Как определить обмотки трехфазного двигателя – Схема обмоток трехфазных электрических двигателей и их соединение на клеммных панелях Статьи

Содержание

Определение начала и конца обмоток электродвигателя

Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

Что делать в такой ситуации? 

Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

 

 Шаг 1

Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

Вот что получилось.

 Шаг 2

Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

Как это делается?

Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

Аналогично продолжаем искать остальные две обмотки.

На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

Шаг 3

Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

Перейдем к практике.

Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

Эта же схема на моем примере.

На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

Смотрим, что получилось в нашем случае.

Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

Измерение переменного напряжения проводим на выводах V1 и V2.

Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

 

 Шаг 4

После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

Для наглядности предлагаю посмотреть видео:

P

.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Начала и концы обмоток электродвигателей — простой способ определения

Автор Фома Бахтин На чтение 2 мин. Просмотров 9.7k. Опубликовано

В большинстве случаев, обмотки трехфазных асинхронных электродвигателей скоммутированы в нужное соединение (“звезда” или “треугольник”) внутри статора и выведены в клеммную коробку в виде трех проводов, на которые подается питающее напряжение ~380 В. Соединяться обмотки двигателя могут и в клеммной коробке: в этом случае все концы обмоток выводятся в коробку виде двух разделенных пучков по три провода (“начала” и “концы”).

Наконец, выводы обмоток могут быть промаркированы металлическими бирками (С1-С2-С3 – “начала”, С4-С5-С6 “концы” обмоток). Однако, в некоторых случаях попадаются электродвигатели, в клеммную коробку которых просто выведены шесть немаркированных “концов” обмоток, не разделенных на пучки. Причиной этому может быть утеря бирок с маркировкой вследствие небрежной эксплуатации электродвигателя.

В некоторых случаях, бывает, что после ремонта его обмоток – перемотки, в клеммную коробку двигателя выводят шесть совершенно одинаковых проводов одного цвета.

В этом случае, для правильного соединения. необходимо определить “начала” и “концы” обмоток электродвигателя. Для этого, сначала нужно “найти” обмотки, т. е. определить пары проводов отдельных фазных обмоток. Прозвонить пары можно любым тестером или при помощи контрольной лампы, после чего следует промаркировать найденные фазные обмотки.

Теперь нужно определить начало и конец найденных пар фазных обмоток, существуют несколько способов определения, наиболее распространенный и достаточно надежный способ – следующий:

Две любые “найденные” фазные обмотки, соединенные последовательно включают в сеть ~220 В, а к выводам третьей подключают контрольную лампу или вольтметр, с установленным пределом измерения до 100 В. Слабый накал лампы или отклонение стрелки вольтметра будет признаком, того, что две, последовательно включенные в сеть обмотки, соединены таким образом, что, «конец» одной обмотки соединен с «началом» другой.

 

Начала и концы обмоток

Соответственно, полное отсутствие накала лампы или отклонения стрелки вольтметра – свидетельство отсутствия ЭДС в третьей обмотки, следовательно, последовательно включенные обмотки соединены своими “началами” или “концами”. Таким образом, определив “начала” и “концы” двух обмоток, выводы маркируются.

Теперь нужно определить “начало” и “конец” третьей обмотки, для этого ее соединяют последовательно с любой из обмоток, “начало” и “конец” которой уже определены и, подключив лампу или вольтметр к оставшейся обмотке, по аналогии предыдущего опыта находят “начало” и “конец”.

Как определить начало и конец фазных обмоток асинхронного двигателя


Определение начала и концов обмоток электродвигателя без внешнего питания.


Как определить начало и конец обмотки электродвигателя. Схема

Первым делом, с помощью контрольной лампы или отвертки со светодиодом нужно определить пары выводов, относящиеся к одной обмотке. Подписать их или наклеить ярлычки. Далее можно воспользоваться одним из трех способов, представленных ниже.

Более подробно о клеммной колодке и обозначениях вы можете прочитать в другой нашей статье: «Ремонт электродвигателя. Электрические неисправности».

Метод трансформации

Определение начал и концов обмоток: метод трансформации

При выборе данного способа одна из фазных обмоток замыкается через лампу накаливания или вольтметр с максимальным делением в 30-40 Вольт, а две оставшиеся соединить последовательно в сеть 220 Вольт. Лампа может светить тускло, поэтому можно взять лампочку накаливания 36-40 Ватт.

Если эти 2 обмотки соединены последовательно, то в третей обмотке возникает ЭДС, продуцируя свечение лампы или небольшое отклонение стрелки вольтметра (около 6,8 Вольт).

Если включены встречно, то общий ток не пересекает 3 обмотку и не наводит ЭДС, лампа не будет светиться, стрелка вольтметра может незначительно отклонится с погрешностью близкой к нулю.

НЕ забудьте подписать, наклеить ярлычки или одеть кембрики, чтобы не проделывать данные процедуры заново.

Метод подбора концов

Этот метод используется для двигателей 3-5 кВт. Для более мощных двигателей операция может оказаться губительной, а для маломощных это не эффективно и не дает точных результатов

При этом берется по одному концу и соединяются в общую точку, а другие выводы присоединяют к трем фазам, как в подключении звездой. Если есть в наличии вольтметр (а лучше 2-3 штуки), то подключите вольтметр на каждую обмотку. Это облегчит поиск.

Если при включении двигателя запускается как-будто с препятствием и не сразу,сильно гудит, это означает, что не все концы обмоток попали в общую точку.

Нужно поменять концы одной из обмоток («перевернуть»). Если ничего не изменилось, то предыдущую обмотку подключить обратно, и поменять уже другую обмотку. То есть в худшем случае двигатель перенесёт кратковременный стресс-тест 2 раза, тут уж как повезёт.

Главное правило: Нельзя включать более чем на 2-3 секунды, чтобы избежать серьезных последствий. Удаётся определить и за более краткое время, проверено на личном опыте.

Вольтметрами

Определение начал и концов обмоток вольтметрами

Один из безопасных методов. Потребуется соединить все обмотки двигателя последовательно (конец 1 обмотки на начало 2 обмотки, конец 2 обмотки на начало 3) и подключить к напряжению 220 Вольт. Вольтметрами измеряем напряжение на каждой из обмоток.

Если соединены правильно, то напряжение на всех будет равно. Если на одной из них выше, то надо поменять местами на ней концы и повторить операцию.

Сопротивление статора должно быть не ниже 3 МОм, ротора — 2 МОм после полной перемотки, а после частичной 1 и 0,5 МОм соответственно.

Источник: уникальная статья на нашем сайте electricity220.ru

Определение начала и конца обмоток трехфазного двигателя.

Иногда встречаются трехфазные электродвигатели, у которых выводы обмоток не маркированы, как правило, после перемотки, или при слишком «бережной» эксплуатации. Чтобы определить, начала и концы обмоток, необходимо:
— при помощи омметра, определить обмотки, отметить три пары – три обмотки;
— на одной из обмоток пометить один провод и подключить к нему минус батареи;
— к другой обмотке подключить стрелочный вольтметр;
— коснуться вторым проводом первой обмотки плюса батареи, и посмотреть, в какую сторону отклонятся стрелка. Необходимо, чтобы она отклонялась вперед;
— убедившись в этом, пометить вывод, подключенный к плюсу вольтметра;
— аналогично проверить и пометить вывод на третьей обмотке.
Отмеченные выводы можно считать либо началами, либо концами, и соответственно подключать двигатель к трехфазной цепи.

Определяем количество выводов обмоток статора электродвигателя и их назначение
Электродвигатель подключается к источнику питания выводами его внутренних обмоток. Таких обмоток в трёхфазном двигателе — три. Следовательно, выводов всего должно быть шесть. Но из-под крышки идёт, как правило, семь проводов, один из них «корпусной», присоединён к корпусу электродвигателя. В схеме питания он не участвует, но необходим для безопасной работы.
Нередко случается, что число выводов, выходящих из корпуса двигателя всего три. В этом случае остальные три вывода «спрятаны» внутри корпуса и, чтобы добраться к ним, необходимо аккуратно разобрать электродвигатель, сняв ротор. Найдя и разъединив недостающие три провода (соединённые между собой в схеме «звезда»), следует удлинить каждый из них и вывести их все наружу.
Иногда провода внутри корпуса электродвигателя соединены не звездой (три в одной точке), а треугольником. В этом случае, задача трудней, но та же самая: разъединить все (три пары) соединений проводов между собой, удлинить концы и вывести их наружу. Правда, в нашем случае делать этого не стоит, поскольку все способы схем подключения приведены здесь для электродвигателей, обмотки которых включены по схеме треугольника.
Обычно на крышке корпуса электродвигателя установлена коробка, в которой имеется коммутационная колодка с перемычками, по их конфигурации можно легко проследить схему соединения обмоток.

Как определить по какой схеме соединены концы обмоток электродвигателя?
Если визуально соединение обмоток не просматриваются (соединения выполнены внутри корпуса электродвигателя), то придется определять тип соединений (звезда или треугольник) косвенно. Теоретически, сделать это очень просто.
Схема соединений обмоток электродвигателя «звездой» выполняется соединением трёх одноименных (например, концов) выводов между собой в одной точке. Поэтому, если подключить к любым двум выводам (из трёх!) электродвигателя генератор переменного тока, то трансформации напряжения на вторичную обмотку, в качестве которой для измерений используется третья обмотка, не произойдёт и вольтметр, подключенный, как показано на Рис. 1, покажет отсутствие напряжения или напряжение, близкое к нулю вольт.

Если обмотки электродвигателя соединены по схеме треугольника (Рис.2), то вольтметр, при аналогично составленной схеме измерений, зафиксирует присутствие напряжения. Произойдёт это потому, что обмотки на схеме «треугольника» соединены друг с другом разноимёнными выводами (начала с концами).

На практике вместо генератора переменного тока можно использовать обычный полуторавольтный элемент питания (например 316), кратковременно подключая его к выводам электродвигателя. Измерения напряжений в этом случае следует производить на минимальном пределе шкалы вольтметра. Если электродвигатель большой мощности, то прибор следует установить для измерения тока (микроампер).
В крайних случаях, соблюдая все меры предосторожности, вместо генератора переменного тока можно использовать сетевое напряжение 220 вольт, подключая источник к обмоткам последовательно с лампой мощностью 60 ватт.

Как определить начала и концы выводов обмоток электродвигателя?
После, того как мы научились определять способ соединения обмоток электродвигателя, вызвонить и промаркировать концы обмоток совсем простое дело! Вначале нужно вызвонить три пары выводов обмоток. Сопротивления обмоток мощных электродвигателей очень малы и составляют десятые доли Ома, а маломощных электродвигателей — единицы Ом. Седьмой «корпусной» провод вызванивается относительно корпуса. Остальные 6 проводов ни в коем случае не должны иметь контакта с корпусом. Сопротивление между проводами обмоток и корпусом составляет сотни мегаом.
Итак, в результате замеров, мы имеем три пары выводов обмоток и один провод «корпусной». Теперь произвольно промаркируем выводы (концы) одной любой обмотки буквами «Н» и «К» — начало и конец. Далее, также произвольно, промаркируем выводы другой любой обмотки буквами «Н» и «К» — начало и конец.

Следующий шаг — соединим две промаркированные обмотки между собой последовательно выводами «Н» и «К», как показано на Рис 3. К оставшимся свободным концам соединённых обмоток («Н» и «К») подключим амперметр, установленный на малом пределе измерений (мА или даже мкА). К выводам немаркированной обмотки подсоединим кратковременно источник постоянного тока — батарею 1.5 вольта (элемент 316). Амперметр должен показать всплеск напряжения. Если этого не произошло, то соедините маркированные обмотки между собой выводами «Н» и «Н», а микроамперметр подключите к свободным их концам («К» и «К»). Если амперметр зафиксирует всплеск тока, то поменяйте местами надписи «Н» и «К» на одной любой обмотке.

Может случиться, что амперметр не обнаруживает всплеска напряжения ни в каком случае, или всплеск этот очень слабый. Такой признак указывает на неисправность электродвигателя — межвитковое замыкание какой либо обмотки.
Далее, разъединяем обмотки, отключаем источник питания и вновь соединяем между собой последовательно две обмотки. Причём, любой вывод немаркированной обмотки соединим с выводом «Н» любой маркированной обмотки. К оставшимся свободным концам, последовательно соединённых между собой обмоток (вывод «К» и вывод немаркированный) подключим микроамперметр, установленный на малом пределе измерений. Подсоединяем кратковременно источник питания к выводам оставшейся маркированной обмотки. Прибор должен показать всплеск напряжения.
Если этого не происходит, то меняем в схеме местами выводы немаркированной обмотки. Вновь кратковременно подсоединяем источник питания. Если микроамперметр зафиксирует всплеск напряжения, то обозначаем (маркируем) тот вывод немаркированной обмотки, который был соединён с выводом «Н» буквой «К», а другой вывод буквой «Н». Всё!

При измерениях тока или напряжения нежелательно пользоваться цифровым мультиметром, поскольку существующая задержка измерения (индикации) в цифровых приборах может не успевать зафиксировать кратковременные всплески тока (напряжения).


Соединение обмоток трёхфазного электродвигателя по схеме треугольника
Нет ничего проще соединения уже промаркированных выводов электродвигателя в схему треугольника! Соединяем последовательно (в кольцо) обмотки в таком порядке: начало одной («Н») с концом другой («К»). Получим три вывода электродвигателя, обмотки которого соединены по схеме «треугольника». К ним добавим ещё один провод «корпусной» для подсоединения его к внешнему контуру заземления

 

Классический способ включения трехфазного электродвигателя в однофазную сеть
Самая простая и самая распространённая схема подключения трёхфазного электродвигателя к однофазному источнику питания 220 вольт приведена на рисунке 1.

Существуют методики расчёта величины ёмкости фазосдвигающего конденсатора C1, но большого значения придавать им не стоит, поскольку эти расчёты приводят практически к тем же результатам, которые получаются при грубом расчёте ёмкости по следующей простой формуле.

С= 10P

Где С — ёмкость фазосдвигающего конденсатора в микрофарадах, а P — паспортная мощность электродвигателя в киловаттах. Величина ёмкости сильно зависит от режима работы электродвигателя, в частности от его нагруженности.
В случаях, когда электродвигатель работает при переменных нагрузках, приходится в процессе работы, параллельно с постоянно подключенным фазосдвигающим конденсатором, включать дополнительные. Приведённая выше расчётная формула работает для слабонагруженных электродвигателей. При значительных нагрузках ёмкость фазосдвигающего конденсатора следует увеличивать вдвое от расчётной.

Что произойдёт, если величина ёмкости конденсатора выбрана неправильно?
Если величина ёмкости фазосдвигающего конденсатора выбрана больше, чем требуется при данных конкретных условиях работы электродвигателя, то двигатель будет быстро перегреваться. Если величина ёмкости выбрана меньше требуемой, то мощность электродвигатель будет занижена в сравнении с оптимальной. Отсюда вывод: при подборе фазосдвигающего конденсатора следует начинать выбор величины емкости от минимальной, постепенно увеличивая её до того значения, когда электродвигатель сможет обеспечить механическую работу привода.

Почему рабочее напряжение фазосдвигающего конденсатора должно быть не ниже 400 вольт?
Причин, по которым рабочее напряжение фазосдвигающего конденсатора должно быть не ниже 400 вольт, три. Первая причина та, что амплитудное значение переменного напряжения в бытовой сети 220 вольт составляет почти триста вольт (220х1,3). Почему так? Как мы помним из школьного курса физики, напряжение бытовой сети переменного тока 220 вольт является действующим напряжением.

По определению: действующим значением переменного тока является такой постоянный ток, который за то же время и на той же нагрузке вызывает такую же мощность, как и переменный ток.
А поскольку у переменного тока существуют экстремумы — точки с максимальным и минимальным значениями, то они, конечно, будут отличаться от некоторого среднего (действующего) значения. Фазосдвигающий конденсатор должен гарантированно выдерживать эти участки повышенного отрицательного и положительного напряжений.
Вторая причина в том, что рабочее напряжение на конденсаторах, как правило, указывается для постоянного тока. Но переменное напряжение меняет свою полярность во времени от + 220 вольт до — 220 вольт. А, значит, конденсатор в некоторых условиях может зарядиться до почти удвоенного значения сети, до 400 вольт.
Третья причина — фазосдвигающий конденсатор устанавливается в цепи обмоток статора, обладающих большой индуктивностью. При работе электродвигателя, особенно при его пуске и остановке, на обмотках высвобождается большая электродвижущая сила самоиндукции (ЭДС), в виде всплесков повышенного напряжения 300-600 вольт, приложенная именно к конденсатору.

Как подобрать оптимальную ёмкость фазосдвигающего конденсатора?
Выбор оптимальной величины ёмкости фазосдвигающего конденсатора следует выполнять в реальных условиях работы электродвигателя, подключив к нему электропривод и подсоединив эффективную схему пуска. Вся процедура сводится к подбору фазосдвигающего конденсатора такой ёмкости, чтобы величины токов, втекающих в каждый из трёх отводов обмоток электродвигателя, минимально отличалась друг от друга. Порядок подбора тот, который был указан выше — от меньшей ёмкости к большей. Подбирая оптимальную ёмкость конденсатора, контролируйте и учитывайте нагрев корпуса электродвигателя!

Почему нельзя перегревать электродвигатель?
В процессе работы любой электродвигатель неизбежно нагревается. Температура корпуса работающего двигателя без ущерба эксплуатационным характеристикам вполне может достигать 70°C. Чтобы предотвратить перегрев, корпус электродвигателя выполнен ребристым с целью увеличения поверхности, отводящей тепло. Эффективность теплоотвода загрязнённого корпуса электродвигателя резко снижается.
Что происходит при перегреве электродвигателя? Изолирующее лаковое покрытие проводов обмотки высыхает (или даже обугливается) и отслаивается. В результате оголённые соседние провода замыкают между собой. Происходит межвитковое короткое замыкание обмотки электродвигателя.
Межвитковое замыкание, в зависимости от величины замыкаемого участка, приводит либо к последующему быстрому перегреву электродвигателя, либо к мгновенному расплаву (замыканию или перегоранию) проводов обмотки. Практически, электродвигатель с перемкнутым небольшим участком обмотки (несколько соседних витков), перегреваясь и теряя мощность, может ещё поработать. Но всякий новый цикл — перегрева обмоток при работе и остывания при выключении, ухудшает состояние изоляции обмоток и приводит к тому же результату — отслаиванию изоляции, замыканию витков обмоток и выходу электродвигателя из строя.
Кроме того, при перегреве электродвигателя перегреваются подшипники, в которых вращается ротор. Перегревание смазки подшипников приводит к снижению её эффективности и еще большему перегреву подшипника. В результате, сильно разогретая смазка частично испаряется, частично вытекает из корпуса подшипника и подшипник начинает заклинивать. Аварийная принудительная остановка электродвигателя во время работы (без его обесточивания) также приводит к быстрому и недопустимому перегреву его обмоток и даже их возгоранию и выходу электродвигателя из строя.

 


Как изменить направление вращения ротора электродвигателя?
Так же, как и при работе электродвигателя от трёхфазного источника, при питании от однофазной сети напряжением 220 вольт, ротор электродвигателя приводится в движение вращающимся магнитным полем, направление вращения которого зависит от порядка чередования фаз. При работе электродвигателя один конец фазосдвигающего конденсатора всегда подключен к свободной точке соединения обмоток, а второй конец к проводу питающей сети — фазному или нулевому.

Направление вращения ротора электродвигателя зависит от того, куда подключен тот конец фазосдвигающего конденсатора, который соединён с проводом сетевого питания. Попросту, чтобы изменить направление вращения ротора электродвигателя, следует этот вывод конденсатора отключить от одного провода питающей сети и подключить к другому проводу питающей сети. Другими словами, перекоммутировать вывод с клеммы А электродвигателя на клемму В.

 

Схема пуска трехфазного электродвигателя при работе в однофазной сети
Трёхфазный электродвигатель нормально работает при подключении к однофазному источнику питания переменного тока с напряжением бытовой сети 220 вольт по схемамприведённым на рисунках 1 и 2. Однако, запустить под нагрузкой его не удастся. Для того, чтобы обеспечить вращение ротора электродвигателя при пуске нужна специальная схема. Согласно этой схеме, при пуске, параллельно фазосдвигающему конденсатору (С1) подключается дополнительный «пусковой» конденсатор С2 с примерно такой же величиной ёмкости, как и у фазосдвигающего. Такая схема приведена ниже на Рис.3.

При пуске, после включения переключателя SA, требуется вручную нажать кнопку SB и удерживать её нажатой несколько секунд, пока обороты ротора электродвигателя достигнут 70% от номинальных.

 


Подключение электродвигателя к сети через контактор, кнопки «пуск» и «стоп»
При возникновении неисправностей, в аварийных ситуациях и при пропадании напряжения питающей сети электродвигатель должен выключаться быстро и легко. Кроме того, при возобновлении питания, во избежание поражения людей электрическим током, предотвращения поломок электропривода и самого электродвигателя, электродвигатель не должен автоматически запускаться повторно.
Всем этим требованиям отвечает схема включения электродвигателя контактором К1. Двигатель запускается нажатием кнопки «Пуск». Последующее выключение осуществляется нажатием кнопки «Стоп». Такая схема приведена ниже на Рис.4.

Для включения электродвигателя нажимается кнопка SA1 «Пуск». Напряжение сети 220 вольт поступает на обмотку контактора К1. Сердечник контактора втягивается, замыкая контакты К1.1 и К1.2. Контакты кнопки «Пуск» самоблокируются контактами К1.1, а контактами К1.2 к сети подключаются обмотки двигателя.
При нажатии кнопки «Стоп» цепь обмотки контактора К1 размыкается, обмотка обесточивается. Контакты К1.1 размыкаются, кнопка «Пуск» разблокируется. Размыкаются контакты К1.2 и снимается напряжение с обмоток электродвигателя. Двигатель выключается. Состояние схемы не изменяется и после отпускания кнопки «Стоп». Электродвигатель остается в выключенном состоянии.

Схема автоматического запуска трёхфазного электродвигателя
На схеме Рис. 4, так же, как и на предыдущих схемах, приходится вручную нажимать кнопку SA3, подключая пусковой конденсатор С2, и ожидать, когда ротор электродвигателя наберёт обороты, что не очень удобно. Вместо ручной кнопки можно воспользоваться схемой пуска, в которой применяется реле задержки, с заданным временем задержки включения (после подачи на него напряжения питания) 3-10 секунд. Схема замены ручной кнопки автоматом приведена ниже на Рис.5.

При включении электродвигателя нажимается кнопка SA1 «Пуск». Напряжение сети 220 вольт приходит на обмотку контактора К1. Сердечник контактора втягивается, замыкая контакты К1.1 и К1.2. Контактами К1.1, как и в предыдущей схеме, самоблокируется кнопка «Пуск» (перемыкаются её контакты), а контактами К1.2 к сети подключаются обмотки двигателя. В это время через нормально замкнутые контакты реле задержки КТ1.1 параллельно фазосдвигающему конденсатору С1 подключен пусковой конденсатор С2.
Одновременно с подачей напряжения на контактор К1, напряжение питания подаётся на реле задержки КТ. Начинается отсчёт времени задержки размыкания нормально замкнутых контактов КТ1.1 реле КТ. По истечению нескольких секунд задержки, реле КТ срабатывает, размыкая контакты КТ1.1. Пусковая ёмкость С2 отсоединяется от фазосдвигающей ёмкости С1. Процесс пуска завершён.

 

Подключение пускового конденсатора через мощные контакты
Подключение пускового конденсатора параллельно фазосдвигающему конденсатору сопровождается сильным искрением контактов. Маломощные контакты реле задержки К1, как показано в предыдущей схеме, не смогут длительно обеспечивать работу электродвигателя в пусковом режиме. Они попросту залипнут или выгорят. Поэтому целесообразно управлять подключением пускового конденсатора контактами мощного реле (контактора). Такая схема изображена на Рис.6.

При нажатии кнопки «Пуск» точно так же напряжение подаётся на реле задержки КТ1. Но пусковой конденсатор С2 при пуске сразу же подключится к фазосдвигающему конденсатору контактами дополнительного контактора К2, обмотка которого в свою очередь подключится при пуске к сети 220 вольт через нормально замкнутые контакты реле задержки КТ1.
Когда закончится задержка времени реле КТ1, оно включится и его контакты КТ1.1 разомкнутся, разъединяя цепь обмотки контактора К2 от источника 220 вольт. Обмотка контактора К2 обесточится, его контакты К2.1 разомкнутся и отсоединят от фазосдвигающего конденсатора С1 пусковой конденсатор С2, завершая, тем самым, процесс пуска.

Токовая защита трёхфазного электродвигателя
В приведённых выше схемах обмотка электродвигателя оказывается постоянно подключенной к сети 220 вольт, что создаёт опасность поражения людей электрическим током и не соответствует требованиям техники безопасности. По завершению работ электроинструмент должен быть полностью обесточен. Опасное для жизни напряжение 220 вольт не должно присутствовать ни на одной из частей электрооборудования.
Кроме того, необходима защита электродвигателя от серьёзных повреждений при коротких замыканиях схемы или токоведущих компонентов конструкции электродвигателя. Для защиты внешней электропроводки от критических и аварийных токов также необходима токовая защита. Такую защиту с успехом выполнит трёхфазный токовый автомат. Схема подключения электродвигателя через токовый автомат изображена на Рис.7.

На схеме подключения трёхфазного электродвигателя к бытовой сети 220 вольт, изображенной на рис. 7, питание сети поступает через трёхфазный токовый автомат SA3 16А. В автомате используются две группы контактов (из трёх). Автомат выполняет также функции простого выключателя питания.

Индикация режимов работы электродвигателя
При поиске неисправностей и просто для того, чтобы знать состояние электродвигателя питающей сети необходима хотя бы простейшая индикация. Такая индикация на приведённой ниже схеме (Рис.8) выполнена на одном двухцветном светодиоде (цвета — синий и красный).

Когда включен токовый автомат SA3, горит синий светодиод VL1.1. При пуске и работе электродвигателя загорается красный светодиод VL1.2 (правый по схеме), а синий светодиод гаснет. Резисторы R1 и R2, мощностью по 1 ватту, ограничивают ток через светодиоды на уровне 4 миллиампер. Диоды VD1 и VD2 защищают светодиоды от пробоя обратным напряжением 220 вольт.

 



Дата добавления: 2017-01-08; просмотров: 15093;


Похожие статьи:

Прозвонка обмоток трехфазного электродвигателя — Морской флот

Прозвонка обмоток трехфазного электродвигателя

При поломке бытового электроприбора приходится проверять по отдельности все его компоненты.

И если тестирование датчиков затруднений не вызывает — обычно достаточно проверить сопротивление, то с двигателем все не так просто.

Этот узел устроен куда сложнее, и чтобы выявить его неисправность, требуется знать методику проверки. Далее расскажем о том, как прозвонить электродвигатель мультиметром.

Какие электромоторы можно проверить мультиметром

Если в двигателе нет механических повреждений, что обычно определяется визуально, то его неисправность в большинстве случаев обусловлена следующим:

  • произошел обрыв внутренней цепи;
  • случилось замыкание, то есть появился контакт там, где его не должно быть.

Оба дефекта выявляются мультиметром. Сложности возникают только при проверке двигателей постоянного тока: у большинства из них обмотка имеет почти нулевое сопротивление и его приходится замерять косвенным методом, для чего понадобится собрать несложную схему.

  1. Трехфазные асинхронные двигатели работают и при однофазном питании.
  2. Асинхронные одно- и двухфазные с короткозамкнутым ротором конденсаторные. К этому типу относится большинство двигателей бытовых приборов.
  3. Асинхронные с фазным ротором. Такой ротор имеет трехфазную обмотку. Двигатели с фазным ротором применяются там, где требуется регулировка частоты вращения и понижение пускового тока: в крановом оборудовании, станках и пр.
  4. Коллекторные. Применяются в ручном электроинструменте.
  5. Асинхронные трехфазные с короткозамкнутым ротором.

Популярность моторов последнего типа объясняется рядом достоинств:

  • простота конструкции;
  • прочность;
  • надежность;
  • низкая стоимость;
  • неприхотливость (не требует ухода).

Ремонт асинхронных двигателей

Из асинхронных моторов наиболее распространены двух- и трехфазные. Тестируются они по-разному. Рассмотрим каждую разновидность подробно.

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм. Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Прозвонка обмоток трехфазного электродвигателя

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).
  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Двухфазный электрический двигатель

В статоре имеются две обмотки:

Замеряют мультиметром сопротивление каждой и сравнивают: в норме сопротивление пусковой вдвое выше, чем у рабочей.

Также двигатель проверяется на предмет замыкания между токоведущими частями и корпусом — по той же схеме, что и трехфазный.

Проверка коллекторных электромоторов

В месте прилегания щеток у коллекторных двигателей имеются секции или ламели.

Прозвонка обмоток трехфазного электродвигателяПорядок проверки:

  1. Мультиметром определяют сопротивление между соседними ламелями. В норме значения для каждой пары одинаковы. При обрыве (бесконечно высокое сопротивление) или коротком замыкании (мизерное сопротивление) меняют таходатчик двигателя.
  2. Замеряется сопротивление между коллектором и корпусом ротора: в норме оно бесконечно высокое.
  3. Прозванивают обмотки статора на целостность.
  4. Проверяют сопротивление между корпусом статора и токоведущими частями: в норме — бесконечно высокое.

Далее определяют сопротивление катушки ротора. Оно крайне мало, потому замерить напрямую мультиметром нельзя — велика погрешность. Применяют косвенный метод:

  1. Последовательно с катушкой соединяют высокоточный резистор малого номинала (около 20 Ом). Высокоточными называют резисторы с допуском не более 0,05%. В цветовой маркировке у них присутствует серая полоса (не путать с серебряной).
  2. Цепь «катушка — резистор» подключается к источнику постоянного тока напряжением 12 В или выше. Чем больше напряжение, тем точнее измерения. В качестве источника на 12 В применяют автомобильный аккумулятор или компьютерный блок питания.
  3. Снимают мультиметром падение напряжения на катушке. Здесь важно соблюдать полярность: щуп, включенный в порт COM (отрицательный потенциал), коротят со стороны «минуса» или массы; второй (подсоединяется в разъем «V/Ω») — со стороны «плюса».

Напряжение, мультиметр измеряет намного точнее сопротивления — с верностью до 0,1 мВ. На этом и основан косвенный метод.

Затем рассчитывают сопротивление катушки по формуле: Rкат = Uкат * Rрез / (12 – Uкат), где

  • Rкат — сопротивление катушки, Ом;
  • Uкат — падение напряжения на катушке, В;
  • Rрез — сопротивление резистора, Ом;
  • 12 — напряжение источника питания, В.

Проверка двигателей постоянного тока

  1. Проверка сопротивления обмоток: у таких моторов они имеют низкое сопротивление, потому его также определяют косвенно — по напряжению и силе тока. Потребуется два мультиметра: один используется как вольтметр, другой одновременно — как амперметр. На обмотку подается питание от батареи напряжением 4 – 6 В. Сопротивление рассчитывают по формуле: R = U / I.
  2. Замер сопротивления обмоток якоря и между пластинами коллектора. В норме мультиметр отображает равные значения.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Запитывается датчик через два крайних вывода. Если коснуться их щупами мультиметра в режиме омметра, в норме он отобразит мизерное сопротивление.

Проверка третьего вывода возможна только в рабочем режиме, когда присутствует магнитное поле. Попытка прозвонить датчик на ходу, то есть при включенной стиральной машине, может привести к травме. Рабочий режим безопаснее сымитировать, демонтировав двигатель и запитав датчик отдельно. Импульсы на выходе датчика формируют путем поворота ротора.

Мультиметр позволяет выявить пусть не все, но многие поломки электродвигателя. В основном при помощи прозвонки выявляются обрывы и короткие замыкания. Полную диагностику проводят на специальных стендах, для измерения сопротивления изоляции требуется мегомметр.

Как проверить электродвигатель мультиметром: пошаговая аннотация и советы

Нередко появляется вопрос, как проверить электродвигатель после выхода из строя, также после ремонта, если он не вертится. Для этого существует несколько методов: наружный осмотр, особый щит, «прозвонка» обмоток мультиметром. Последний метод более экономный и универсальный, но он дает верные результаты не всегда. У большинства постоянников сопротивление обмотки фактически равно нулю. Потому будет нужно дополнительная схема для измерений.

Конструкция мотора

Чтоб стремительно освоить, как проверить электродвигатель, необходимо чётко представлять для себя устройство главных деталей. КАК ПРОВЕРИТЬ Как прозвонить тестером трехфазный двигатель в. В базе всех моторов лежит две части конструкции: ротор и статор. 1-ая составляющая всегда крутится под действием электрического поля, 2-ая недвижная и как раз создаёт этот вихревой поток.

Чтоб осознавать, как проверить электродвигатель, будет нужно хотя бы раз его разобрать своими руками. У разных производителей конструктив отличается, но принцип диагностики электрической части пока остаётся постоянным. Меж ротором и статором находится зазор, в каком может накапливаться маленькая железная стружка при разгерметизации корпуса.

Подшипники при износе могут давать завышенные характеристики тока, вследствие чего защиту будет выбивать. Как проверить двигатель мультиметром. Разбираясь с вопросом, как проверить электродвигатель, не следует забывать о механических повреждениях подвижных частей и борно, где находятся контакты.

Трудности диагностики

Перед тем как проверить электродвигатель мультиметром, следует провести наружный осмотр корпуса, охлаждающей крыльчатки, проверить температуру прикосновением руки к железным поверхностям. Подогретый корпус свидетельствует о завышенном токе из-за заморочек с механической частью.

Проанализировать будет нужно состояние внутренностей борно, проверить затяжку болтов либо гаек. При ненадежном соединении токоведущих частей выход из строя обмоток может произойти в хоть какой момент. Поверхность мотора должна быть очищена от загрязнений, а снутри отсутствовать влага.

Если рассматривать вопрос, как проверить электродвигатель мультиметром, то необходимо учесть несколько аспектов:

  • Не считая мультиметра пригодятся клещи для бесконтактного замера тока, проходящего через провод.
  • Мультиметром можно измерить только некординально высочайшие сопротивления. Для проверки состояния изоляции (где сопротивление — от кОм до МОм) употребляют мегоомметр.
  • Чтоб сделать выводы о годности мотора, будет нужно отсоединить механические узлы (редуктор, насос и другие) или необходимо быть уверенным в полной исправности этих компонент.

Коммутирующая аппаратура

Для запуска вращения обмоток употребляется плата или реле. Чтоб начать разбираться с вопросом, как проверить обмотку электродвигателя, необходимо расцепить подводящую цепь. Через неё могут «звониться» элементы платы управления, что занесет ошибку в измерения. При откинутых проводах можно измерить поступающее напряжение, чтоб быть уверенным в исправности электрической схемы.

В движках домашней техники нередко применяется конструкция с пусковой обмоткой, сопротивление которой превосходит значение рабочей индуктивности. При замерах учитывают тот факт, что могут находиться токосъемные щётки. В месте контакта с ротором нередко возникает нагар, очистив его, необходимо вернуть надежность прилегания щеток во время вращения.

В стиральных машинках используются компактные движки с одной рабочей обмоткой. Вся сущность диагностики сводится к замерам её сопротивления. Ток замеряется пореже, но по снятию черт на различных оборотах можно сделать выводы об исправности мотора.

Подробности диагностики электрической части

Как прозвонить электродвигатель

Трёхфазный асинхронный электродвигатель, проверка тестером. На практике достаточно проверить электродви.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем расположение концов обмоток трехфазного двигателя, определяем, правильно ли они подключены.

Рассмотрим, как проверить исправность электродвигателя. Асинхронный трёхфазный двигатель Электрический счетчик трехфазный Как проверить. Трехфазный что двигатель не подключен к Как проверить изоляцию обмоток показано. В первую очередь осматривают контактные соединения. Если в них нет видимых повреждений, то вскрывают место соединения проводов с двигателем и отключают их. Желательно определить тип мотора. Если он коллекторный, то имеются ламели или секции в месте прилегания щеток.

Требуется измерить омметром сопротивление между каждыми соседними ламелями. Оно должно быть одинаковым во всех случаях. Если наблюдаются короткозамкнутые секции либо их обрыв, то таходатчик мотора требуется заменить. Если же «прозванивать» саму катушку ротора, то 12 В мультиметра может быть недостаточно. Чтобы точно оценить состояние обмотки, потребуется внешний источник питания. Он может быть блоком от ПК или аккумулятором.

Для измерения малых значений сопротивления последовательно с измеряемой обмоткой устанавливается резистор известным номиналом. Здравствуйте уважаемые форумчане, подскажите пожалуйста, как правильно мегометром проверить трехфазный эл.двигатель на предмет КЗ и сопротивления изоляции обмоток и каковы их нормы. Достаточно выбрать сопротивление около 20 Ом. После подачи питания от внешнего источника замеряют падение напряжения на обмотке и резисторе. Результирующее значение получается из формулы R1 = U1R2/U2, где R2 — резистор, U2 — падение напряжения на нем.

Диагностика асинхронных моторов

На промышленных стиральных машинах могут использоваться мощные трехфазные электродвигатели. Ротор у них чаще выполняется в виде наборных пластин с магнитным сердечником. Фазные обмотки чаще неподвижные и расположены в статоре.Мультиметром такой мотор проверить намного проще. Омметром нужно прозвонить сопротивление каждой обмотки. Оно должно быть одинаковым. Не забывают проверять пробой на корпус замером сопротивления на корпус. Однако изоляцию надежнее проверять мегаомметром.

Отвечая на вопрос, как проверить обмотки электродвигателя тестером, нужно отметить, что «перекоса фаз» у асинхронного мотора не допускается. Разность сопротивления не должна превышать одного ома. В противном случае ток на меньшей индуктивности растет, что приводит к подгоранию обмотки.

Если мотор постоянного тока

У таких двигателей сопротивление обмотки очень мало и измерения проводятся при помощи двух приборов. Одновременно снимают показания с амперметра и вольтметра. В качестве источника выбирают батарею напряжением 4-6 В. Как проверить лямбда зонд тестером или. Результирующее значение определяется по формуле R = U/I.

Проверяют все имеющиеся сопротивления обмоток якоря, замеряют значения между пластинами коллектора. Все показатели мультиметра должны быть равными. По этому сравнению можно сделать выводы, как проверить якорь электродвигателя.

Разность в показаниях сопротивления между соседними пластинами коллектора допускается не более 10 %. Как проверить лямбда зонд тестером с 4 проводами. Когда в конструктиве предусмотрена уравнительная обмотка, работа мотора будет нормальной при разности значений в 30 %. Показания мультиметра не всегда дают точный прогноз о состоянии двигателя стиральной машины. Дополнительно часто требуется анализ работы мотора на поверочном стенде.

Проверка мотора прямого привода

Если рассматривать вопрос, как проверить электродвигатель стиральной машины, то следует учитывать вид подсоединения барабана к валу. От этого зависит тип конструкции электрической части. Мультиметром прозванивают обмотки и делают выводы об их целостности.

Проверку работоспособности проводят уже после замены датчика Холла. Именно он выходит из строя в большинстве случаев. После прозвонки обмоток при их целостности опытные мастера рекомендуют подключить мотор напрямую в сеть 220 В. В результате наблюдают равномерное вращение, чтобы сменить его направление, можно перевоткнуть вилку в розетке, повернув её другими контактами.

Этот простой метод помогает выявить общую неисправность. Однако наличие вращения не гарантирует нормальную работу на всех режимах, отличающихся при отжиме и полоскании.

Последовательность диагностики

Первым делом рекомендуется сразу обращать внимание на состояние щеток, проводки. Нагар на токоведущих частях говорит о ненормальных режимах работы двигателя. Сами токосъемники должны быть ровными, без сколов и трещин. Царапины также приводят к искрению, что для обмоток двигателя губительно.

У стиральных машинок часто ротор перекашивается, из-за этого происходит скол или поломка ламелей. Управляющая плата постоянно отслеживает положение ротора через датчик Холла или тахогенератор, добавляя или уменьшая приложенное на рабочую обмотку напряжение. Отсюда появляется сильный шум при вращении, искрение, нарушение режимов работы при отжиме.

Такое явление можно заметить только при отжиме, а режим стирки проходит стабильно. Как проверить лямбда зонд тестером мультиметром. Диагностика работы машинки не всегда проходит через анализ состояния электрической части. Механика может быть причиной неправильной работы. Без нагрузки двигатель может крутиться вполне равномерно и стабильно набирать обороты.

Если всё же выбивает защиту?

После проделанных замеров при плавающих неисправностях не рекомендуется подключаться к сети для проверки. разместите двигатель на твердой поверхности и положите Как проверить обмотку. Можно вывести мотор из строя окончательно, не подозревая о проблеме. Как проверить обмотку электродвигателя мультиметром, подскажет мастер сервисного центра по телефону. Под его руководством будет проще определить тип конструкции и порядок диагностики неисправной стиральной машины.

Однако часто и опытные мастера не справляются с ремонтом сложных случаев, когда неисправность плавающая. Для проверки в сервисе требуется использовать стиральную машинку, решающее значение имеют механические узлы. Перекос вала двигателя является частным случаем проблем с вращением барабана.

Прозвонка обмоток трехфазного электродвигателяНа первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

Прозвонка обмоток трехфазного электродвигателя

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Прозвонка обмоток трехфазного электродвигателя

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

Прозвонка обмоток трехфазного электродвигателя

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Прозвонка обмоток трехфазного электродвигателя

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

Прозвонка обмоток трехфазного электродвигателя

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Прозвонка обмоток трехфазного электродвигателя

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Как найти начала и концы фаз обмотки электродвигателя?

Первый способ

Нам понадобится обычная плоская батарейка на 4,5 В и комбинированный измерительный прибор (тестер) или миллиамперметр постоянного тока. Обмотки мы предварительно вызвонили омметром. У нас имеется несколько пар проводов, но нам надо определить, где у этих пар начало обмотки, а где конец.

Принципиальная схема соединения «треугольник»

Принципиальная схема соединения «треугольник».

Берем любую пару проводов, принадлежащих одной из обмоток. Условно помечаем один из выводов обмотки как начало (Н), а второй как конец (К). Подключаем тестер на пределе единицы или десятки миллиампер постоянного тока к любой другой паре проводов, принадлежащей другой обмотке.

Минус батарейки присоединяем к нашему условному концу (К) первой обмотки. Касаясь несколько раз начала первой обмотки плюсом батарейки, наблюдаем за показаниями тестера. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка».

Если стрелка прибора отклоняется в минус, то переключаем полярность присоединения прибора ко второй обмотке и снова несколько раз замыкаем батарейку на первую обмотку.

Теперь отклонения прибора в момент замыкания должны быть в положительную сторону. Тот вывод обмотки, который соединен с плюсом тестера, будет началом второй обмотки, а с минусом – концом. Таким же образом определяем начала всех других обмоток.

Второй способ

Схема определения начал и концов фаз обмотки

Схема определения начал и концов фаз обмотки.

Две любые «найденные» фазные обмотки соединяем последовательно и к получившимся свободным концам подключаем 220 В, а к оставшейся третьей обмотке подключаем  контрольную лампу и кратковременно подаем 220 В. Запоминаем, как у нас горит при этом лампа.

Теперь у обмоток, которые у нас соединены последовательно, меняем подключение, то есть концы второй меняем местами и опять подаем питание. Лампочка должна засветиться по-другому, или ярче, или слабее. Если загорелась ярче, то обмотки у нас подключились последовательно, в порядке начало — конец — начало — конец. Так их и подписываем. Мы уже знаем четко две обмотки.

Теперь к неизвестной подключаем любую из известных и опять уже к этой паре подводим 220 В, а к свободной — лампу. Опять включаем питание. Теперь сразу будет видно по яркости накала, как включены обмотки. Наносим соответствующие надписи.

В приведенном примере можно вместо контрольной лампочки применить вольтметр и ориентироваться по отклонению стрелки прибора. Теперь, в зависимости от схемы подключения, нужно подключить обмотки. Для соединения звездой любые три (хоть начало, хоть концы) соединяем вместе, а к оставшимся трем будет подаваться питание 380 В. Для переключения в треугольник надо будет сделать еще другие манипуляции.

Определение начала и конца обмоток электродвигателя

Бывают ситуации, когда маркировка выводов статорной обмотки электродвигателя отсутствует или нарушена, а для правильного подключения асинхронного электродвигателя в сеть необходимо правильно определить начало статорной обмотки и её конец.

Давайте определим принадлежность выводов, к соответствующим обмоткам воспользовавшись для этого мультиметром.  Перед началом измерения переключаем мультиметр на 200 Ом и одним из щупов дотрагиваемся до любого из шести выводов, а вторым щупом ищем конец этой обмотки. Когда вы найдете искомый проводник, показания на дисплее мультиметра изменятся на отличное от ноля. В нашем случае это 14,7 Ом.

Вы нашли первую обмотку статора электродвигателя. Предлагаю отметить выводы отрезками кембрика (или любым удобным вам способом) с маркировкой U1 иU2.

Аналогичным способом находим оставшиеся две обмотки.

Вторую обмотку отмечаем кембриком (или любым удобным вам способом) V1 и V2, а третью W1 и W2 соответственно.

В итоге мы нашли три обмотки и от маркировали их выводы в произвольном порядке.

Теперь перейдем к следующему шагу в котором мы определим начало статорной обмотки и её конец, но сначала немного теории.

В электротехнике две обмотки, которые находятся на одном сердечнике возможно подключить согласованно или встречно.  Таким образом, при согласованном подключении двух обмоток возникает ЭДС (электродвижущая сила), складывающаяся из сумм ЭДС (электродвижущей силы) первой и второй обмотоки. То есть процесс электромагнитной индукции возникающей в первых двух обмотках наведет в расположенной рядом обмотке ЭДС, то есть напряжение.

Если же вы подключите две обмотки встречно, получается что ЭДС каждой из обмоток будет направлена друг на друга и её сумма с этих двух встречных обмоток будет равнятся нулю. Поэтому в расположенной рядом обмотке электродвижущая сила не наведётся или наведется только малой величины.

Теперь выполним все выше сказанное на практике.

Выводы U1 и U2 первой обмотки соединяем с выводами V1 и V2 второй обмотки, представленным ниже способом. Помните, что обозначения, нанесенные на выводы достаточно условные.

Выводы обмоток U2 и V1 соединяем между собой, а на выводы U1 и V2 подаем напряжение 220 Вольт. 

После чего производим измерение напряжения на выводах обмотки W1 и W2, в первом случае получилось 0,15 Вольт. Полученное напряжение очень маленькое, поэтому можно сделать вывод, что обмотки подключены встречно. Отключаем напряжение и меняем выводы V1 и V2 местами.

После повторного измерения получается 6,8 Вольт. Значит обмотки подключены правильно, а маркировка их верна (рис.1).

Аналогичным способом ищем начало и конец у обмотки с выводами W1 и W2, все подключения выполняем по схеме приведенной ниже (рис.2).

Если при измерении напряжения вы получили 6,8 Вольт значит маркировка и подключение обмоток выполнено правильно.

Далее соедините обмотки вашего электродвигателя по схеме звезда или треугольник и провести испытания без нагрузки. В данном случае обмотки электродвигателя соединены по схеме звезда.

После пуска электродвигателя необходимо обратить внимание на сторону вращения вала и при необходимости поменять фазы местами для её изменения.

Материалы, близкие по теме:

Отправить ответ

avatar
  Подписаться  
Уведомление о