Как определить первичную обмотку трансформатора: Подключаем к сети неизвестный трансформатор. — Начинающим — Теория – Как определить обмотки трансформатора | Все своими руками

Содержание

Как проверить первичную обмотку трансформатора мультиметром

Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние. Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, сечение и тип провода и теоретически, при желании, его можно вычислить.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт. Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт. При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.
Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет подробная статья на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже генератор и осциллограф.

Подробная инструкция: как проверить трансформатор мультиметром на видео

Содержание:

Трансформатор нужен для повышения или уменьшения значений переменного тока. Основные его части – входная и выходные (бывает и по 1) катушки, расположенные на магнитном сердечнике. Работа устройства заключается в 2-стороннем изменении магнитного поля, индуцируемого переменным током. При использовании постоянного тока его необходимо вначале преобразовать. Переменное напряжение поступает извне на первичную обмотку. На идущих вслед за ней вторичных катушках вызывается переменное напряжение. Трансформаторы бывают разных типов, созданные из отличающихся материалов. Форма определяется легкостью расположения преобразователя в корпусе прибора. Расчетная мощность зависит от типа и материала сердечника. В зависимости от характеристик сердечника и отличий в численности витков коэффициент передачи бывает разным.

Возможные неисправности

Распространенные поломки трансформатора включают:

  • перегорание кабеля в катушке;
  • повреждение изоляции, вызывающее межвитковое замыкание или электрический контакт между катушкой и корпусом;
  • дефект сердечника;
  • естественный износ выводов обмоток или контактов.

Визуальная проверка трансформатора позволяет выявить повреждение или отсутствие изоляции, неисправность клемм и болтов, вздутие или протекание. Также при осмотре нужно обращать внимание на имеющуюся черноту, обугливание бумаги, запах гари. При отсутствии видимых повреждений работоспособность устройства проверятся с применением измерительных приборов.

Как проверить работу трансформатора мультиметром

Диагностировать исправность преобразователя можно мультиметром. Последовательность диагностики такова:
1. Определение обмоток. На преобразователе обычно присутствует маркировка с указанием номеров и типа выводов. По обозначениям можно получить дополнительные сведения по справочникам. Для преобразователей, установленных в электронные приборы, можно воспользоваться схемами приборов и подробными спецификациями.
2. Использование тестера. Он позволяет установить 2 типичные проблемы – обрыв обмотки и замыкание на расположенную рядом обмотку или корпус.
3. Если есть подозрение на обрыв обмотки – выполняется поочередный перезвон всех их омметром. Подтверждением обрыва выступает сопротивление, равное бесконечности. Для измерений лучше использовать аналоговый омметр, поскольку цифровой из-за существенных значений индукции может искажать показания. Это наиболее актуально для катушек с множеством витков.

4. Контроль замыкания на корпус – 1 щуп контактирует с выводом обмотки, а 2-м выполняется перезвон выводов остальных обмоток и корпуса. Контактная область на корпусе заранее зачищается от лакокрасочного покрытия.

Выявление межвиткового замыкания

Чтобы выявить такой дефект импульсного трансформатора, мультиметра недостаточно. Как минимум, понадобится еще хорошее зрение и внимательность. Для изоляции проволоки используется только ее лаковое покрытие. В случае пробоя изоляции остается сопротивление между расположенными рядом витками, и контактная область греется. Поэтому нужно убедиться в отсутствии подтеков, вспучивания, запаха гари, черноты, подгорания. После определения типа преобразователя можно увидеть в справочнике значение сопротивления его катушек. После этого следует тестером в функционале мегаомметра замерить сопротивление изоляции – между парами обмоток и отдельно между каждой из них и корпусом. Измерения осуществляются при напряжении, значащемся в техдокументации на преобразователь. Измеренные величины сравниваются со справочными, и в случае нестыковки на 50% или выше диагностируется неисправность обмотки.

Диагностика бытовых трансформаторов понижения

Такие элементы содержатся в блоках питания, понижающих напряжение на входе 220 В до значения 5–30 В на выходе. Перед тем, как проверять работоспособность трансформатора понижения, нужно вначале удостовериться в исправности его первичной обмотки. При выявлении запаха гари, возникновении дыма или треска измерения необходимо прекратить. Если же описанные дефекты не выявлены, выполняются измерения на вторичных катушках. В процессе измерений к ним допустимо прикасаться исключительно щупами тестера. Данные измерений сопоставляются с контрольными. Если нестыковка составляет 20% и более, подтверждается неисправность обмотки. Но протестировать такой блок удастся только при наличии 100% идентичного рабочего блока, который необходим для сборки контрольных данных. При работе с сопротивлением около 10 Ом возможно искажение результатов (характерно для некоторых тестеров).

Определение тока холостого тока

Если в ходе предыдущих проверочных работ неисправность не выявлена, рекомендуется выполнить диагностику на ток ХХ. Зачастую он составляет 0,1-0,15 от номинала. Для выполнения диагностики измерительный прибор используется в режиме амперметра. Мультиметр подсоединяется к диагностируемому устройству замкнутым накоротко. Это условие важно, поскольку при подаче тока на катушку его значение увеличивается в сотни раз по сравнению с номиналом. После размыкания выводов тестера на дисплее отображается значение тока без нагрузки, т.е. тока ХХ. Идентично измеряются его величины на вторичных катушках. Для определения напряжения обычно используется реостат. Альтернативой ему способна стать спираль из вольфрама или набор ламп. Для повышения нагрузки уменьшается число витков спирали или увеличивается число лампочек.

Контроль схемы под нагрузкой – прямой метод

Этот способ применяется для проверки рабочих параметров преобразователя. Его суть заключается в определении токов в обмотках под нагрузкой. К вторичной обмотке подключается такая нагрузка, чтобы протекающие в обмотках токи составляли минимум 20% от номинальных величин. Если вторичных обмоток несколько, неподключенные к нагрузке необходимо закоротить. Это нужно в целях безопасности, чтобы избежать возникновения высокого напряжения в разомкнутой вторичной катушке. Полученные значения делятся между собой, и определяется коэффициент трансформации. При его соответствии паспортной величине подтверждается исправность устройства, при несоответствии – нужно определить дефект.

Как проверить высоковольтный трансформатор мегаомметром

В вопросе, как проверить силовой трансформатор мегаомметром, важно соблюдать правила безопасности. Перед включением высоковольтного преобразователя следует проконтролировать, не требуется ли заземлить его сердечник. О такой необходимости свидетельствует наличие клеммы «З» или схожего знака. Для проверки состояния преобразователя используется прямой метод. Если же включить трансформатор с нагрузкой и выполнить замеры невозможно, его работоспособность проверяется косвенным методом. Он включает совокупность тестов, отображающих состояние устройства в определенном аспекте:

1. Проверка корректности маркировки выводов обмоток. Мультиметром в режиме омметра прозваниваются все пары выводов. Между выводами от различных катушек сопротивление бесконечно, а в рамках одной катушки – равно конкретному числу.
2. Сопоставление измеренного сопротивления со значениями в справочнике. Отличие на 50% или выше означает наличие межвиткового замыкания или повреждения провода.
3. Выяснение полярности выводов при помощи магнитоэлектрического амперметра или вольтметра с известной полярностью щупов. Он подключается к вторичной катушке. Если она не одна, остальные шунтируются. Через начальную катушку пропускается незначительный постоянный ток. Цепь замыкается и тут же размыкается. При совпадении полярности стрелка отклоняется вправо, при разной полярности – влево.

4. Получение характеристики намагничивания. Этот метод актуален, если есть исходная ВАХ проверяемого трансформатора. Цепь первичной катушки размыкается, а через вторичную пропускается переменный ток. Его сила меняется, и замеряется входное напряжение. Полученная ВАХ сравнивается с исходной. Уменьшение крутизны ВАХ отражает наличие межвиткового замыкания.

Для гарантированного получения достоверных результатов нужно использовать высокоточные приборы. Лучше всего получить эту задачу специалистам.

Тип трансформаторов (мощность, кВА)

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Первичная и вторичная обмотка. Первичная и вторичная цепи силового трансформатора

Глава III

ТРАНСФОРМАТОРЫ

§ 3.1. ОБЩИЕ СВЕДЕНИЯ

Устройство трансформаторов. Трансформатором называется статический электромагнитный преобразователь переменного тока. При помощи трансформатора в системах переменного тока удобно изменять напряжение. Несмотря на то, что трансформатор не имеет вращающихся частей, его рабочий процесс аналогичен процессам,

Рис. 3.1. Схема однофазного трансформатора: а — стержневого; б — броневого: 1 — первичная обмотка; 2 — вторичная обмотка; 3 — стержень; 4 — ярмо

протекающим в других электрических машинах, так как он основан на явлении электромагнитной индукции.

Обмотки трансформатора выполняются в виде многовитковых цилиндрических катушек. Обмотку, присоединенную к питающей сети, называют первичной, а обмотку, к которой присоединена нагрузка, — вторичной. Для обеспечения лучшей взаимоиндукции первичная и вторичная обмотки каждой фазы располагаются возможно ближе друг к другу на общем сердечнике (рис. 3.1), который представляет собой пакет, собранный из листов электротехнической стали.

Сердечники силовых трансформаторов обычно набираются (шихтуются) из прямоугольных листов электротехнической стали таким образом, чтобы слои, набранные различным образом (рис. 3.2, а и

6 ), чередовались через один (рис. 3.3, а). Листы сердечника стягиваются изолированными шпильками.

Различают два вида сердечников: стержневой (рис. 3.1, а ) и броневой (рис. 3.1, б). Сердечник броневого типа имеет разветвленную магнитную систему, благодаря чему поток в стержне 3, на котором расположена обмотка, больше, чем поток в ярме 4. Сердеч-

Рис. 3.2. Расположение листов при сборе сердечника трансформатора «внахлестку»

Рис. 3.3. Сборка магнитопровода трансформатора: а) внахлестку; б) встык: 1 — пластины Ш-образного профиля; 2 — пластины прямоугольного профиля; 3 — стержневые шпильки

ники трансформаторов малых мощностей набираются Ш-образной, П-образной или тороидальной формы. Пакет сердечника может быть собран внахлестку (рис. 3.3, а) или встык (рис. 3.3, б). Первому

Рис. 3.4. Ленточные сердечники: а — броневой; б — стержневой; в — тороидальный; г — трехфазный

способу следует отдать предпочтение, так как в этом случае в магнитной цепи образуются меньшие зазоры.

В последнее время получают распространение сердечники, изготовляемые из узкой ленты электротехнической стали (рис. 3.4). В большинстве случаев ленточные сердечники разрезаются на две половины (рис. 3.5), что позволяет надеть на них катушки. После этого сердечники стягиваются и закрепляются в стянутом виде (рис. 3.6).

Обмотки трансформатора могут располагаться концентрически одна внутри другой или в чередующемся порядке по высоте стержня магнитопровода, в последнем случае первичная и вторичная обмотки выполняются в виде дисковых катушек.

В трансформаторах малой мощности применяется многослойная обмотка, которая наматывается непрерывно вдоль всей длины стержня магнитопровода до получения заданного числа витков. В некоторых случаях обмотка выполняется из отдельных частей, намотанных на самостоятельные каркасы. Каждая такая часть обмотки представляет собой законченную конструктивную деталь, называемую галетой. Галеты надеваются на стержень магнитопровода по всей его высоте и электрически соединяются между собой тем или иным образом. На рис. 3.7 показано устройство однофазного галетного трансформатора с ленточным сердечником.

Трансформаторы могут иметь несколько вторичных обмоток (две, три и более). На рис. 3.9, б показана схема соединенных в звезду обмоток трехфазного трансформатора. Обмотка A 1 B 1 C 1 первичная, А 2 В 2 С 2 — вторичная.

По способу охлаждения трансформаторы разделяются на масляные (обмотки которых погружены в масло) и сухие (охлаждаемые воздухом).

Нашими заводами выпускаются трансформаторы мощностью, от долей вольт-ампера и напряжением от одного вольта до сотен и

Рис. 3.5. Разрезанный ленточный сердечник

Рис. 3.6. Общий вид броневого трансформатора с ленточным сердечником

Рис. 3.7. Устройство однофазного трансформатора мощностью 30 вт: 1 — каркас; 2 — первичная обмотка; 3 и 4 — вторичные обмотки; 5 — стяжной хомутик

тысяч киловольт-ампер и напряжением в сотни киловольт. В зависимости от назначения к трансформаторам предъявляются различные требования.

Силовые трансформаторы электропередач производятся для длительной службы в течение многих десятков лет. На пути от ге-

нерирующей станции до потребителя электрическая энергия обычно подвергается трех- или даже четырехкратной трансформации, поэтому к. п. д. трансформаторов для электропередачи должен быть возможно более высоким.

Маломощные трансформаторы, применяемые в схемах автоматики, могут иметь небольшой к. п. д., потому что теряемая в них

Рис. 3.8. Устройство трехфазного трансформатора мощностью 300 ква на напряжение 6 кв:

1 — термометр; 2 — ввод обмотки высокого напряжения; 3 — ввод обмотки низкого напряжения; 4 — пробка для заливки масла; 5 — маслоуказатель; 5 — пробка для заливки масла; 7 — расширитель; 8 — магнитопровод; 9 — обмотка низкого напряжения; 10 — обмотка высокого напряжения; 11 — пробка для спуска масла; 12 — бак для масла; 13 — радиаторные трубы для охлаждения масла

энергия относительно невелика. Эти трансформаторы предназначаются для значительно меньшего срока службы, так как электронная аппаратура, в схемах которой они работают, сравнительно быстро изнашивается.

Трансформаторы для радиоэлектроники должны иметь малые габариты и низкую стоимость.

Принцип действия. При прохождений электрического тока по обмоткам трансформатора создается магнитный поток. Поток, связанный с каждой обмоткой, удобно рассматривать состоящим из двух составляющих: потока взаимоиндукции и потока рассеяния.

Рис. 3.9. Магнитный поток: а — однофазного трансформатора; б — трехфазного трансформатора

Поток взаимоиндукции Ф (рис. 3.9, а) полностью сцеплен со всеми витками обмоток одной фазы. Все остальные потоки являются потоками рассеяния. На рис. 3.9, а и б показаны пути некоторых потоков рассеяния Ф S обмоток. Помимо этих путей, могут быть и другие, все они частично проходят по воздуху.

Первичную обмотку трансформатора присоединяют к питающей сети переменного тока. При разомкнутой вторичной обмотке (холостой ход) ток первичной обмотки создает поток, значительная часть которого, сцепленная с обеими обмотками, является потоком взаимоиндукции Ф.

В результате изменения во времени потока взаимоиндукции в обмотках индуктируются э. д. с. Их значения пропорциональны потокосцеплениям, которые равны произведению потока взаимоин-

дукции на число витков данной обмотки. Потокосцепление первичной обмотки определяется в основном напряжением питающей сети. Оно меньше напряжения сети на величину падения напряжения в активном и индуктивном сопротивлениях первичной обмотки.

Если вторичная обмотка трансформатора замкнута накоротко или на активно-индуктивную нагрузку, то ток вторичной обмотки стремится уменьшить вызывающий его поток и размагничивает сердечник, на котором намотана первичная обмотка. Вследствие этого индуктивность первичной обмотки уменьшает

Как определить начало и конец обмотки трансформатора: советы

Иногда случается, что есть трансформатор с большим количеством выводов без маркировки. Как его подключить, неизвестно. Если перепутать намотки или провода, оборудование может просто сгореть. Как определить начало и конец обмотки трансформатора, знают опытные электрики. Для того, чтобы установить характеристики, им достаточно мультиметра, плоской батарейки и лампы на 220 В.

Понятие начала и конца обмотки, обозначения по ГОСТ 11677-85

По сфере применения преобразователи напряжения делятся на промежуточные, измерительные, защитные, лабораторные. Электрический ток создает магнитное поле, направление которого зависит от направления тока. Необходимость определять начало и конец обмотки трансформатора возникает, если требуется проверить достоверность маркировки или определить характеристики при ее отсутствии.

Сначала немного теории. Обмотка может быть правая (с витками, расположенными по часовой стрелке) или левая (с витками, расположенными против часовой стрелки). Хотя понятия «начало» и «конец» условные, в процессе эксплуатации и при необходимости в ремонте они имеют значение, так как определяют полярность. Проверки проводятся, если нет данных производителя и паспорта.

Обмотка трансформатора

Порядок маркировки силового трансформаторного оборудования установлен ГОСТ 1167- 85. В однофазном трансформаторе начало обозначается буквой A (для высокого напряжения), a (для низкого напряжения), конец – буквой X, x. При наличии третьей катушки ее начало Am, конец Xm.

В трехфазных трансформаторах:

  • высокое напряжение – А, В, С; X, Y, Z;
  • среднее напряжение – Аm, Вm, Сm; Хm, Ym, Zm;
  • низкое напряжение – а, b, с; х, у, z.
  • При отводе нейтрали она обозначается как О, Оm и о.

Схема «в звезду» указывается как Y, в треугольник – Δ. При отводе нейтрали соединение определяется знаком Yн. Если обвивка высокого напряжения соединяются «в звезду», низкого – в треугольник, сочетание помечается как Y/Δ.

Обмотка трансформатора

Определение обмоток визуальным осмотром

Процесс определения начала и конца обмоток трансформатора следует начать с осмотра изоляции. Случается, что на ней есть схема, позволяющая определить полярность. На старых моделях указаны цифровые коды, значение которых можно узнать из справочников.

Если маркировки нет, определить полярность позволяет диаметр отрезков проводов, которые выпускаются для крепления. У провода первичной обвивки сечение меньше, если это понижающий преобразователь. У повышающего трансформатора все наоборот, но такое оборудование встречается редко.

В процессе производства преобразователей первая катушка, как правило, мотается первой, поэтому отводы располагаются ближе к стержню. Если трансформатор сетевой и небольшой, катушки располагаются на пластиковом каркасе, разделенном на 2 секции.

Отводы вторичной обвивки не обрабатываются, к отводам первой припаивается монтажный провод.

Обмотка трансформатора

Определение обмоток и отводов по сопротивлению

Визуальный осмотр дает первичную информацию, которую обязательно нужно проверять. Если отводов много, в первую очередь необходимо определять катушки. Для этого мультиметром в режиме омметра попарно прозваниваются все отводы. Если прибор показывает какое-то значение, их можно отнести к одной катушке.

Следующий шаг – определение первичной и вторичной обмотки. Если их две, мультиметр переводится в режим «прозвон», измеряется сопротивление в каждой катушке. У первичной сопротивление выше. Это явление определено особенностями конструкции. Первичная намотка создается из большого количества витков тонкого провода, вторичная – из небольшого количества витков толстого провода.

Если намоток много, их определение занимает некоторое время. Кроме мультиметра требуется бумага и ручка (для записи или зарисовки результатов измерений). Один щуп мультиметра располагается на любой вывод, вторым нужно коснуться любого другого. Если сопротивление есть, вывод из той же катушки.

Обмотка трансформатора

Если трансформатор предназначен для работы с несколькими напряжениями (110В, 127В, 220В), у первичной обмотки несколько отводов. При выдаче нескольких напряжений на второй катушке тоже несколько отводов.

После того, как определены все отводы для одной катушки, начинается поиск следующей. Один щуп мультиметра прикладывается к другому выводу, вторым проверяется сопротивление в оставшихся. Процесс продолжается, пока выводы сгруппируются по катушкам. Все значения необходимо записать. Исходя из результатов, рисуется схема преобразователя.

После разделения выводов по намоткам необходимо установить, где у каждой из них начало, где конец. Берутся 2 вывода одной намотки, помечаются (условно) как начало и конец. Измерительный прибор регулируется на предел единицы миллиампер и подключается к любой паре из другой намотки. Минус плоской батарейки 4,5 В присоединяется к отводу первой намотки, помеченному как конец. Далее нужно несколько раз плюсом батарейки коснуться условного начала и следить за тестером.

Обмотка трансформатора

При замыкании цепи между намоткой и батарейкой прибор должен реагировать. Если стрелка отклоняется к минусу, необходимо поменять полярность подключения ко второй намотке и еще раз замкнуть цепь. Теоретически стрелка должна отклониться на плюс. Если это так, то началом намотки является вывод, который соединен с плюсом прибора.

Этот способ можно применить в любой ситуации, когда возникает вопрос, как определить начало или конец обмотки трансформатора.

Дополнительное тестирование

Если имеются сомнения по поводу определения первичной и вторичной обмотки, нужно подключить к ней лампу на 220 В с любым напряжением. На первичной обмотке лампа не загорается или еле тлеет.
Другой признак правильного подключения – бесшумная работа трансформатора. Если при работе оборудование сильно вибрирует и шумит, оно подключено неверно.

Дополнительный признак – перегрев обмотки. Шум при работе не является стопроцентно верным показателем, если намотки неплотно прилегают к стержню.

Чтобы удостовериться в правильности выводов, необходимо зафиксировать катушку при помощи кусочка древесины или пластика.

Вибрацию и шум создают так же части сердечника, если они неплотно прилегают друг к другу. Их нужно стянуть скобой или болтом.

Обмотка трансформатора

Как проверить трансформатор мультиметром: прозваниваем на сопротивление

Основное назначение трансформатора – это преобразование тока и напряжения. И хотя это устройство выполняет достаточно сложные преобразования, само по себе оно имеет простую конструкцию. Это сердечник, вокруг которого намотано несколько катушек проволоки. Одна из них является вводной (носит название первичная обмотка), другие выходными (вторичные). Электрический ток подается на первичную катушку, где напряжение индуцирует магнитное поле. Последнее во вторичных обмотках образует переменный ток точно такого же напряжения и частоты, как и в обмотке входной. Если количество витков в двух катушках будет разным, то и ток на входе и выходе будет разным. Все достаточно просто. Правда, это устройство нередко выходит из строя, и его дефекты не всегда видны, поэтому у многих потребителей возникает вопрос, как проверить трансформатор мультиметром или другим прибором?

Как измерить ток и напряжение мультиметром

Необходимо отметить, что мультиметр пригодиться и в том случае, если перед вами лежит трансформатор с неизвестными параметрами. Так вот их с помощью этого прибора также можно определить. Поэтому, начиная работать с ним, надо в первую очередь разобраться с обмотками. Для этого придется все концы катушек вытянуть по отдельности и прозвонить их, выискивая тем самым парные соединения. При этом рекомендуется концы пронумеровать, определив, к какой обмотке они относятся.

Самый простой вариант – это четыре конца, по две на каждую катушку. Чаще встречаются устройства, у которых более четырех концов. Может оказаться и так, что некоторые из них «не прозваниваются», но это не значит, что в них произошел обрыв. Это могут оказаться так называемые экранирующие обмотки, которые располагаются между первичными и вторичными, они обычно соединяются с «землей».

Вот почему так важно при прозвонке обращать внимание на сопротивление. У сетевой первичной обмотки оно определяется десятками или сотнями Ом. Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток. Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю.

Проверка трансформатора

Итак, с помощью мультиметра определены обмотки. Теперь можно переходить непосредственно к вопросу, как проверить трансформатор, используя все тот же прибор. Разговор идет о дефектах. Их обычно два:

  • обрыв;
  • износ изоляции, что приводит к замыканию на другую обмотку или на корпус устройства.

Обрыв определить проще простого, то есть, проверяется каждая катушка на сопротивление. Мультиметр выставляется в режим омметра, щупами подключаются к прибору два конца. И если на дисплее показывается отсутствие сопротивления (показаний), то это гарантированно обрыв. Проверка цифровым мультиметром может быть недостоверной в том случае, если тестируется обмотка с большим количеством витков. Все дело в том, что чем больше витков, тем выше индуктивность.

Проверка напряжения аккумулятора

 

Замыкание проверяется так:

  1. Один щуп мультиметра замыкается на выводной конец обмотки.
  2. Второй щуп попеременно подсоединяется к другим концам.
  3. В случае с замыканием на корпус второй щуп соединяется с корпусом трансформатора.

Есть еще один часто встречаемый дефект – это так называемое межвитковое замыкание. Оно происходит в том случае, если изоляция двух соседних витков изнашивается. Сопротивление в этом случае у проволоки остается, поэтому в месте отсутствия изоляционного лака происходит перегрев. Обычно при этом выделяется запах гари, появляются почернения обмотки, бумаги, вздувается заливка. Мультиметром этот дефект также можно обнаружить. При этом придется узнать из справочника, какое сопротивление должно быть у обмоток данного трансформатора (будем считать, что его марка известна). Сравнивая фактический показатель со справочным, можно точно сказать, есть ли изъян или нет. Если фактический параметр отличается от справочного вполовину или больше, то это прямое подтверждение межвиткового замыкания.

Внимание! Проверяя обмотки трансформатора на сопротивление, не имеет значение, какой щуп к какому концу подсоединять. В данном случае полярность не играет никакой роли.

Измерение тока холостого хода

Если трансформатор после тестирования мультиметром оказался исправным, то специалисты рекомендуют проверить его и на такой параметр, как ток холостого хода. Обычно у исправного устройства он равен 10-15% от номинала. В данном случае под номиналом имеется в виду ток под нагрузкой.

Для примера, трансформатор марки ТПП-281. Входное его напряжение – 220 вольт, и ток холостого хода равен 0,07-0,1 А, то есть не должен превышать сто миллиампер. Перед тем как проверить трансформатор на параметр тока холостого хода, необходимо измерительный прибор перевести в режим амперметра. Обратите внимание, что при подаче электроэнергии на обмотки сила пускового тока может превосходить номинальный в несколько сот раз, поэтому измерительный прибор подключают к тестируемому устройству замкнутым накоротко.

Измерение токов холостого хода

После чего необходимо разомкнуть выводы измерительного прибора, при этом на его дисплее отразятся числа. Это и есть ток без нагрузки, то есть, холостого хода. Далее, замеряется напряжение без нагрузки на вторичных обмотках, затем под нагрузкой. Снижение напряжения на 10-15% должно привести к показателям тока, которые не превышают один ампер.

Чтобы изменить напряжение, к трансформатору необходимо подключить реостат, если такового нет, можно подключить несколько лампочек или спираль из вольфрамовой проволоки. Чтобы увеличить нагрузку, надо или увеличивать количество лампочек, или укорачивать спираль.

Заключение по теме

Перед тем как проверить трансформатор (понижающий или повышающий) мультиметром, необходимо понимать, как устроено это устройство, как оно работает, и какие нюансы необходимо учитывать, проводя проверку. В принципе, ничего сложного в данном процессе нет. Главное знать, как переключить сам измерительный прибор в режим омметра.

Как рассчитать обмотку трансформатора по сечению магнитопровода

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

В раздел : Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн ,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2 ,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2 ,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1 ,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр ,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S ,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S ,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I ,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

Таблица 1
Iобм, ma Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.

Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 — 998 витков, диаметр провода 0,33 мм
  • 0,1 — 616 витков, диаметр провода 0,41 мм
  • 0,16 — 490 витков, диаметр провода 0,59 мм
  • 0,25 — 393 витка, диаметр провода 0,77 мм
  • 0,4 — 316 витков, диаметр провода 1,04 мм
  • 0,63 — 255 витков, диаметр провода 1,56 мм
  • 1,0 — 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

Проверка трансформатора с помощью мультиметра

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Номинальное напряжение первичной обмотки. Уравнения электрического состояния первичной и вторичной обмоток трансформатора

Уравнения электрического состояния трансформатора записываются согласно второму закону Кирхгофа для схем замещения первичной и вторичной обмоток трансформатора (рис. 4.5):

где R 1 , Х 1 , R 2 , Х 2 – соответственно активные и реактивные сопротивления рассеяния первичной и вторичной обмоток трансформатора.

Номинальные данные трансформатора

К номинальным параметрам трансформатора относятся номинальные мощность S н, напряжения

и

и токи первичной и вторичной обмоток .

Номинальной мощностью трансформатора S н называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Номинальные напряжения обмоток

и

– это напряжения первичной и вторичной обмоток при холостом ходе трансформатора.

Коэффициент трансформации двухобмоточного трансформатора — это отношение номинальных напряжений обмоток высшего и низшего напряжений.


.

Номинальными токами трансформатора называются значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют ее номинальной мощности и номинальному напряжению.


,

.

Коэффициент полезного действия трансформатора.

Потери мощности в трансформаторе

Полезная мощность трансформатора


,

где φ 2 – угол сдвига фаз между U 2 и I 2 , который зависит от характера нагрузки трансформатора.

Мощность, потребляемая трансформатором из сети


.


.

Потери мощности складываются


,

где

— магнитные потери в стальном сердечнике трансформатора затрачиваемые на перемагничивание сердечника (потери на гистерезис) и вихревые токи, мощность этих потерь зависит от частоты и амплитуды магнитной индукции в магнитопроводе и материала, из которого он изготовлен; при постоянном действующем значении напряжения первичной обмотки потери стали постоянны и не зависят от нагрузки, поэтому их называютпостоянными потерями ; для уменьшения потерь на перемагничивание сердечники трансформаторов изготавливают из электротехнической стали, которая имеет узкую петлю гистерезиса; для уменьшения потерь на вихревые токи сердечники трансформаторов набирают из тонких листов электротехнической стали изолированных друг от друга лаковой пленкой;


— тепловые потери в медных обмотках, которые зависят от токов и поэтому называются переменными потерями ; потери в меди пропорциональны квадрату коэффициента нагрузки

.

Коэффициент полезного действия трансформатора


.

Режимы работы трансформатора

Режим холостого хода . Под холостым ходом трансформатора понимают такой режим работы, при котором к зажимам первичной обмотки подводится напряжение, а вторичная обмотка разомкнута, ток I 2 =0 (рис. 4.6). На входе трансформатора устанавливают напряжение, равное номинальному напряжению первичной обмотки U 1 = U 1н и измеряют U 1 , I 1x , cosφ 1x , U 2х.

По данным этого опыта определяют коэффициент трансформации k; номинальный ток холостого хода I 1хн; номинальную мощность потерь холостого хода Р 10 , равную мощности потерь в стали сердечника Р сн при номинальном напряжении.

При холостом ходе I 2 =0 и

, поэтому


и U 2x =E 2 .

Следовательно,

.

В режиме холостого хода полезная мощность трансформатора P 2 =0, поэтому мощность P 1х, потребляемая в сети, полностью идёт на возмещение потерь

P 1x = ΔP с + ΔP м 1 = U 1 I 1x cosφ 1x ,

где ΔP с – мощность потерь в стали сердечника от гистерезиса и вихревых токов; ΔP м1 – мощность потерь в меди первичной обмотки; φ 1x – угол сдвига между напряжением и током первичной обмоткиU 1 и I 1x .

Потери в меди первичной обмотки

,

тогда потери в стали легко определить, как

ΔP с =P 1 x — ΔP м1 = U 1 I 1 x cosφ 1 x —

.

Так как ток холостого хода I 1x очень мал, то мощность

незначительна и ею можно пренебречь. Следовательно, в этом случае можно принять P 1x = ΔP с. Так как напряжение первичной обмотки равно номинальному, то P 1x = ΔР сн = Р 10 . По значениям I 1x и Р 10 судят о качестве стали сердечника и качестве его сборки.

Режим короткого замыкания . Различают внезапное (аварийное) короткое замыкание трансформатора, происходящее в эксплуатационных условиях и лабораторное короткое замыкание при его испытании. Внезапное короткое замыкание происходит при коротком замыкании вторичной обмотки (z н =0, U 2 =0), когда к первичной обмотке подведено номинальное напряжение U 1н. Это сопровождается резким броском тока до значения I кз =(20-40) I 1н.

При выполнении опыта лабораторного короткого замыкания вторичная обмотка трансформатора замыкается накоротко (рис. 4.7).

На входе трансформатора устанавливается такое напряжение U 1к, при котором токи первичной и вторичной обмоток становятся равными номинальным I 1 =I 1н и I 2 =I 2н. При U 1 = U 1к измеряют U 1к, I 1к, cosφ 1к.

Номинальные токи однофазного трансформатора рассчитывают исходя из формулы

где S н – номинальная мощность трансформатора по паспортным данным.

Напряжение U 1к называют напряжением короткого замыкания, его обычно выражают в процентах от U 1н и обозначают


По данным опыта определяют напряжение короткого замыкания U 1к, активную и реактивную составляющие напряжения короткого замыкания U ка и U кр, номинальную мощность потерь короткого замыкания Р кн (мощность потерь в меди обмоток при I 1 =I 1н и I 2 = I 2н).

При коротком замыкании полезная мощность трансформатора Р 2 = 0. Следовательно, мощность, потребляемая им из сети в данном режиме, полностью идёт на возмещение потерь

P 1 x = ΔP с + ΔP м1

Р 1к = ΔР c + ΔР мн = U 1 I 1к cosφ 1к где ΔР мн – мощность потерь в меди первичной и вторичной обмоток при номинальных токах I 1н, I 2н:

Тогда потери в стали определяют, как

ΔP с =P 1к — ΔP мн = U 1 I 1 x cosφ 1 x —

.

Так как напряжение

U 1н очень мало, то и мощность потерь в стали

в данном опыте будет незначительна и ею можно пренебречь. Следовательно, в этом случае можно принять Р 1к = ΔР мн =Р кн.

Работа трансформатора под нагрузкой . Для исследования работы трансформатора в этом режиме к выходным зажимам трансформатора подключают нагрузку (рис. 4.8), состоящую из нескольких соединенных параллельно резисторов. К первичной обмотке трансформатора подводят синусоидальное напряжен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *