включен переменный резистор R2, который служит для установки стрелки омметра на нуль. Пока батарея свежая, в цепь вводится большая часть сопротивления резистора R2. По мере разрядки батареи сопротивление этого резистора уменьшают. Таким образом, переменный резистор, являющийся составной частью добавочного резистора, позволяет производить регулировку в цепи омметра и устанавливать его стрелку на нуль. Его обычно называют резистором установки омметра на нуль.

Сопротивление резистора установки омметра на нуль должно составлять 1/10 1/8 часть общего сопротивления добавочных резисторов. Если, например, общее добавочное сопротивление по расчету должно быть 4,7 кОм, то сопротивление переменного резистора R2 может быть 470 620 Ом, а резистора R1 3,9 4,3 кОм. При этом надобность в точной подгонке сопротивления основного добавочного резистора отпадает.

Пользоваться омметром несложно. Всякий раз перед измерениями стрелку омметра надо устанавливать на нуль, замкнув накоротко щупы. Затем, касаясь щупами омметра выводов резисторов, выводов обмоток трансформаторов или других деталей, определяют их сопротивления по градуированной шкале. С течением времени стрелка прибора не будет устанавливаться на нуль. Это укажет на то, что батарея разрядилась и ее нужно заменить новой.

Омметром можно пользоваться как универсальным пробником, например, проверить, нет ли обрывов в контурных катушках, обмотках трансформатора, выяснить, не замыкаются ли катушки или обмотки трансформатора между собой. При помощи омметра легко найти выводы обмоток трансформатора и по сопротивлению судить об их назначении. Омметром можно проверить, не оборвана ли нить накала лампы, не соединяются ли между собой электроды лампы, оценивать качество диодов. С помощью омметра можно также определять замыкания в монтаже или между обкладками конденсатора, надежность контактных соединений и многое другое.

Запомни, как ведет себя омметр при испытании конденсаторов. Если щупами прикоснуться к выводам конденсатора, стрелка прибора отклонится и сейчас же возвратится в положение очень большого сопротивления. Этот бросок стрелки, получающийся за счет тока зарядки конденсатора, будет тем большим, чем больше емкость конденсатора. При испытании конденсаторов малой емкости броски тока так малы, что они незаметны, так как зарядный ток таких конденсаторов ничтожно мал. Если при испытании конденсатора стрелка омметра отклоняется до нуля, значит, конденсатор пробит; если же омметр после отклонения стрелки от тока зарядки покажет некоторое сопротивление, значит, конденсатор имеет утечку.

Электроизмерительные приборы (ЭИП) – тип приспособлений, необходимых для измерения различного рода физических величин.

Разновидности электроизмерительных приборов

Классификация электроизмерительных приборов:

  1. переменного;
  2. постоянного;
  3. комбинированные устройства.

По уровню точности:

Каждая цифровое обозначение указывает на процентный показатель допустимой погрешности.

По сущности работы:

  1. электромагнитные;
  2. индукционные;
  3. магнитоэлектрические;
  4. ферромагнитные.

При проведении измерительных испытаний необходимо правильно выбрать соответствующее измерительное устройство.

  1. Амперметры – устройства для измерения величин тока. Единица измерения – Ампер (А).
  2. Вольтметр – измеряет напряжение электрической сети. Единица измерения – Вольт (В).
  3. Омметр – вспомогательное приспособление, измеряющее сопротивление в электроцепи. Измеряется в Оммах (Ом).
  4. Ваттметр – элемент, измеряющий мощность сети. Измеряемая единица – Ватт (Вт).
  5. Частотомер – измеритель частоты значений переменного импульса. Измеряется в Герцах (Гц).

Устройство, принцип действия

Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:

Амперметры

Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:

  1. амперметр переменного тока;
  2. амперметр постоянного тока;
  3. магнитоэлектрические;
  4. электромагнитные.

Как амперметр работает? Идеальный амперметр, является прибором для измерения электрозаряда. Представляет собой проводящий контур, закрепленный на оси между полюсами постоянного магнита.

При отсутствии сигнала контура, благодаря давлению пружины, стрелка находится в нулевом положении. При включении устройства, на подвижный элемент поступает токовый импульс – происходит отклонение стрелки на угол, соответствующей величине тока. Таким образом индикаторная шкала показывает значение, измеренное устройством.

Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.

Аналоговый вольтметр переменного тока и цифровые вольтметры.

Идеальный вольтметр электроизмерительный, как правило, подключается в цепь параллельно. Сопротивление вольтметра пропорционально поданному на него сигнала. Для того чтобы на показания не влияли искажения электроимпульсов, его резистивность рекомендуется делать как можно больше.

Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.

Омметр

Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:

Подключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения.

Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.

Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.

Как подключать

Электрические измерительные приборы подключаются:

Амперметр подключается в цепь последовательно, рядом с резистором, возле которого будет проведен замер величины тока.

Как пользоваться амперметром? Данная схема достаточно проста, для того чтобы разобрать, как правильно пользоваться амперметром.

На рисунке 5 указаны:

  1. R – резистор;
  2. А – элемент измерения тока;
  3. I – направление электрического заряда.

Как пользоваться вольтметром? Электроприбор имеет параллельные соединения, в тех местах, где будет измеряться напряжение.

На рисунке 6 указаны:

  1. R – элемент сопротивления;
  2. V – измеритель напряжения.

Как пользоваться авометром? Эта разновидность (вольтметр амперметр) – комбинированное устройство. В случае измерения токового сигнала – подключается как измеритель электрозаряда. Если измеряется напряжение – как измеритель напряжения.

Более удобным в работе считается цифровой вольтметр амперметр. При использовании электрических приборов, необходимо соблюдать все правила пожарной безопасности и для правильно работы – учитывать все их конструктивные характеристики.

По своей физической природе все вещества по-разному реагируют на протекание через них электрического тока. Одни тела хорошо его пропускают и их относят к проводникам, а другие очень плохо. Это диэлектрики.

Свойства веществ противодействовать протеканию тока оценивают численным выражением — величиной электрического сопротивления. Принцип его определения предложил Георг Ом. Его именем названа единица измерения этой характеристики.

Взаимосвязь между электрическим сопротивлением вещества, приложенным к нему напряжением и протекающим электрическим током принято называть законом Ома.

Принципы измерения электрического сопротивления

Исходя из приведенной на картинке зависимости трех важнейших характеристик электричества определяют величину сопротивления. Для этого необходимо иметь:

2. измерительные приборы силы тока и напряжения.

Источник напряжения через амперметр подключают к измеряемому участку, сопротивление которого необходимо определить, а вольтметром меряют падение напряжения на потребителе.

Сняв отсчет тока I амперметром и величину напряжения U вольтметром, рассчитывают значение сопротивления R по закону Ома. Этот простой принцип позволяет выполнять замеры и производить расчеты вручную. Однако, пользоваться им в таком виде сложно. Для удобства работы созданы омметры.

Конструкция простейшего омметра

Производители измерительных приборов изготавливают устройства измерения сопротивления, работающие по:

2. или цифровым технологиям.

Первый вид приборов называют стрелочными за счет способа отображения информации — перемещения стрелки относительно начального положения в точку отсчета на шкале.

Омметры стрелочного типа, как измерительные приборы сопротивлений, появились первыми и продолжают успешно работать до настоящего времени. Они есть в арсенале инструментов большинства электриков.

В конструкции этих приборов:

1. все компоненты приведенной схемы встроены в корпус;

2. источник выдает стабилизированное напряжение;

3. амперметр измеряет ток, но его шкала сразу проградуирована в единицах сопротивления, что исключает необходимость выполнения постоянных математических расчетов;

4. на внешние вывода клемм корпуса подключаются провода с концами, обеспечивающими быстрое создание электрической связи с испытуемым элементом.

Стрелочные приборы подобного класса измерения работают за счет собственной магнитоэлектрической системы. Внутри измерительной головки помещена обмотка провода, в которую подключена токопроводящая пружинка.

По этой обмотке от источника питания через измеряемое сопротивление Rx проходит ток, ограничиваемый резистором R до уровня миллиампер. Он создает магнитное поле, которое начинает взаимодействовать с полем постоянного магнита, расположенного здесь же, которое показано на схеме полюсами N—S.

Чувствительная стрелка закреплена на оси пружинки и под действием результирующей силы, сформированной от влияния этих двух магнитный полей, отклоняется на угол, пропорциональный силе протекающего тока или величине сопротивления проводника Rx.

Шкала прибора выполнена в делениях сопротивления — Омах. За счет этого положение стрелки на ней сразу указывает искомую величину.

Принцип работы цифрового омметра

В чистом виде цифровые измерители сопротивлений выпускаются для выполнения сложных работ специального назначения. Массовому потребителю сейчас доступен большой ассортимент комбинированных приборов, совмещающих в своей конструкции задачи омметра, вольтметра, амперметра и другие функции.

Для замера сопротивления необходимо перевести соответствующие переключатели в требуемый режим работы прибора и подключить измерительные концы к проверяемой схеме.

При разомкнутых контактах на табло будет индикация «I», как показано на фотографии. Оно соответствует большему значению, чем прибор может определить на заданном участке чувствительности. Ведь в этом положении он уже измеряет сопротивление воздушного участка между контактами зажимов соединительных проводов.

Когда же концы установлены на резистор или проводник, то цифровой омметр отобразит значение его сопротивления реальными цифрами.

Принцип измерения электрического сопротивления цифровым омметром тоже основан на применении закона Ома. Но, в его конструкции уже работают более современные технологии, связанные с использованием:

1. соответствующих датчиков, предназначенных для измерения тока и напряжения, которые передают информацию по цифровым технологиям;

2. микропроцессорных устройств, обрабатывающих полученные сведения от датчиков и выводящих их на табло в наглядном виде.

У каждого типа цифрового омметра могут быть свои отличительные пользовательские настройки, которые следует изучить перед работой. Иначе по незнанию можно допустить грубые ошибки, ибо подача напряжения на его вход встречается довольно часто. Она проявляется выгоранием внутренних элементов схемы.

Обычными омметрами проверяют и измеряют электрические цепи, сформированные проводами и резисторами, обладающие относительно небольшими электрическими сопротивлениями на пределах до нескольких десятков или тысяч Ом.

Измерительные мосты постоянного тока

Электрические приборы измерения сопротивления в виде омметров созданы как переносные, мобильные устройства. Ими удобно пользоваться для оценки типовых, стандартных схем или прозвонки отдельных цепей.

В лабораторных условиях, где часто нужна высокая точность и качественное соблюдение метрологических характеристик при выполнении измерений работают другие устройства — измерительные мосты постоянного тока.

Электрические схемы измерительных мостов на постоянном токе

Принцип работы таких приборов основан на сравнении сопротивлений двух плеч и создании баланса между ними. Контроль сбалансированного режима осуществляется контрольным мили- или микроамперметром по прекращению протекания тока в диагонали моста.

Когда стрелка прибора установится на ноль можно вычислить искомое сопротивление Rx по значениям эталонов R1, R2 и R3.

Схема измерительного моста может иметь возможность плавного регулирования сопротивлений эталонов в плечах или выполняться ступенчато.

Внешний вид измерительных мостов

Конструктивно такие приборы выполняются в едином заводском корпусе с возможностью удобной сборки схемы для электрической проверки. Органы управления переключения эталонов позволяют быстро выполнять измерения сопротивлений.

Омметры и мосты предназначены для измерения сопротивления проводников электрического тока, обладающих резистивным сопротивлением определенной величины.

Приборы измерения сопротивления контура заземления

Необходимость периодического контроля технического состояния контуров заземлений зданий вызвана условиями их нахождения в грунте, который вызывает коррозионные процессы металлов. Они ухудшают электрические контакты электродов с почвой, проводимость и защитные свойства по стеканию аварийных разрядов.

Принцип работы приборов этого типа тоже основан на законе Ома. Зонд контура заземления стационарно размещен в земле (точка С), за счет чего его потенциал равен нулю.

На одинаковых расстояниях от него порядка 20 метров забивают в грунт однотипные заземлители (главный и вспомогательный) так, чтобы стационарный зонд был расположен между ними. Через оба этих электрода пропускают ток от стабилизированного источника напряжения и замеряют его величину амперметром.

На участке электродов между потенциалами точек А и С вольтметром замеряют падение напряжения, вызванное протеканием тока I. Далее проводится расчет сопротивления контура делением U на I с учетом поправки на потери тока в главном заземлителе.

Если вместо амперметра и вольтметра использовать логометр с катушками тока и напряжения, то его чувствительная стрелка будет сразу указывать конечный результат в омах, избавит пользователя от рутинных вычислений.

По этому принципу работает много марок стрелочных приборов, среди которых популярны старые модели МС-0,8, М-416 и Ф-4103.

Их удачно дополняют разнообразные современные измерители сопротивлений, созданные для подобных целей с большим арсеналом дополнительных функций.

Приборы измерения удельного сопротивления грунта

С помощью только что рассмотренного класса приборов также измеряют удельное сопротивление почвы и различных сыпучих сред. Для этого их включают по другой схеме.

Электроды главного и вспомогательного заземлителя разносят на расстояние, большее 10 метров. Учитывая то, что на точность замера могут влиять близкорасположенные токопроводящие объекты, например, металлические трубопроводы, стальные башни, арматура, то к ним допустимо приближаться не меньше, чем на 20 метров.

Остальные правила измерения остаются прежними.

По такому же принципу работают приборы измерения удельного сопротивления бетона и других твердых сред. Для них применяются специальные электроды и незначительно меняется технология замера.

Как устроены мегаомметры

Обычные омметры работают от энергии батарейки или аккумулятора — источника напряжения небольшой мощности. Его энергии достаточно для того, чтобы создать слабый электрический ток, который надежно проходит через металлы, но ее мало для создания токов в диэлектриках.

По этой причине обычным омметр не может выявить большинство дефектов, возникающих в слое изоляции. Для этих целей специально создан другой тип приборов измерения сопротивлений, которые принято называть на техническом языке «Мегаомметр». Название обозначает:

мега — миллион, приставка;

Ом — единица измерения;

метр — общепринятое сокращение слова измерять.

Внешний вид

Приборы этого типа тоже бывают стрелочными и цифровыми. В качестве примера можно продемонстрировать мегаомметр марки М4100/5.

Его шкала состоит из двух поддиапазонов:

Электрическая схема

Сравнивая ее со схемой устройства обычного омметра, легко увидеть, что она работает по тем же самым принципам, основанным на применении закона Ома.

В качестве источника напряжения выступает генератор постоянного тока, ручку которого необходимо равномерно вращать с определенной скоростью порядка 120 оборотов в минуту. От этого зависит уровень высоковольтного напряжения, выдаваемого в схему. Эта величина должна пробить слой дефектов с пониженной изоляцией и создать сквозь нее ток, который отобразится перемешением стрелки по шкале.

Переключатель режима измерения МΩ—KΩ коммутирует положение групп резисторов схемы, обеспечивая работу прибора в одном из рабочих поддиапазонов.

Отличием конструкции мегаомметра от простого омметра является то, что на этом приборе используются не две выходные клеммы, подключаемые к измеряемому участку, а три: З (земля), Л (линия) и Э (экран).

Клеммами земля и линия пользуются для измерения сопротивдения изоляции токоведущих частей относительно земли или между разными фазами. Клемма экрана призвана устранить воздействие создаваемых токов утечек через изоляцию на точность работы прибора.

У большого количества мегаомметров других моделей клеммы обозначают немного по-другому: «rx», «—», «Э». Но суть работы прибора от этого не меняется, а клемма экрана используется для тех же целей.

Цифровые мегаомметры

Соврменные приборы измерения сопротивления изоляции оборудования работают по тем же принципам, что их стрелочные аналоги. Но они отличаются значительно большим количеством функций, удобством в измерениях, габаритами.

Выбирая цифровые приборы для постоянной эксплуатации следует учитывать их особенность: работу от автономного источника питания. На морозе батарейки быстро теряют работоспоосбность, требуют замены. По этой причине работа стрелочными моделями с ручным генератором остается востребованной.

Правила безопасности при работе с мегаомметрами

Минимальное напряжение, создаваемое прибором на выходных клеммах, составляет 100 вольт. Оно используется для проверки изоляции электронных блоков и чувствительной аппаратуры.

В зависимости от сложности и конструкции оборудования электрической схемы на мегаомметрах применяют другие значения напряжений вплоть дл 2,5 кВ включительно. Самыми мощными приборами можно оценивать изоляцию высоковольтного оборудования линий электропередач.

Все эти работы требуют четкого выполнения правил безопасности, а осуществлять их могут исключительно подготовленные специалисты, имеющие допуск к работам под напряжением.

Характерными опасностями, создаваемыми мегаомметрами при работе являются:

опасное высокое напряжение на выходных клеммах, измерительных проводах, подключенном электрическом оборудовании;

необходимость предотвращения действия наведенного потенциала;

создание остаточного заряда на схеме после выполнения замера.

При измерении сопротивления слоя изоляции высокое напряжение прикладывается между токоведущей частью и контуром земли или оборудованием другой фазы. На протяженных кабелях, линиях электропередачи оно заряжает емкость, образованную между разными потенциалами. Любой неумелый работник своим телом может создать путь для разряда этой емкости и получить электрическую травму.

Чтобы исключить такие несчастные ситуации перед выполнением замера мегаомметром проверяют отсутствие опасного потенциала на схеме и снимают его после работы с прибором по специальной методике.

Омметры, мегаомметры и рассмотренные выше измерители работают на постоянном токе, определяют только резистивное сопротивление.

Приборы измерения сопротивления в цепях переменного тока

Наличие большого количества различных индуктивных и емкостных потребителей как в бытовых домашних электросетях, так и на производстве, включая предприятия энергетики, создает дополнительные потери энергии за счет реактивной составляющей полного электрического сопротивления. Отсюда возникает необходимость ее полного учета и выполнения специфических измерений.

Приборы для измерения сопротивления петли фаза-ноль

Когда в электрической проводке происходит неисправность, приводящая к закорачиванию потенциала фазы на ноль, то образуется цепь, по которой идет ток короткого замыкания. На его величину влияет сопротивление участка электропроводки от места КЗ до источника напряжения. Оно определяет величину аварийного тока, который должен отключаться автоматическими выключателями.

Поэтому сопротивление петли фаза-ноль необходимо выполнять на самой удаленной точке и с его учетом подбирать номиналы защитных автоматов.

Для выполнения подобных замеров разработано несколько методик, основанных на:

падении напряжения при: отключенной цепи и на сопротивлении нагрузки;

коротком замыкании с пониженными токами от постороннего источника.

Замер на нагрузочном сопротивлении, встроенном в прибор, отличается точностью и удобством. Для его выполнения концы прибора вставляют в самую отдалённую от защит розетку.

Нелишним бывает выполнение измерений во всех розетках. Современные измерители, работающие по этому методу, сразу показывают сопротивление петли фаза-ноль на своем табло.

Все рассмотренные приборы представляют только часть устройств для измерения сопротивления. На предприятиях энергетики работают целые измерительные комплексы, позволяющие постоянно анализировать изменяющиеся величины электрических параметров на сложном высоковольтном оборудовании и принимать экстренные меры для устранения возникающих неисправностей.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Как подключается в цепь омметр?

При ремонте радиотехнических и электротехнических изделий, ремонте проводки возникает потребность в поиске контакта проводников тока в месте, в котором может возникнуть короткое замыкание (в этом случае сопротивление = 0), поиске места плохого контакта между проводниками (сопротивление стремится к бесконечности). В этом случае стоит использовать прибор под названием Омметр. Сопротивление обозначается буквой R, измеряется в Омах.

Омметр представляет собой прибор (батарейку) с последовательно включенным цифровым или стрелочным индикатором. Так же, омметр служит для проверки измерительных приборов, измерения сопротивления изоляции при повышенном напряжении. Все мультиметры и тестеры имеют функцию измерения сопротивления.

Обратите внимание! Измеряйте сопротивление при полном обесточивании приборов, дабы омметр не вышел из строя. Для этого выньте вилку из розетки либо батарейки. Если схема включает в себя конденсаторы, имеющие большую емкость, их следует разрядить. Закоротите выводы конденсаторов через сопротивление, номинальный ток которого 100 кОм на пару секунд.

Для того чтоб воспользоваться измерением Ом, установите ползунок на приборе в положение, которое соответствует минимальному измерению величины сопротивления.

Прежде чем проводить измерения, проверьте прибор на работоспособность. Для этого следует соединить концы щупов между собой.

как подключается в цепь омметр

Если это тестер, необходимо установить стрелку на отметку «0». Если не получается, замените батарейки. При проверке лампы накаливания можно использовать прибор, батарейки которого разрядились и стрелка не устанавливается на ноль, но при соединении щупов отклоняется от «0».

Если есть отклонение от нуля, то значит, цепь цела. Цифровые приборы имеют возможность выводить показания в десятых долях Омов. Если цепь разомкнута, цифровые приборы мигает перегрузка , на стрелочных приборах стрелка стремится к «0».

Если прибор имеет функцию прозвонки цепей (символ диода), низкоомные цепи, провода лучше прозванивать этим способом. При положительном результате будет слышен звуковой сигнал.

Проверка лампочек накаливания

Не горит лампа в светильника? В чем причина? Поломка может быть в патроне, выключателе или электропроводке. Лампа накаливания, энергосберегающая, лампа дневного света проверяется тестером. Причем сделать это довольно таки просто. Для этого следует установить на тестере ползунок в положение измерения минимального сопротивления и прикоснуться к цоколю концами щупов.

как подключается в цепь омметр

На экране видно, что сопротивление нити накала равно 51 Ом. Это значит, что лампа исправна. Если бы нить была оборвана, на экране показалось бесконечное сопротивление. Автомобильная лампа 12 В и 100 Вт показывает сопротивление в 1,44 Ом. Галогенка на 220 В и 50 Вт выдает 968 Ом.

Нить накала будет показывать меньшее сопротивление в охлажденном состоянии, когда лапа нагрета, этот показатель может увеличиться в несколько раз. Поэтому, зачастую лампы сгорают во время включения. Это потому, что при включении, ток, идущий через нить, превышает допустимый в несколько раз.

Проверка наушников гарнитуры

Бывают проблемы с наушниками, связанные с пропаданием или искажением звука, либо полным его отсутствием. Причиной тому может быть выход наушников из строя либо устройства, с которого принимается сигнал.

При помощи омметра можно установить причину неисправности. Чтоб проверить наушники, нужно присоединить концы щупов к разъему, через который наушники подключаются к аппаратуре. Обычно, это разъем «Джек 3,5». Контакт, находящийся в разъеме ближе к держателю общий, фигурный для левого канала, кольцевой, расположенный между ними, для правого.

как подключается в цепь омметр

Один конец щупа преподносим к общему выводу, вторым касаемся поочередно к правому и левому. Сопротивление на обоих концах должно быть равным 40 Ом. Зачастую, в паспорте наушником указаны все параметры.

Если разница в показаниях велика, имеет место быть короткое замыкание. Это легко проверить. Достаточно коснуться щупами к левому и правому каналам одновременно. Сопротивление должно увеличиться в 2 раза, то есть показывать 80 Ом.

Получается, что мы проводим измерение двух последовательно подключенных цепей. Если при шевелении провода сопротивление меняется, провод перетерт в каком-либо месте. Обычно это происходит в месте выхода из излучателей или Джека. Чтоб точно определить место поломки, зафиксируйте провод, изогните его локально, подключив омметр. Если разрыв в месте установки Джека, нужно купить разборной Джек.

Старый придется откусить вместе с частью перетертого провода, припаять контакты к новому разъему по такому принципу, как они припаяны к Джеку. Если обрыв был найден в наушниках, отрежьте старый кусок провода, припаяйте новый к тому мету, где была старая пайка.

Измерение номинала резистора

Сопротивления (в цепи их называют резисторами) имеют широкое применение в электросхемах. Зачастую приходить проверять резистор на исправность, чтоб определить поломку электроцепи.

как подключается в цепь омметр

На схеме резистор показывают в виде прямоугольника, иногда внутри есть надпись, которая может свидетельствовать о его мощности. Например, I – 1 Вт и так далее.

Чтоб определить номинал омметром, включите его в режим промера сопротивления. Сектор проверки сопротивления поделен на части. Это сделано с целью повышения эффективности измерений. К примеру, ползунок «200» свидетельствует о том, что мы можем промерять сопротивление до 200 Ом. «2k» — 2000 Ом и так далее. «k» свидетельствует о том, что к числу нужно добавить 1000, так как это приставка кило; «М»- мега, следовательно, число умножается на 1000000.

Если установить ползунок на измерения «2k» и при этом измерять резистор номиналом 300 кОм, на дисплей будет выведен значок перегрузки. Значит, нужно установить ползунок в положение 2М. Не важно, в каком положении он установлен, поменять его можно в процессе измерений.

Во время измерений сопротивления тестер может показывать другие показания, но не те, которые указаны на резисторе. Такой резистор не пригоден для дальнейшей эксплуатации.

На современных резисторах имеется цветная маркировка.

Проверка диодов мультиметром или тестером

Если необходимо преобразовать переменный ток в постоянный, применяются полупроводниковые диоды. При проверке платы первое внимание нужно уделить именно им. Они изготавливаются из кремния, германия и других материалов, служащих полупроводниками.

На внешний вид диоды отличаются между собой. Корпус может быть выполнен из пластика, стекла, металла. Они могут быть как цветные, так и прозрачные. Несмотря на это, все они имеют 2 вывода. В схемах ,как правило, применяют светодиоды, стабилитроны, выпрямительные диоды.

Условно их показывают как стрелку, которая упирается в отрезок линии. Диод обозначается буквами VD и только светодиоды обозначают HL. Назначение диодов напрямую зависит от обозначений, которые показываются на чертеже. Из-за того, что схема может включать в себя огромное количество диодов, включенных параллельно, из нумеруют.

Диод легко проверить, если знать его принцип работы. А все просто, это как ниппель. Когда воздух входит, колесо накачивается, но назад уже не выйдет. Такой принцип работы и у диода. Только он пропускает через себя ток. Для проверки его работоспособности нужен постоянный источник питания, в роли которого может быть омметр, тестер, так как они мет батарейки.

На фото показано схема работы тестера при проверке сопротивления. На клеммы поступает напряжение определенного вида полярности. «+» подается на клемму красного цвета, «-» на черную. Когда мы прикоснемся, окажется так, что на анодном выводе будет плюсовой щуп, на катодном — минусовой. Ток начнет движение через диод.

Если перепутать метами щупы, ток не будет двигаться. Диод может быть как пробитым, исправным, так и находиться в обрыве. Когда образовался пробой, в какую бы сторону мы не подсоединили щупы, ток будет проходить через диод. Это все потому, что диод в таком случае будет представлять из себя кусочек провода.

Если произошел обрыв, ток не будет поступать. Редко случается такое, что сопротивление перехода изменяется. Такую поломку легко выявить, глядя на дисплей. По такому принципу можно проверить выпрямительный диод, светодиод, стабилитрон, диод Шоттки. Диоды могут быть как с выводами, так и иметь SMD исполнение. Давайте попрактикуемся.

Сначала вставляем щупы в прибор соблюдая цветовую маркировку. COM – черный кабель, R/V/f — красный, плюс. Далее устанавливаем ползунок на «прозвонку». На фото положение 2kOm. Включаем прибор, сомкнув щупы, убеждаемся в том, что он работает.

Первым делом проверим германиевый диод Д7. Ему уже 53 года. Такие диоды сейчас не производят, так как цена сырья велика, да и малая рабочая температура (max 80-100). Однако они хороши тем, что имеют низкий уровень шумов и малое падение напряжения. Их ценят люди, собирающие ламповые усилители звука.

При прямом подключении падение напряжения равно 0,129 мВ. Стрелочный прибор покажет где-то 130 Ом. Если изменить полярность, показание мультиметра будет равно 1, стрелочный в свою очередь покажет бесконечность. Это значит, что сопротивление слишком большой. Диод исправен.

Диод на кремниевой основе проверяется таким же способом. Корпус имеет 2 вывода катода, которые маркируются точкой, линией или окружностью. При прямом подключении падение равно около 0,5 В. Более мощные диоды покажут приблизительно 0,4 В. Таким способом проверяются диоды Шоттки, падение которых равно 0,2 В.

Мощные светодиоды имеют падение более 2 В, прибор может показать 1. В таком случае светодиод и есть индикатором. Если он светится, даже слабо, значит все исправно.

Некоторые типы более мощных светодиодов сделаны по принципу цепочки. То есть имеют несколько последовательно включенных светодиодов. Внешне это не просматривается. Падение на них может равняться до 30 В, проверять их стоит блоком питания, имеющего соответствующее напряжение и резисторами, включенными в цепь.

Проверка электролитических конденсаторов

Конденсаторы делятся на 2 типа: электролитические и простые. Простые подсоединяются в схему любым способом. Но с электролитическими такой способ не пройдет. Важно соблюдать полярность, чтоб не вывести его из строя.

Конденсаторы показываются на схеме при помощи двух параллельных линий. Если конденсатор электролитический, необходимо указать полярность, поставив рядом знак «+». Такие конденсаторы не надежны и причиной выхода из строя блока питания само чаще являются именно они. Вздутый конденсатор в устройстве можно часто заметить.

Мультиметром или тестером можно проверить такой конденсатор, в простонародии говорится «прозвонить». Прежде чем приступить к проверке, нужно выпаять конденсаторов и разрядить его. Для этого просто закоротите его выводы пинцетом или похожим предметом, корпус которого выполнен из металла. Прибор следует установить на проверку сопротивления в диапазоне от сотен килом до мегаом.

Щупами прикоснитесь к выводам конденсатора. При этом, стрелка на приборе плавно будет быстро отклоняться и плавно опускаться. Это зависит от того, какой величины испытываемый конденсатор. Чем емкость больше, тем возвращение стрелки в изначальное положение медленнее. Тестер покажет малое сопротивление, но через некоторое время оно может достигнуть сотни мегом.

Если показания отличаются от выше описанных и сопротивление равно нулю, возможен пробой в месте обмотки конденсатора. Когда на дисплее видна бесконечность, это свидетельствует об обрыве. Этот конденсатор не подойдет для применения.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 1 марта 2017; проверки требуют

3 правки

.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 1 марта 2017; проверки требуют

3 правки

.

Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

Классификация и принцип действия

Классификация

  • По исполнению омметры подразделяются на щитовые, лабораторные и переносные
  • По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые

Магнитоэлектрические омметры

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе равна: I = U/(r0 + rx), где U — напряжение источника питания; r0 — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).

Согласно этой формуле, магнитоэлектрический омметр имеют нелинейную шкалу. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля (скорректировать величину r0) специальным регулятором на передней панели при замкнутых входных клеммах прибора, для компенсации нестабильности напряжения источника питания.

Поскольку типичное значение тока полного отклонения магнитоэлектрических микроамперметров составляет 50..200 мкА, для измерения сопротивлений до нескольких мегаом достаточно напряжения питания, которое даёт встроенная батарейка. Более высокие пределы измерения (десятки — сотни мегаом) требуют использования внешнего источника постоянного напряжения порядка десятков — сотен вольт.

Для получения предела измерения в единицы килоом и сотни ом, необходимо уменьшить величину r0 и соответственно увеличить ток полного отклонения измерителя путём добавления шунта.

При малых значениях rx (до нескольких ом) применяется другая схема: измеритель и rx включают параллельно. При этом измеряется падение напряжения на измеряемом сопротивлении, которое, согласно закону Ома, прямо пропорционально сопротивлению, (при условии I=const).

  • ПРИМЕРЫ: М419, М372, М41070/1

Логометрические мегаомметры

Основой логометрических мегаомметров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

  • ПРИМЕРЫ: ЭС0202, М4100

Аналоговые электронные омметры

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

  • ПРИМЕРЫ: Е6-13А, Ф4104-М1

Цифровые электронные омметры

Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

  • ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34

Измерения малых сопротивлений. Четырёхпроводное подключение

При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.

Наименования и обозначения

Видовые наименования

  • Микроомметр — омметр с возможностью измерения очень малых сопротивлений (менее 1мОм)
  • Миллиомметр — омметр для измерения малых сопротивлений (единицы — сотни миллиом)
  • Мегаомметр (устар. мегомметр) — омметр для измерения больших сопротивлений (единицы — сотни мегаом)
  • Тераомметр — омметр для измерения очень больших сопротивлений (единицы — сотни тераом)
  • Измеритель сопротивления заземления — специальный омметр для измерения переходных сопротивлений в устройствах заземления

Обозначения

Омметры обозначаются либо в зависимости от системы (основного принципа действия), либо по ГОСТ 15094

  • Мхх — приборы магнитоэлектрической системы
  • Фхх, Щхх — приборы электронной системы
  • Е6-хх — измерители сопротивлений, маркировка по ГОСТ 15094

Основные нормируемые характеристики

  • Диапазон измерения сопротивлений
  • Допустимая погрешность или класс точности
  • напряжение на клеммах прибора

Другие средства измерения сопротивлений

Измерение сопротивления по постоянному току

  • Измерительный мост — обеспечивает весьма высокую точность, но неудобен из-за необходимости ручного уравновешивания
  • Магазин сопротивлений, катушки электрического сопротивления — измерение производится методом сравнения, с помощью замещения измеряемого объекта
  • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления

Измерение сопротивления по переменному току

  • Измеритель иммитанса — измерения сопротивления на частотах от десятков герц до нескольких мегагерц
  • Высокочастотный (векторный) измеритель импеданса — измерения сопротивления на частотах сотни килогерц — сотни мегагерц
  • Измеритель добротности — измерения сопротивления косвенным методом на частотах от 1 кГц до нескольких сотен мегагерц
  • Измеритель полных сопротивлений — измерения сопротивления нагрузки линии на частотах в десятки — сотни мегагерц
  • Измерительная линия — измерения сопротивления нагрузки линии на частотах в сотни — тысячи мегагерц

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979
  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л., 1973

Нормативно-техническая документация

  • ГОСТ 22261—94 «Средства измерений электрических и магнитных величин. Общие технические условия»
  • ГОСТ 23706-93
  • ГОСТ 8.366—79 «Государственная система обеспечения единства измерений. Омметры цифровые. Методы и средства поверки»
  • ГОСТ 8.409—81 «Государственная система обеспечения единства измерений. Омметры. Методы и средства поверки»

Ссылки

  • Проверка радиоэлементов омметром
  • Широкодиапозонные цифровые омметры

См. также

  • Электрическое сопротивление
  • Измерительный мост
  • Магазин сопротивлений
  • Измеритель иммитанса
  • Измеритель добротности
  • Измеритель полных сопротивлений
  • Измерительный прибор
  • Радиоизмерительные приборы
  • Электроизмерительные приборы
  1. Отсоедините от розетки и выключите питание тестируемой схемы. Для обеспечения точности измерения, а также собственной безопасности, провод или схема должны быть полностью обесточены. Ваш омметр обеспечит подачу напряжения и тока в схему, поэтому нет необходимости в других источниках питания. Согласно инструкциям омметра/вольтметра, тестирование схемы при наличии питания «может привести к повреждению измерительного прибора, схемы и вас».

  2. Выберите для своего проекта подходящий омметр. Аналоговые омметры очень просты в использовании и дешево стоят. Их диапазон измерения составляет от 0-10 до 0-10,000 Ом. Цифровые аналоги имеют такой же диапазон или «авто-диапазон», благодаря чему они могут измерить сопротивление устройства или схемы и автоматически выбрать подходящий диапазон.

  3. Проверьте омметр на наличие батареи. Если вы только недавно купили омметр, батарея могла уже быть установлена в приборе или запакована отдельно вместе с инструкцией по ее установке.

  4. Вставьте щупы в разъемы на приборе. В случае с мультифункциональными приборами вы увидите «общий» или отрицательный щуп, а также «положительный» щуп. Они также могут быть разных цветов, красного (+) и черного (-) цвета.

  5. Обнулите прибор, если он оборудован циферблатом для обнуления. Обратите внимание, что шкала двигается в обратном направлении большинства привычных измерительных шкал, что означает большее сопротивление справа и меньшее сопротивление слева. Нулевое сопротивление будет наблюдаться при соединении двух зондов друг к другу. Вы можете настроить прибор, держа зонды вместе и поворачивая циферблат до тех пор, пока стрелка на шкале не будет на 0 Омах.

  6. Выберите схему или электрическое устройство, которое хотите проверить. Для практики вы можете взять практически все, что проводит электричество, от клочка алюминиевой фольги и до следа от карандаша на бумаге. Чтобы получить представление о точности ваших измерений, сходите в магазин электроники и купите несколько разных резисторов или устройств с известным уровнем сопротивления.

  7. Прикоснитесь одним щупом к одному краю схемы, а другим – к другому краю и взгляните на показатели прибора. Если вы купили резистор на 100 Ом, можете дотронуться щупом до каждого проводника на резисторе, выбрать диапазон в 1000 или 10000 Ом и прочесть показания на приборе, чтобы убедиться, что на нем действительно показано 1000 ОМ.

  8. Изолируйте компоненты в тяжело проводимую электрическую цепь, чтобы протестировать их отдельно друг от друга. Если вы считываете Омы на резисторе в печатной плате, вам придется отпаять или отколоть резистор, чтобы быть уверенным в том, что вы не получаете ложных показаний другой части цепи.

  9. Измерьте сопротивление проводов или линии цепи, чтобы проверить наличие короткого или открытого разрыва в цепи. Если вы получили показания «бесконечное сопротивление», это значит, что электрическому току некуда идти. Проще говоря, это свидетельствует о сгоревшем компоненте где-то в цепи или о сломанном проводнике. Так как в большинстве цепей содержаться «выходные» устройства (транзисторы и полупроводники), диоды и конденсаторы, вы можете не измерить непрерывность даже, если цепь полностью целая. Именно поэтому очень тяжело протестировать цепь одним лишь омметром.

  10. Если вы не используете омметр, выключите его. Иногда, во время хранения устройства, провода могут замкнуться и обесточить батарею.

38. Схема омметра с последовательным включением измеряемого сопротивления. Определение омметра, устройство, принцип калибровки и измерения сопротивлений.

Для измерения величин сопротивления применяют омметры.

 Омметр – это прибор для измерения сопротивлений постоянным током. В основе его работы лежит способ измерения сопротивлений с помощью вольтметра и амперметра.

 Основан на том, что при постоянном напряжении сила тока в электрической цепи зависит от сопротивления. Эта зависимость позволяет по величине тока в цепи оценивать ее сопротивление. Стрелка омметра показывает на шкале величину сопротивления присоединенного к зажимам прибора. Шкала измерительного прибора градуируется в омах.

 Различают две схемы омметров:

 с последовательным включением измеряемого резистора RXотносительно измерительного прибора и параллельным.

 Приборы состоят из источника питания Е, стрелочного прибора (обычно микроамперметр), добавочного резистора RД и переменного калибровочного резистора RК и ключа К. 

     Схемы отличаются включением стрелочного прибора: в одной схеме он включен последовательно, а в другой параллельно измеряемому резистору RХ.

     Схема с последовательным включением применяется для измерения больших сопротивлений (рисунок 7), а с параллельным (рисунок 8) – малых.

     В качестве источника тока (питания) используются сухие гальванические элементы (батареи), которые с течением времени разряжаются, поэтому перед каждым измерением омметр (прибор) необходимо калибровать.

   Омметр с последовательным включением калибруют следующим образом: замыкают переключатель К и регулируяRК (сопротивление калибровочного резистора), устанавливают стрелку прибора на отметку «0».

     При подключении измеряемого резистора RX к зажимам прибора в цепи протекает ток

 (Ri – сопротивление источника питания Е).

     Значение тока, а значит, и угол отклонения стрелки прибора зависят от RХ.

     Чем больше RХ, тем меньше ток, и меньше угол отклонения стрелки. Такой омметр имеет обратную шкалу и нелинейную, так как зависимость тока, протекающего через стрелочный прибор от измеряемого сопротивления RХ будет нелинейна.

 

Рисунок 2 – Схема омметра с последовательным включением RХ

39. Схема омметра с параллельным включением измеряемого сопротивления. Определение омметра, устройство, принцип калибровки и измерения сопротивлений.

 Омметр – это прибор для измерения сопротивлений постоянным током. В основе его работы лежит способ измерения сопротивлений с помощью вольтметра и амперметра.

 Основан на том, что при постоянном напряжении сила тока в электрической цепи зависит от сопротивления. Эта зависимость позволяет по величине тока в цепи оценивать ее сопротивление. Стрелка омметра показывает на шкале величину сопротивления присоединенного к зажимам прибора. Шкала измерительного прибора градуируется в омах.

Омметр с параллельным включением измеряемого резистора RХ калибруется при разомкнутом переключателе К, при этом весь ток протекает через измерительный прибор и угол отклонения стрелки оказывается максимальным. Регулируя RК, устанавливают стрелку прибора на отметку «¥».

 

При подключении RХ часть тока ответвляется в параллельную ветвь и угол отклонения стрелки уменьшается. Шкала прибора прямая и так же нелинейная, так как зависимость тока от величины измеряемого сопротивления RХнелинейна.

 

Рисунок 3 – Схема омметра с параллельным включением RХ

Как измерять сопротивление, прозвонить цепь омметром, самостоятельно

При ремонте радиотехнических и электротехнических изделий, ремонте проводки возникает потребность в поиске контакта проводников тока в месте, в котором может возникнуть короткое замыкание (в этом случае сопротивление = 0), поиске места плохого контакта между проводниками (сопротивление стремится к бесконечности). В этом случае стоит использовать прибор под названием Омметр. Сопротивление обозначается буквой R, измеряется в Омах.

Омметр представляет собой прибор (батарейку) с последовательно включенным цифровым или стрелочным индикатором. Так же, омметр служит для проверки измерительных приборов, измерения сопротивления изоляции при повышенном напряжении. Все мультиметры и тестеры имеют функцию измерения сопротивления.

Обратите внимание! Измеряйте сопротивление при полном обесточивании приборов, дабы омметр не вышел из строя. Для этого выньте вилку из розетки либо батарейки. Если схема включает в себя конденсаторы, имеющие большую емкость, их следует разрядить. Закоротите выводы конденсаторов через сопротивление, номинальный ток которого 100 кОм на пару секунд.

Для того чтоб воспользоваться измерением Ом, установите ползунок на приборе в положение, которое соответствует минимальному измерению величины сопротивления.

Прежде чем проводить измерения, проверьте прибор на работоспособность. Для этого следует соединить концы щупов между собой.

Если это тестер, необходимо установить стрелку на отметку «0». Если не получается, замените батарейки. При проверке лампы накаливания можно использовать прибор, батарейки которого разрядились и стрелка не устанавливается на ноль, но при соединении щупов отклоняется от «0».

Если есть отклонение от нуля, то значит, цепь цела. Цифровые приборы имеют возможность выводить показания в десятых долях Омов. Если цепь разомкнута, цифровые приборы мигает перегрузка , на стрелочных приборах стрелка стремится к «0».

Если прибор имеет функцию прозвонки цепей (символ диода), низкоомные цепи, провода лучше прозванивать этим способом. При положительном результате будет слышен звуковой сигнал.

Проверка лампочек накаливания

Не горит лампа в светильника? В чем причина? Поломка может быть в патроне, выключателе или электропроводке. Лампа накаливания, энергосберегающая, лампа дневного света проверяется тестером. Причем сделать это довольно таки просто. Для этого следует установить на тестере ползунок в положение измерения минимального сопротивления и прикоснуться к цоколю концами щупов.

На экране видно, что сопротивление нити накала равно 51 Ом. Это значит, что лампа исправна. Если бы нить была оборвана, на экране показалось бесконечное сопротивление. Автомобильная лампа 12 В и 100 Вт показывает сопротивление в 1,44 Ом. Галогенка на 220 В и 50 Вт выдает 968 Ом.

Нить накала будет показывать меньшее сопротивление в охлажденном состоянии, когда лапа нагрета, этот показатель может увеличиться в несколько раз. Поэтому, зачастую лампы сгорают во время включения. Это потому, что при включении, ток, идущий через нить, превышает допустимый в несколько раз.

Проверка наушников гарнитуры

Бывают проблемы с наушниками, связанные с пропаданием или искажением звука, либо полным его отсутствием. Причиной тому может быть выход наушников из строя либо устройства, с которого принимается сигнал.

При помощи омметра можно установить причину неисправности. Чтоб проверить наушники, нужно присоединить концы щупов к разъему, через который наушники подключаются к аппаратуре. Обычно, это разъем «Джек 3,5». Контакт, находящийся в разъеме ближе к держателю общий, фигурный для левого канала, кольцевой, расположенный между ними, для правого.

Один конец щупа преподносим к общему выводу, вторым касаемся поочередно к правому и левому. Сопротивление на обоих концах должно быть равным 40 Ом. Зачастую, в паспорте наушником указаны все параметры.

Если разница в показаниях велика, имеет место быть короткое замыкание. Это легко проверить. Достаточно коснуться щупами к левому и правому каналам одновременно. Сопротивление должно увеличиться в 2 раза, то есть показывать 80 Ом.

Получается, что мы проводим измерение двух последовательно подключенных цепей. Если при шевелении провода сопротивление меняется, провод перетерт в каком-либо месте. Обычно это происходит в месте выхода из излучателей или Джека. Чтоб точно определить место поломки, зафиксируйте провод, изогните его локально, подключив омметр. Если разрыв в месте установки Джека, нужно купить разборной Джек.

Старый придется откусить вместе с частью перетертого провода, припаять контакты к новому разъему по такому принципу, как они припаяны к Джеку. Если обрыв был найден в наушниках, отрежьте старый кусок провода, припаяйте новый к тому мету, где была старая пайка.

Измерение номинала резистора

Сопротивления (в цепи их называют резисторами) имеют широкое применение в электросхемах. Зачастую приходить проверять резистор на исправность, чтоб определить поломку электроцепи.

На схеме резистор показывают в виде прямоугольника, иногда внутри есть надпись, которая может свидетельствовать о его мощности. Например, I – 1 Вт и так далее.

Чтоб определить номинал омметром, включите его в режим промера сопротивления. Сектор проверки сопротивления поделен на части. Это сделано с целью повышения эффективности измерений. К примеру, ползунок «200» свидетельствует о том, что мы можем промерять сопротивление до 200 Ом. «2k» — 2000 Ом и так далее. «k» свидетельствует о том, что к числу нужно добавить 1000, так как это приставка кило; «М»- мега, следовательно, число умножается на 1000000.

Если установить ползунок на измерения «2k» и при этом измерять резистор номиналом 300 кОм, на дисплей будет выведен значок перегрузки. Значит, нужно установить ползунок в положение 2М. Не важно, в каком положении он установлен, поменять его можно в процессе измерений.

Во время измерений сопротивления тестер может показывать другие показания, но не те, которые указаны на резисторе. Такой резистор не пригоден для дальнейшей эксплуатации.

На современных резисторах имеется цветная маркировка.

Проверка диодов мультиметром или тестером

Если необходимо преобразовать переменный ток в постоянный, применяются полупроводниковые диоды. При проверке платы первое внимание нужно уделить именно им. Они изготавливаются из кремния, германия и других материалов, служащих полупроводниками.

На внешний вид диоды отличаются между собой. Корпус может быть выполнен из пластика, стекла, металла. Они могут быть как цветные, так и прозрачные. Несмотря на это, все они имеют 2 вывода. В схемах ,как правило, применяют светодиоды, стабилитроны, выпрямительные диоды.

Условно их показывают как стрелку, которая упирается в отрезок линии. Диод обозначается буквами VD и только светодиоды обозначают HL. Назначение диодов напрямую зависит от обозначений, которые показываются на чертеже. Из-за того, что схема может включать в себя огромное количество диодов, включенных параллельно, из нумеруют.

Диод легко проверить, если знать его принцип работы. А все просто, это как ниппель. Когда воздух входит, колесо накачивается, но назад уже не выйдет. Такой принцип работы и у диода. Только он пропускает через себя ток. Для проверки его работоспособности нужен постоянный источник питания, в роли которого может быть омметр, тестер, так как они мет батарейки.

На фото показано схема работы тестера при проверке сопротивления. На клеммы поступает напряжение определенного вида полярности. «+» подается на клемму красного цвета, «-» на черную. Когда мы прикоснемся, окажется так, что на анодном выводе будет плюсовой щуп, на катодном — минусовой. Ток начнет движение через диод.

Если перепутать метами щупы, ток не будет двигаться. Диод может быть как пробитым, исправным, так и находиться в обрыве. Когда образовался пробой, в какую бы сторону мы не подсоединили щупы, ток будет проходить через диод. Это все потому, что диод в таком случае будет представлять из себя кусочек провода.

Если произошел обрыв, ток не будет поступать. Редко случается такое, что сопротивление перехода изменяется. Такую поломку легко выявить, глядя на дисплей. По такому принципу можно проверить выпрямительный диод, светодиод, стабилитрон, диод Шоттки. Диоды могут быть как с выводами, так и иметь SMD исполнение. Давайте попрактикуемся.

Сначала вставляем щупы в прибор соблюдая цветовую маркировку. COM – черный кабель, R/V/f — красный, плюс. Далее устанавливаем ползунок на «прозвонку». На фото положение 2kOm. Включаем прибор, сомкнув щупы, убеждаемся в том, что он работает.

Первым делом проверим германиевый диод Д7. Ему уже 53 года. Такие диоды сейчас не производят, так как цена сырья велика, да и малая рабочая температура (max 80-100). Однако они хороши тем, что имеют низкий уровень шумов и малое падение напряжения. Их ценят люди, собирающие ламповые усилители звука.

При прямом подключении падение напряжения равно 0,129 мВ. Стрелочный прибор покажет где-то 130 Ом. Если изменить полярность, показание мультиметра будет равно 1, стрелочный в свою очередь покажет бесконечность. Это значит, что сопротивление слишком большой. Диод исправен.

Диод на кремниевой основе проверяется таким же способом. Корпус имеет 2 вывода катода, которые маркируются точкой, линией или окружностью. При прямом подключении падение равно около 0,5 В. Более мощные диоды покажут приблизительно 0,4 В. Таким способом проверяются диоды Шоттки, падение которых равно 0,2 В.

Мощные светодиоды имеют падение более 2 В, прибор может показать 1. В таком случае светодиод и есть индикатором. Если он светится, даже слабо, значит все исправно.

Некоторые типы более мощных светодиодов сделаны по принципу цепочки. То есть имеют несколько последовательно включенных светодиодов. Внешне это не просматривается. Падение на них может равняться до 30 В, проверять их стоит блоком питания, имеющего соответствующее напряжение и резисторами, включенными в цепь.

Проверка электролитических конденсаторов

Конденсаторы делятся на 2 типа: электролитические и простые. Простые подсоединяются в схему любым способом. Но с электролитическими такой способ не пройдет. Важно соблюдать полярность, чтоб не вывести его из строя.

Конденсаторы показываются на схеме при помощи двух параллельных линий. Если конденсатор электролитический, необходимо указать полярность, поставив рядом знак «+». Такие конденсаторы не надежны и причиной выхода из строя блока питания само чаще являются именно они. Вздутый конденсатор в устройстве можно часто заметить.

Мультиметром или тестером можно проверить такой конденсатор, в простонародии говорится «прозвонить». Прежде чем приступить к проверке, нужно выпаять конденсаторов и разрядить его. Для этого просто закоротите его выводы пинцетом или похожим предметом, корпус которого выполнен из металла. Прибор следует установить на проверку сопротивления в диапазоне от сотен килом до мегаом.

Щупами прикоснитесь к выводам конденсатора. При этом, стрелка на приборе плавно будет быстро отклоняться и плавно опускаться. Это зависит от того, какой величины испытываемый конденсатор. Чем емкость больше, тем возвращение стрелки в изначальное положение медленнее. Тестер покажет малое сопротивление, но через некоторое время оно может достигнуть сотни мегом.

Если показания отличаются от выше описанных и сопротивление равно нулю, возможен пробой в месте обмотки конденсатора. Когда на дисплее видна бесконечность, это свидетельствует об обрыве. Этот конденсатор не подойдет для применения.

Прибор для измерения электрического сопротивления

Чтобы проверить рабочее состояние электрокабеля, необходимо определить сопротивление изоляционного материала. Есть разные способы измерить сопротивление с учетом их абсолютной величины, точности. В этих целях используют спецустройства для замеров. Для определения исправности либо неисправности цепей и некоторых фрагментов, нужно знать, как использовать прибор для измерения сопротивления.

Зачем измерять сопротивление

Изоляция является защитой провода от прохождения электротока сквозь него. Во время работы электрических установок их конструкция подвергнется влиянию внешних факторов, старению и изнашиванию в процессе нагревания. Это отрицательно отразится на функциональности оборудования, потому необходимо периодически измерять сопротивления изоляции провода.

Прибор для измерения сопротивления

Чтобы измерить сопротивление, требуется иметь спецразрешение. Электропровод испытывают лишь спецкомпании и организации, имеющие квалифицированных специалистов. Они проходят обучение и получают необходимый разряд по электрической безопасности.

Важно! Проведение замеров требуется, чтобы своевременно обнаруживать повреждения в технике. Изоляция имеет важное значение в безопасности работ с оборудованием. Когда провод имеет повреждения, то установка будет опасна во время работы, так как появляется риск возгорания.

Когда вовремя проверить провод на исправность изоляции, это предупредит такие проблемы:

  • преждевременную поломку техники;
  • короткое замыкание;
  • удар током;
  • различные аварии.

Измерение сопротивления

Потому крайне важно измерять показатели сопротивления изоляционного материала провода.

Какие есть приборы для измерения электрического сопротивления

Часто возникает вопрос, как называются приборы для измерения сопротивления. Чтобы измерить электрическое сопротивление, используются следующие приборы:

  • Омметр. Это прибор спецназначения, который предназначен, чтобы определить сопротивление электротока.
  • Мегаомметр. Измерительное устройство, которое предназначено, чтобы измерять большие показатели сопротивления. Отличием от омметра станет то, что при замерах в цепь будет подаваться высокое напряжение.
  • Мультиметр. Электроприбор, который способен измерить разные показатели электроцепи, включая сопротивление. Есть 2 разновидности: цифровой и аналоговый.

Омметр

Ремонт проводки, электро- и радиотехнических изделий предполагает проверку целостности кабелей и поиск нарушения контактов в соединениях. В некоторых ситуациях сопротивление равняется бесконечности, в других — 0.

Важно! Измерять сопротивление в цепи с помощью омметра, чтобы избежать поломки, допустимо лишь при обесточивании проводов.

Измерение сопротивления омметром

До замеров сопротивления омметром требуется приготовить измеритель. Требуется:

  • Зафиксировать переключатель изделия в позицию, которая соответствует наименьшему замеру величины сопротивления.
  • Затем проверяется функциональность омметра, поскольку бывают плохие элементы питания и устройство способно не функционировать. Соединяются окончания щупов друг с другом. В омметре стрелка устанавливается точно на 0, когда это не произошло, возможно покрутить рукоятку «Уст. 0». Если изменений нет, заменяются батарейки.
  • Чтобы прозвонить электроцепь, возможно использовать прибор, где сели батарейки и стрелка не ставится на 0. Сделать вывод о целостности электроцепи возможно по отклонению стрелки. Омметр должен показывать 0, вероятно отклонение в десятых омов.
  • После проверки изделие готово к функционированию. Когда коснуться окончаниями щупов проводника, то в ситуации с его целостностью, устройство показывает нулевое сопротивление, иначе показания не поменяются.

Использование омметра

Мегаомметр

Чтобы измерить электросопротивление в диапазоне мегаомов, применяется устройство мегаомметр. Принцип функционирования устройства основывается на использовании закона Ома.

Для реализации такого закона в изделии, понадобятся:

  • генератор постоянного тока;
  • головка для измерений:
  • клеммы, чтобы подключить измеряемое сопротивление;
  • резисторы для работы измерительной головки в рабочем диапазоне;
  • переключатель, который коммутирует резисторы.

Важно! Реализация мегаомметра нуждается в минимальном количестве элементов. Подобные изделия исправно функционируют длительное время. Напряжение в аппаратах будет выдавать генератор постоянного тока, величины которого разнятся.

Измерение сопротивления мегаомметром

Работы на электрооборудовании с таким устройством несут повышенную опасность в результате того, что устройство будет вырабатывать высокое напряжение, возникает риск травматизма. Работы с мегаомметром производит персонал, который изучил руководство по использованию устройства, правила техники безопасности во время работ в электрооборудовании. Специалист должен иметь группу допуска и время от времени проходить проверку на знание правил работы в установке.

Мультиметр

Мультиметры бывают универсальными и специализированными, предназначенными в целях выполнения одного действия, однако проводимого по максимуму точно. В устройстве омметр считается лишь элементом прибора, его нужно включить в необходимый режим. Мультиметры нуждаются в определенных навыках применения — необходимо знать об их правильном подключении и интерпретировании готовых сведений.

На вид цифровое и аналоговое устройства легко различить: в цифровом информация выводится на монитор цифрами, в аналоговом циферблат проградуирован и на показатели указывает стрелка. Цифровой мультиметр более прост в применении, поскольку тут же покажет готовые данные, а показания аналогового нужно расшифровывать.

Во время работы с подобными приспособлениями, нужно учесть, что в цифровом мультиметре присутствует индикатор разрядки источника питания — когда силы тока аккумулятора не хватает, он перестанет функционировать. Аналоговый в подобном случае ничего не показывает, а просто выдает ошибочные сведения.

Важно! Для бытового использования подходит любое устройство, на шкале которого указывается достаточный предел измерения сопротивления.

Измерение мультиметром

В каких единицах измеряется сопротивление

Электросопротивление — противодействие, оказываемое проводником проходящему сквозь него электротоку. Главной единицей измерения в системе СИ станет ом, в системе СГС спецпоказатель отсутствует. Сопротивление (зачастую обозначено буквой R) считается, в некоторых пределах, постоянным показателем для конкретного проводника.

  • R — сопротивление;
  • U — разница электропотенциалов на окончаниях проводника в вольтах;
  • I — ток, который протекает меж концов проводника под воздействием разницы потенциалов, замеряется в амперах.

Измерение сопротивления

Как правильно использовать приборы для измерения сопротивления

Относительно технологии замеров, применять приборы требуется по указанной методике:

  1. Выводят людей из проверяемого места электрической установки. Говорится об опасности, вывешиваются спецплакаты.
  2. Снимается напряжение, обесточивается в полной мере щит, кабель, принимаются меры от случайной подачи напряжения.
  3. Проверяется отсутствие напряжения. Заранее заземляются выводы испытываемого объекта, устанавливаются щупы для измерений, снимается заземление. Такую процедуру проводят во время каждого нового замера, так как смежные элементы накапливают заряд, вносят отклонения в показания и несут риск для жизни.
  4. Монтаж и снятие щупов производят за изолированные ручки в перчатках. Делается акцент на том, что изоляция провода до проверки сопротивления очищается от загрязнения.
  5. Проверяется изоляция провода между фазами. Данные заносят в протокол измерений.
  6. Отключаются автоматы, УЗО, лампы и светильники, отсоединяются нулевые кабели от клеммы.
  7. Производится замер всех линий по отдельности между фазами. Данные также вносятся в протокол.
  8. При выявлении изъянов разбирается измеряемая часть на элементы, находится дефект и устраняется.

По завершении испытания с помощью переносного заземления снимается остаточный заряд с помощью короткого замыкания, разряжаются щупы.

Использование приборов

Меры безопасности при измерении

Даже когда возникла необходимость в бытовых условиях провести измерения сопротивления изоляции провода, перед использованием мегаомметра нужно ознакомиться с требованиями по безопасности. Главные правила:

  • Удерживать щупы лишь за изолированный и ограниченный упорами участок.
  • До подсоединения изделия отключается напряжение, нужно удостовериться, что рядом нет людей (вдоль всего измеряемого участка, когда речь о проводах).
  • До подсоединения щупов снимается остаточное напряжение посредством подключения переносного заземления. Отключается тогда, когда щупы установлены.
  • После каждого замера снимается со щупов остаточное напряжение, соединяются оголенные участки.
  • По завершении замеров к жиле подключается переносное заземление, снимается остаточный заряд.
  • Работы проводятся в перчатках.

Правила несложные, однако от них будет зависеть безопасность работника.

Требования к безопасности

Чтобы оценить функциональность электропровода, проводки, требуется замерять сопротивление изоляционного материала. В этих целях используются специальный измерительные приборы. Они будут подавать в измеряемую электроцепь напряжение, после чего на мониторе будут выданы данные.

классификация, принцип работы, схема подключения

Содержание:

  1. Классификация ваттметров
  2. Принцип действия аналогового ваттметра
  3. Как работает цифровой ваттметр
  4. Схема подключения измерительного прибора
  5. Видео

Одной из важнейших характеристик электрической цепи является ее мощность. С помощью данного параметра определяется величина работы, которую электрический ток выполняет за определенную единицу времени. Все устройства включаемые в цепь должны иметь мощность, соответствующую мощности конкретной сети. Для замеров мощности электрического тока применяется специальный измерительный прибор – ваттметр.

В основном он нужен в сетях переменного тока, определяя мощность включенных приборов, а также для тестирования сетей и их отдельных участков, контроля и слежения за режимом работы электрооборудования, учета потребленной электроэнергии.

Классификация ваттметров

До того, как выполняется измерение мощности ваттметром, на исследуемом участке предварительно измеряется сила тока и напряжение. Для того чтобы получить наглядную итоговую информацию, эти данные следует преобразовать с помощью ваттметров, которые могут быть аналоговыми и цифровыми.

Большая часть всех измерений в течение длительного времени проводилась аналоговыми устройствами, в свою очередь разделяющихся на категории показывающих и самопишущих. Они отображают значение активной мощности на заданном участке цепи. Типичным представителем считается показывающий прибор с полукруглой шкалой и поворачивающейся стрелкой. На шкалу нанесена градуировка, соответствующая величинам нарастающей мощности, которую он измеряет в ваттах.

Другой тип – ваттметр цифровой относится к измерительным приборам, способным выполнять замеры не только активной, но и реактивной мощности. Все подобные устройства оборудованы дисплеем, на который кроме мощности, выводятся показания силы тока, напряжения, расхода электроэнергии за определенный период времени. Наиболее совершенные приборы подключаются и позволяют выводить полученные данные на компьютер, расположенный удаленно от места проведения измерений.

Принцип действия аналогового ваттметра

Основой конструкции наиболее распространенных аналоговых ваттметров является электродинамическая система. Приборы этого типа дают возможность сделать максимально точные замеры и получить необходимые результаты.

Принцип действия ваттметра аналогового типа осуществляется на основе двух взаимодействующих катушек. Первая катушка является неподвижной, в ее конструкции используется толстый обмоточный провод с небольшим количеством витков и незначительным сопротивлением. Подключение этой катушки выполняется последовательно с потребителем.

Вторая катушка находится в движении. Для ее обмотки применяется тонкий проводник с большим числом витков и высоким сопротивлением. Эта катушка подключается параллельно с потребителем и оборудуется дополнительным сопротивлением для защиты от коротких замыканий обмоток.

Когда ваттметр включается в сеть, в обмотках его катушек появляются магнитные поля, взаимодействующие между собой. За счет этого взаимодействия происходит образование момента вращения, отклоняющего движущуюся обмотку на величину расчетного угла. На данный показатель оказывает влияние произведение силы тока и напряжения в установленный момент времени.

Как работает цифровой ваттметр

Основной принцип работы цифрового ваттметра заключается в предварительном измерении силы тока и напряжения на исследуемом участке цепи. К потребителю нагрузки последовательно подключается датчик тока, а датчик напряжения подключается по параллельной схеме. Главным конструктивным элементом датчика служит термистор, термопара или измеряющий трансформатор.

По такому же принципу работает ваттметр бытовой, широко используемый в домашних условиях. Такое устройство достаточно включить в розетку, чтобы начать процесс измерения.

Основой устройства служит микропроцессор, к которому поступают измеренные параметры тока и напряжения, после чего и вычисляется мощность. Полученные результаты выводятся на экран и одновременно передаются на внешние приборы. В самом микропроцессоре присутствуют элементы, в том числе и микроконтроллеры, позволяющие автоматически управлять рабочими режимами, дистанционно переключать пределы измерений. С их помощью выполняется индикация условных обозначений измеряемых величин.

При работе с преобразователями больших и средних уровней мощности, выполняется калибровка цифрового устройства с помощью калибратора мощности постоянного тока. Самостоятельная калибровка ваттметра осуществляется калибратором мощности переменного тока. Питание всех узлов и элементов происходит через источник питания постоянного тока, встроенный внутрь измерительного прибора.

Напряжение, поступающее с приемного преобразователя, включенного в розетку, усиливается УПТ – усилителем постоянного тока до значений, делающих более устойчивой работу АЦП – блока аналого-цифрового преобразователя. Далее напряжение, пропорциональное измеряемой мощности, преобразуется во временной интервал, заполняемый импульсами опорной частоты.

Количество этих импульсов, пропорциональное измеряемой мощности будет отображаться на ЦОУ – цифровом отсчетном устройстве. Полученные данные могут быть введены в специальное устройство, предназначенное для обработки информации.

Схема подключения измерительного прибора

От того, насколько правильно подключен ваттметр в конкретном участке цепи, будет зависеть точность полученных данных. Правильная схема включения ваттметра выглядит следующим образом: неподвижная катушка тока измерительного прибора последовательно соединяется с нагрузкой или потребителями электроэнергии.

Подвижная катушка напряжения последовательно соединяется с добавочным сопротивлением, а затем весь этот участок параллельно подключается к нагрузке. Подвижная часть ваттметра имеет определенный угол поворота, вычисляемый по формуле: α = k2IхIu = k2U/Ru, в которой I и Iu являются соответственно токами последовательной и параллельной катушек прибора.

Поскольку в схеме используется добавочное сопротивление, параллельная цепь устройства будет обладать практически постоянным сопротивлением (Ru). В этом случае угол поворота будет равен: α = (k2/Ru)хIхU = k2IхU = k3P. То есть, мощность цепи будет определяться именно по этому параметру.

В ваттметре равномерно нанесена измерительная шкала, сделанная в одностороннем варианте, когда расположение делений начинается от нуля в правую сторону. Когда электрический ток в неподвижной катушке изменяет свое направление, это приводит к изменению направления поворота и вращающего момента подвижной катушки. Если подключение ваттметра выполнено неправильно и направление тока будет другим, электронный прибор не сработает.

По этим причинам не следует путать зажимы, которые используют для подключения. Последовательная обмотка имеет зажим для соединения с источником питания, называемый генераторным. Параллельная цепь также называется генераторной и имеет собственную нужную клемму, чтобы подключить участок к проводу, соединенному с последовательной катушкой.

При нормальном подключении, токи в катушках прибора от генераторных зажимов направляются к негенераторным.

назначение, типы, подключение, применение, параметры

Ваттметры 1 Один из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара.

Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии.

Применение Ваттметров

Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления.

Применяют ваттметры для:

Типы ваттметров

Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.

В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.

Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).

Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.

Видео о ваттметре из Китая:

Устройство и принцип действия

Аналоговые ваттметры

Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.

Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.

Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.

Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).

При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.

Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.

Цифровые ваттметры

В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.

Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства. схема ваттметров

Рисунок — Схема подключения Ваттметра

Подключение Ваттметра

Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).

Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.

Рассмотрим несколько ваттметров разного исполнения и разных производителей:

Ваттметры 2

Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1

Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.

Пределы измерения тока Iп:

  • на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А.

Пределы измерения напряжения Uп:

  • постоянный ток: 1-3-7,5-15-30-75-150-300-450-700-1000 В.
  • переменный ток: 1-3-7,5-15-30-75-150-300-450-700 В.

Пределы измерения мощности соответственно Uп* Iп

Пределы измерения частоты от 40 до 5000Гц.

Основная погрешность:

  • приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%;
  • приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%;
  • приведенная погрешность измерения мощности на переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%;
  • относительная погрешность измерения частоты в диапазоне частот от 40 до 5000Гц ±0,003%;

Габаритные размеры 225х100х205 мм. Масса не более 1кг. Потребляемая мощность не более 5Вт.

Ваттметры многофункциональные СМ3010 выпускаются по ТУ 4221-047-16851585-2014, соответствуют требованиям ТР ТС 004/2011, ТР ТС 020/2011.

Производство – ЗИП-Научприбор.


Ваттметры 3

Устройства измерительные ЦП8506-120 (далее – устройства).

Предназначены для измерения активной, реактивной, активной и реактивной трехфазных трехпроводных цепей переменного тока, отображения текущего значения измеряемой мощности на цифровом индикаторе и преобразования его в аналоговый выход-ной сигнал (далее – выходной сигнал).

Измеренные значения отображаются в цифровой форме на встроенных индикаторах. Отображение измеренных величин на цифровых индикаторах производится в единицах измеряемой величины, поступающей непосредственно на вход устройства, или в единицах измеряемой величины, поступающей на вход трансформаторов тока и напряжения с учетом коэффициентов трансформации, в ваттах, киловаттах, мегаваттах, варах, киловарах, мегаварах. Цифровые индикаторы имеют по четыре значащих разряда.

Назначение ЦП8506-120:

  • для измерения активной и реактивной мощности в трехфазных трехпроводных электрических цепях переменного тока частотой от 45 до 55 Гц

Краткие технические характеристики ЦП8506-120 (Ваттметр)

Варметр щитовой цифровой трехфазный:

  • Коэффициент мощности: для ваттметра cos φ=1, для варметра sin φ=1
  • Габаритные размеры: 120х120х150 мм
  • Высота знака: 20 мм
  • Максимальный диапазон отображения: 9999
  • Класс точности: 0,5
  • Время преобразования: не более 0,5 с
  • Рабочая температура: +5 … +40 град С (О4.1), -40…+50 град С (УХЛ3.1)
  • Степень защиты по передней панели: IP40
  • Потребляемая мощность: 5ВА
  • Масса: не более 1,2 кг

Ваттметры 4

Ваттметр Д5085 (Д 5085, Д-5085)

Предназначен для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Габариты не более (205±1,45)х(290±1,6)х(135±2,0) мм.

Класс точности 0,2.

Ваттметры Д5085 предназначены для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Ваттметры Д5085 предназначены для эксплуатации в условиях умеренного климата в закрытых сухих отапливаемых помещениях, при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80 % (при 25 °С ).

Ваттметры Д5085 -04.1 (тропическое исполнение) предназначены для эксплуатации в условиях как сухого, так и влажного тропического климата в закрытых помещениях с кондиционированным или частично кондиционированным воздухом при температуре окружающего воздуха от 1 до 45 °C и относительной влажности до 80 % при температуре 25 °С (по ГОСТ 15150-69).

Технические данные

Ваттметры Д5085 соответствуют классу точности 0,2 по ГОСТ 8476-78.

Номинальный коэффициент мощности ваттметра – 1,0.

Номинальный ток параллельной цепи ваттметра Д5085 равен (5 ± 0,1) mА. Нормальная область частот ваттметра от 45 до 500 Гц, рабочая область частот – 500-1000 Гц.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением напряжения на ± 20 % от номинального значения либо от пределов нормальной области напряжений, при неизменном значении измеряемой мощности равен ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением частоты от верхней границы нормальной области до любого значения в рабочей области частот, не превышает ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, равен ±0,2% от конечного значения диапазона измерений. Нормальная температура – 20±2 °С, если на лицевойчасти прибора не оговорено иное значение.

Ещё одно видео о встраиваемом ваттметре:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *