Как определить напряжение стабилитрона – Простой способ проверки стабилитронов (диодов Зенера) на их напряжение стабилизации и целостность, используя вольтметр и простой блок питания.

Содержание

Как узнать напряжение стабилизации стабилитрона

Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.

Сейчас промышленностью выпускается невероятное количество различных электронных компонентов и зачастую при сборке радиоэлектронного изделия возникает множество затруднений по определению номинала компонента. Особенно в этом плане «отличилась» отечественная промышленность — в частности стабилитроны в стеклянном корпусе имеют, порой, очень похожую маркировку, отличить которую не представляется возможным. Хороший пример это стабилитроны КС211 и КС175 — иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с чёрной полосой. Их также можно спутать, например, со стабилитроном Д814. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.

Для определения напряжения стабилизации понадобится простая схема:

Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1-10 мА, поэтому сопротивление резистора выбрано 2.2 кОм. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление возможно придётся уменьшить — для этого в схеме предусмотрена перемычка. Для проверки маломощных стабилитронов перемычку нужно ставить в верхнее положение, для проверки мощных — в нижнее.

Оптимальное напряжение питания — 25В.

Если стабилитрон подсоединён правильно — анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно — какое-то очень малое напряжение около нуля. Если при одном подключении мультиметр показывает минимум напряжения, а при другом — максимальное, равное напряжению источника питания, значит испытуемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания. Если вы уверены что это стабилитрон — нужно увеличить напряжение источника до предполагаемой величины и проверить ещё раз.

Если вольтметр показывает минимальное напряжение, либо напряжение питания при любом подключении — значит данный стабилитрон или диод неисправен.

Если напряжение стабилизации показывается при любом подключении — значит это двусторонний стабилитрон.

Аналогичным способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что бывает очень важно. Проверяя светодиоды необходимо помнить, что некоторые светодиоды очень чувствительны к завышенному обратному напряжению, поэтому напряжение источника при их проверке желательно выставлять не выше 9В.

В радиолюбительской практике бывает накапливается много мелких стеклянных диодов, у которых не всегда понятные обозначения, среди них могут попадаться и стабилитроны. Для отыскания таковых и предназначен подобный тестер, а так же для выявления более точных стабилизирующих данных проверяемого стабилитрона. Смысл этого прибора — в проверке неизвестных стабилитронов, которые могут быть на напряжение выше 30 вольт, а значит обычным блоком питания или вот таким тестером их испытать не получится.

Схема стабилитрономера

Схема была срисована с другой, взятой из интернета, упрощена и дорисована под цифровой индикатор 0-100 В из Китая, с обозначением выводов так как не многие понимают как его тут подключать. Конечно, если они есть в продаже и недорого стоят, то почему бы и не использовать, получается компактное и функциональное полезное для радиолюбителя устройство которое порой очень необходимо.

За основу тестера был взят корпус от БП сигнализации МИП-Р, можно взять любой другой — подходящий по размерам. На передней панели планируется закрепить платку с панелькой для микросхем, и ещё одну платку для проверки cmd стабилитронов. Поскольку само устройство получилось очень компактным, встроить его можно куда удобно, размеры будут зависеть только от применяемого аккумулятора.

Для прибора разработана маленькая платка, на которой установлены все детали. Трансформатор взят готовый от ЗУ сотового телефона, вторичная повышающая обмотка на нём отмечена с самым большим сопротивлением.

Выше смотрите на результат проверки работы устройства, тест стабилитрона на 5,1 В.

Корпус снаружи пока ещё не закончен, продумываю что и как на нём удобно установить для проверки различных стабилитронов. Внутри осталось место, так что думаю что бы ещё полезное туда установить с питанием от 4 В. Сборка и испытание схемы — Igoran.

Обсудить статью ПРОВЕРКА СТАБИЛИТРОНОВ НА БОЛЬШОЕ НАПРЯЖЕНИЕ

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю

опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки

3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мулитиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Простой способ проверки стабилитронов (диодов Зенера) на их напряжение стабилизации и целостность, используя вольтметр и простой блок питания.

 

 

 

 

В этой статье предлагаю Вам разобраться с вопросом – как можно достаточно простым методом проверять стабилитроны (которые также называются диодами Зенера) на их напряжение стабилизации, а также на пригодность вообще. Напомню, что стабилитрон представляет собой обычный полупроводник, у которого есть некоторое свое стабильное напряжение, что присутствует между катодом и анодом, при обратном включении к источнику постоянного напряжения, при электрическом пробое этого полупроводника.

 

Видео по этой теме:

 

 

 

 

 

Если взять самый обычный диод, то при обратном включении между анодом и катодом будет величина постоянного напряжения равная напряжению источника этого питания. При таком подключении диод подобен обычному диэлектрику, который через себя не пропускает ток (точнее ток есть, называемый током утечки, но он очень мал).

 

Прямое и обратное подключение диода в электрическую цепь

 

И это при условии, что данный диод рассчитан на обратное напряжение больше, чем на него подается. В противном случае (если подаваемое напряжение будет больше того, на какое рассчитан диод) этот диод просто пробьется, выйдя из строя. При этом скорее всего он либо начнет электрический ток проводить в обе стороны, как обычный проводник, либо станет диэлектриком, ток проводить уже вовсе не будет.

 

обозначение стабилитрона, где у него анод и катодУ стабилитрона же, в отличие от обычного диода, имеется более низкое обратное напряжение, при котором этот стабилитрон пробивается. И этот пробой не выводит стабилитрон из строя, а напряжение на нем стабилизируется на определенном уровне. У разных стабилитронов это напряжение стабилизации может отличаться, и оно соответствует конкретной маркировке этих стабилитронов. Естественно, когда у стабилитрона возникает пробой, то через него начинает течь ток. И чем больше мы будем подавать напряжение на этот стабилитрон, тем больше будет сила тока, протекающая через него. Напряжение же будет меняться очень незначительно.

 

При прямом же включении, что у обычного диода, что у стабилитрона, будет происходить практически одно и тоже. А именно, до напряжения где-то 0,6 вольт полупроводник будет закрыт. Но, как только подаваемое напряжение превысит это значение, то через полупроводник начнет течь электрический ток. Чем больше ток будет протекать через полупроводник, тем больше будет падение напряжения на нем, в пределах где-то от 0,6, до 1,2 вольта. К примеру, у диодов Шоттки падение напряжения при прямом включении имеет минимальное значение – от 0,2 В. Если при проверке, хоть диода, хоть стабилитрона, при прямом включении мы не увидим этого падения напряжения (0,6 В), то скорей всего диод пробит и уже не пригоден к работе.

 

какой блок питания нужен для проверки стабилитроновНу и теперь ближе к теме о простом способе проверки стабилитронов на их целостность и напряжение стабилизации. Тут все просто. Нам нужен обычный источник постоянного напряжения, у которого это самое напряжение должно быть больше напряжения стабилизации проверяемого стабилитрона. Иначе при более низком напряжении стабилитрон просто не пробьется и не выйдет на свой рабочий номинальный режим стабилизации. Нужно учесть, что мощность блока питания может быть маленькой, поскольку в режиме стабилизации стабилитрон через себя пропускает незначительные токи (до 100 мА).

 

модуля повышающего преобразователя напряжения для схемы проверки стабилитроновЕсли Вы планируете таким способом проверять стабилитроны с достаточно большим напряжением стабилизации, то и блок питания нужен с соответствующим постоянным напряжением. Хотя не всегда под рукой можно найти такие БП с относительно большим выходным напряжением. Простым выходом из такой ситуации будет использования обычного дешевого повышающего напряжение DC-DC модуля. На вход этого модуля можно подавать любое стандартное напряжение, ну а на его выходе уже можно получать более высокое напряжение. Причем, как я заметил ранее, сила тока при проверки будет крайне незначительна.

 

простой вольтметр для схемы проверки стабилитроновКроме блока питания нам еще понадобится обычный вольтметр постоянного тока, которым мы и будем оценивать величину напряжения стабилизации диода Зенера (стабилитрона). Подойдет абсолютно любой вольтметр, лишь он мог показывать постоянное напряжение от 0 до 50 и более. Подойдет самый простой мультиметр.

 

Ну, и еще немаловажная деталь, это обычный постоянный резистор с сопротивлением где-то около 2 килоом, хотя можно от 1 кОм до 10 кОм.  Роль этого сопротивления очень простая. Он ограничивает силу тока, который будет протекать через проверяемый стабилитрон. Что предотвратит полупроводник от случайного выхода из строя в случае, когда подаваемое напряжение будет большое, а напряжение стабилитрона будет мало. Сопротивление же ограничивать силу тока при любых типах стабилитрона, тем самым обезопасит процесс измерения и проверки. По мощности подойдет самый обычный резистор на 0,125 Вт.

 

Ну, и вот сама схема, которая и позволяет делать проверку стабилитронов:

 

Простой способ проверки стабилитронов (диодов Зенера) на их напряжение стабилизации

 

Тут все просто. Плюс блока питания подключается через резистор к катоду стабилитрона, что соответствует обратному включению, а минус БП подается на анод проверяемого полупроводника. Щупы вольтметра прикладываются параллельно стабилитрону. На экране вольтметра мы увидим то самое напряжение стабилизации, на которое и рассчитан данный стабилитрон. Когда же мы перевернем стабилитрон и подсоединяем его прямым включением, то есть плюс БП к аноду полупроводника, а минус БП к катоду стабилитрона. То на вольтметре мы должны увидеть значение около 0,6 вольт, что свидетельствует о полной работоспособности данного полупроводника. Прямым включением, этим способом, можно проверять и обычные диоды. При обратном подключении диода вольтметр должен показывать напряжение блока питания, поскольку диод будет полностью закрыт.

 

ps smail

P.S. Если у Вас нет под рукой блока питания на нужное напряжение, допустим 50 вольт. А также нет возможности приобрести модуль, повышающий постоянное напряжение. То с этой ситуации легко выйти таким образом. Чтобы получить высокое напряжение даже от одной батарейки на 1,5 вольт, можно воспользоваться обычной катушкой (витков так на 100 и более), намотанной на куске феррита. При кратковременной подаче напряжения от батарейки на эту катушку на ее выводах будет возникать ЭДС самоиндукции, которая в разы может превышать напряжение батарейки. Добавив простой диод и конденсатор вы легко получите самодельный увеличитель постоянного напряжения. Разве что его придется при проверке стабилитронов периодически нажимать переключатель этой схемы.

Как определить номинал стабилитрона

Всех приветствую на станицах сайта посвящённых электроники, сегодня изучим способ, как определить номинал стабилитрона. Это статья немного дополняет предыдущую, не менее важную страницу. Для определения рабочего напряжения стабилитрона, маркировка которого не вида, затёрта или просто очень мелко написана, задача выполнимая любому начинающему ремонтнику электроники.

Как узнать напряжение стабилизации неизвестного стабилитрона

Перебирая скопившиеся радиоэлементы, я набрал внушительное количество стабилитронов, некоторые были без опознавательных знаков. Подобная незадача и подтолкнула, написаю данной инструкции. Для внесения порядка на рабочем столе. Сегодня рассмотрим пару способом определения номинала стабилитрона.

Устройство для определения напряжения стабилизации неизвестного стабилитрона

Схема данного устройства, очень проста в использовании и изготовлении, сейчас поясню принцип её работы.
Для этого нам необходимо, блок питания с регулировкой напряжения и его индикации, если такого нет в наличии, ниже рассмотрим способ проверки без него. Плюс ко всему необходим ограничительный резистор номиналом от 1 до 2 кОм и соединительные провода.

На фото все видно наглядно, к блоку питания с регулировкой последовательно подключается ограничительный резистор соответствующего номинала, далее подключаем сам испытуемый стабилитрон, катодом к плюсу. После, замыкаем цепь на отрицательный вывод блока питания. Параллельно неизвестному стабилитрону, подключаем мультиметр в режиме измерения напряжения.

Будет очень хорошо, если ваш лабораторный блок питания имеет встроенную защиту от короткого замыкания, в некоторых случаях это, спасёт вас от лишнего ремонта. Начинаем потихоньку, добавлять выходное напряжение, и смотрим за изменением на дисплее мультиметра.

Для определения напряжения стабилитрона, мы возьмём 1N4742A очень распространённая модель. Для любопытных, его аналогом является С12 5Т, они стабилизируют 12 вольт. Подключаем всё согласно схеме и регулируем источник питания, мой имеет придел 14 вольт. Всё работает отлично и небольшими погрешностями приборов, но в целом всё нормально.


Подобным способом можно проверить любой стабилитрон, насколько вам позволит выбранный источник питания. Способ действительно хороший и простой.

Как узнать, насколько стабилитрон без регулируемого блока питания

Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или зарядку от видео регистратора, зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.

Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.

Стабилитроны

Добавлено 12 июня 2017 в 02:10

Сохранить или поделиться

Если мы подключим диод и резистор последовательно с источником постоянного напряжения так, чтобы диод был смещен в прямом направлении (как показано на рисунке ниже (a)), падение напряжения на диоде будет оставаться достаточно постоянным в широком диапазоне напряжений источника питания.

В соответствии с диодным уравнением Шокли, ток через прямо-смещенный PN переход пропорционален e, возведенному в степень прямого падения напряжения. Поскольку это экспоненциальная функция, ток растет довольно быстро при умеренном увеличении падения напряжения. Другой способ рассмотреть это: сказать что напряжение, падающее на прямо-смещенном диоде, слабо изменяется при больших изменениях тока, протекающего через диод. На схеме, показанной на рисунке ниже (a), ток ограничен напряжением источника питания, последовательно включенным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольта. Если напряжение источника питания будет увеличено, падение напряжения на резисторе увеличится почти на такое же значение, а падение напряжения на диоде увеличится очень слабо. И наоборот, уменьшение напряжения источника питания приведет к почти равному уменьшению падения напряжения на резисторе и небольшому уменьшению падения напряжения на диоде. Одним словом, мы могли бы обобщить это поведение, сказав, что диод стабилизирует падение напряжения на уровне примерно 0,7 вольта.

Управление напряжением – это очень полезное свойство диода. Предположим, что мы собрали какую-то схему, которая не допускает изменений напряжения источника питания, но которую необходимо запитать от батареи гальванических элементов, напряжение которых меняется в течение всего срока службы. Мы могли бы собрать схему, как показано на рисунке, и подключить схему, требующую стабилизированного напряжения, к диоду, где она получит неизменные 0,7 вольта.

Это, безусловно, сработает, но для большинства практических схем любого типа для правильной работы требуется напряжение питания свыше 0,7 вольта. Одним из способов увеличения уровня нашего стабилизированного напряжения может быть последовательное соединение нескольких диодов, поскольку падение напряжения на каждом отдельном диоде, равное 0,7 вольта, увеличит итоговое значение на эту величину. Например, если бы у нас было десять последовательно включенных диодов, стабилизированное напряжение было бы в десять раз больше 0,7 вольта, то есть 7 вольт (рисунок ниже (b)).

Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.

До тех пор, пока напряжение не упадет ниже 7 вольт, на 10-диодном «стеке» будет падать примерно 7 вольт.

Если требуются большие стабилизированные напряжения, мы можем либо использовать большее количество диодов, включенных последовательно, (по моему мнению, не самый изящный способ), либо попробовать принципиально другой подход. Мы знаем, что прямое напряжение диода является довольно постоянной величиной в широком диапазоне условий, также как и обратное напряжение пробоя, которое, как правило, значительно больше прямого напряжения. Если мы поменяем полярность диода в нашей схеме однодиодного стабилизатора и увеличим напряжение источника питания до того момента, когда произойдет «пробой» диода (диод больше не может противостоять приложенному к нему напряжению обратного смещения), диод будет стабилизировать напряжение аналогичным образом в этой точке пробоя, не позволяя ему увеличиваться дальше, как показано на рисунке ниже.

Пробой обратно смещенного Si диода при напряжении примерно 100 ВПробой обратно смещенного Si диода при напряжении примерно 100 В.

К сожалению, когда обыкновенные выпрямительные диоды «пробиваются», они обычно разрушаются. Тем не менее, можно создать специальный тип диода, который может обрабатывать пробой без полного разрушения. Этот тип диода называется стабилитроном, и его условное графическое обозначение приведено на рисунке ниже.

Условное графическое обозначение стабилитронаУсловное графическое обозначение стабилитрона

При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: они обладают прямым падением напряжения, которое соответствует «диодному уравнению» и составляет примерно 0,7 вольта. В режиме обратного смещения они не проводят ток до тех пор, пока приложенное напряжение не достигнет или не превысит так называемого напряжения стабилизации, и в этот момент стабилитрон способен проводить значительный ток и при этом будет пытаться ограничить напряжение, падающее на нем, до значения напряжения стабилизации. Пока мощность, рассеиваемая этим обратным током, не превышает тепловых ограничений стабилитрона, стабилитрон не будет поврежден.

Стабилитроны изготавливаются с напряжениями стабилизации в диапазоне от нескольких вольт до сотен вольт. Это напряжение стабилизации незначительно изменяется в зависимости от температуры, и его погрешность может составлять от 5 до 10 процентов от характеристик, указанных производителем. Однако, эта стабильность и точность обычно достаточны для использования стабилитрона в качестве стабилизатора напряжения в общей схеме питания, показанной на рисунке ниже.

Схема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 ВСхема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 В

Пожалуйста, обратите внимание на направление включения стабилитрона на приведенной выше схеме: стабилитрон смещен в обратном направлении, и это сделано преднамеренно. Если бы мы включили стабилитрон «обычным» способом, чтобы он был смещен в прямом направлении, то на нем падало бы только 0,7 вольта, как на обычном выпрямительном диоде. Если мы хотим использовать свойства обратного пробоя стабилитрона, то мы должны использовать его в режиме обратного смещения. Пока напряжение питание остается выше напряжения стабилизации (12,6 вольт в этом примере), напряжение, падающее на стабилитроне, останется примерно на уровне 12,6 вольт.

Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Слишком высокая температура разрушит стабилитрон, и поскольку он и понижает напряжение, и проводит ток, то он выделяет тепло в соответствии с законом Джоуля (P = IU). Поэтому необходимо быть осторожным при проектировании схемы стабилизатора напряжения, чтобы не превышалась номинальная мощность рассеивания стабилитрона. Интересно отметить, что когда стабилитроны выходят из строя из-за высокой мощности рассеивания, они обычно замыкаются накоротко, а не разрываются. Диод, вышедший из строя по такой же причине, легко обнаружить: на нем падение напряжения практически равно нулю, как на куске провода.

Рассмотрим схему стабилизатора напряжения на стабилитроне математически, определяя все напряжения, токи и рассеиваемые мощности. Взяв ту же схему, что была показана ранее, мы выполним вычисления, принимая, что напряжение стабилитрона равно 12,6 вольт, напряжение питания равно 45 вольт, а сопротивнение последовательно включенного резистора равно 1000 Ом (мы будет считать, что напряжение стабилитрона составляет ровно 12,6 вольт, чтобы избежать необходимости оценивать все значения как «приблизительные» на рисунке (a) ниже).

Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, падение напряжения на резисторе будет составлять 32,4 вольта (45 вольт – 12,6 вольт = 32,4 вольта). 32,4 вольта, падающие на 1000 Ом, дают в цепи ток 32,4 мА (рисунок (b) ниже).

(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.

Мощность рассчитывается путем умножения тока на напряжение (P=IU), поэтому мы можем легко рассчитать рассеивание мощности как для резистора, так и для стабилитрона:

\[P_{резистор} = (32,4 мА)(32,4 В)\]

\[P_{резистор} = 1,0498 Вт\]

\[P_{стабилитрон} = (32,4 мА)(12,6 В)\]

\[P_{стабилитрон} = 408,24 мВт\]

Для этой схемы было бы достаточно стабилитрона с номинальной мощностью 0,5 ватта и резистора с мощностью рассеивания 1,5 или 2 ватта.

Если чрезмерная рассеиваемая мощность вредна, то почему бы не спроектировать схему с наименьшим возможным количеством рассеивания? Почему бы просто не установить резистор с очень высоким сопротивлением, тем самым сильно ограничивая ток и сохраняя показатели рассеивания очень низкими? Возьмем эту же схему, например, с резистором 100 кОм, вместо резистора 1 кОм. Обратите внимание, что и напряжение питания, и напряжение стабилитрона не изменились:

Стабилизатор напряжения на стабилитроне с резистором 100 кОмСтабилизатор напряжения на стабилитроне с резистором 100 кОм

При 1/100 от значения тока, который был у нас ранее (324 мкА, вместо 32,4 мА), оба значения рассеиваемой мощности должны уменьшиться в 100 раз:

\[P_{резистор} = (324 мкА)(32,4 В)\]

\[P_{резистор} = 10,498 мВт\]

\[P_{стабилитрон} = (324 мкА)(12,6 В)\]

\[P_{стабилитрон} = 4,0824 мВт\]

Кажется идеальным, не так ли? Меньшая рассеиваемая мощность означает более низкую рабочую температуру и для стабилитрона, и для резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления уменьшает уровни рассеиваемой мощности в схеме, но к сожалению, создает другую проблему. Помните, что цель схемы стабилизатора – обеспечить стабильное напряжение для другой схемы. Другими словами, мы в конечном итоге собираемся запитать что-то напряжением 12,6 вольт, и это что-то будет обладать собственным потреблением тока. Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону, на рисунке ниже.

Стабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 ОмСтабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 Ом

Если 12,6 вольт поддерживаются при нагрузке 500 Ом, нагрузка будет потреблять ток 25,2 мА. Для того, чтобы «понижающий» резистор снизил напряжение на 32,4 вольта (снижение напряжения источника питания 45 вольт до 12,6 вольт на стабилитроне), он все равно должен проводить ток 32,4 мА. Это приводит к тому, что через стабилитрон будет протекать ток 7,2 мА.

Теперь рассмотрим нашу «энергосберегающую» схему стабилизатора с понижающим резистором 100 кОм, подключив к ней такую же нагрузку 500 Ом. Предполагается, что она должна поддерживать на нагрузке 12,6 вольт, как и предыдущая схема. Однако, как мы увидим, она не может выполнить эту задачу (рисунок ниже).

Нестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 ОмНестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 Ом

При большом номинале понижающего резистора на нагрузке 500 Ом будет напряжение около 224 мВ, что намного меньше ожидаемого значения 12,6 вольт! Почему так? Если бы у нас на самом деле было на нагрузке 12,6 вольт, то был бы и ток 25,2 мА, как и раньше. Этот ток нагрузки должен был бы пройти черезе последовательный понижающий резистор, как это было раньше, но с новым (намного большим!) понижающим резистором падение напряжения на этом резисторе с протекающим через него током 25,2 мА составило бы 2 520 вольт! Поскольку у нас, очевидно, нет такого большого напряжения, подаваемого с аккумулятора, то этого не может быть.

Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

Нестабилизатор с удаленным стабилитрономНестабилизатор с удаленным стабилитроном

И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно, обеспечивая общее сопротивление схемы 100,5 кОм. При полном напряжении 45 В и общем сопротивлении 100,5 кОм, закон Ома (I=U/R) говорит нам, что ток составит 447,76 мкА. Рассчитав падения напряжения на обоих резисторах (U=IR), мы получим 44,776 вольта и 224 мВ, соответственно. Если бы в этот момент мы вернули стабилитрон, он также «увидел» 224 мВ на нем, будучи включенным параллельно сопротивлению нагрузки. Это намного ниже напряжения пробоя стабилитрона, и поэтому он не будет «пробит» и не будет проводить ток. В этом отношении, при низком напряжении стабилитрон не будет работать, даже если он будет смещен в прямом направлении. По крайней мере, на него должно поступать 12,6 вольт, чтобы его «активировать».

Аналитическая методика удаления стабилитрона из схемы и наблюдения наличия или отсутствия достаточного напряжения для его проводимости является обоснованной. Только то, что стабилитрон включен в схему, не гарантирует, что полное напряжение стабилитрона всегда дойдет до него! Помните, что стабилитроны работают, ограничивая напряжение до некоторого максимального уровня; они не могут компенсировать недостаток напряжения.

Таким образом, любая схема стабилизатора на стабилитроне будет работать до тех пор, пока сопротивление нагрузки будет равно или больше некоторого минимального значения. Если сопротивление нагрузки слишком низкое, это приведет к слишком большому току, что приведет к слишком большому напряжению на понижающем резисторе, что оставит на стабилитроне напряжение недостаточное, чтобы заставить его проводить ток. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение на нагрузке будет ниже точки регулирования.

Однако, наша схема стабилизатора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это подходящее значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в цепи из двух последовательно включенных резисторов (без стабилитрона), введя известные значения общего напряжения и сопротивления понижающего резистора, и рассчитав для ожидаемого на нагрузке напряжения 12,6 вольт:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 1

При 45 вольтах общего напряжения и 12,6 вольтах на нагрузке, мы должны получить 32,4 вольта на понижающем резисторе Rпониж:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 2

При 32,4 вольтах на понижающем резисторе и его сопротивлении 100 кОм ток, протекающий через него, составит 324 мкА:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 3

При последовательном включении ток, протекающий через все компоненты, одинаков:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 4

Расчитать сопротивление нагрузки теперь довольно просто согласно закону Ома (R=U/I), что даст нам 38,889 кОм:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 5

Таким образом, если сопротивление нагрузки составляет точно 38,889 кОм, на нем будет 12,6 вольт и со стабилитроном, и без него. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению на нагрузке менее 12,6 вольт и со стабилитроном, и без него. При использовании стабилитрона напряжение на нагрузке будет стабилизироваться до 12,6 вольт для любого сопротивления нагрузки более 38,889 кОм.

При изначальном значении 1 кОм понижающего резистора схема нашего стабилизатора смогла бы адекватно стабилизировать напряжение даже при сопротивлении нагрузки до 500 Ом. То, что мы видим, представляет собой компромисс между рассеиванием мощности и допустимым сопротивлением нагрузки. Более высокое сопротивление понижающего резистора дает нам меньшее рассеивание мощности за счет повышения минимально допустимого значения сопротивления нагрузки. Если мы хотим стабилизировать напряжение для низких значений сопротивления нагрузки, схема должна быть подготовлена для работы с рассеиванием большой мощности.

Стабилитроны регулируют напряжение, действуя как дополнительные нагрузки, потребляя в зависимости от необходимости большую или меньшую величину тока, чтобы обеспечить постоянное падение напряжения на нагрузке. Это аналогично регулированию скорости автомобиля путем торможения, а не изменением положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть построены так, чтобы управлять всей мощностью двигателя тогда, как условия вождения не требуют этого. Несмотря на эту фундаментальную неэффективность, схемы стабилизаторов напряжения на стабилитронах широко используются из-за своей простоты. В мощных приложениях, где неэффективность неприемлема, применяются другие методы управления напряжением. Но даже тогда небольшие схемы на стабилитронах часто используются для обеспечения «опорного» напряжения для управления более эффективной схемой, контролирующей основную мощность.

Стабилитроны изготавливаются для стандартных номиналов напряжений, перечисленных в таблице ниже. Таблица «Основные напряжения стабилитронов» перечисляет основные напряжения для компонентов мощностью 0,5 и 1,3 Вт. Ватты соответствуют мощности, которую компонент может рассеять без повреждения.

Основные напряжения стабилитронов
0,5 Вт      
2,4 В3,0 В3,3 В3,6 В3,9 В4,3 В4,7 В
5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В9,1 В
10 В11 В12 В13 В15 В16 В18 В
20 В24 В27 В30 В   
1,3 Вт      
4,7 В5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В
9,1 В10 В11 В12 В13 В15 В16 В
18 В20 В22 В24 В27 В30 В33 В
36 В39 В43 В47 В51 В56 В62 В
68 В75 В100 В200 В   

Ограничитель напряжения на стабилитронах: схема ограничителя, которая отсекает пики сигнала примерно на уровне напряжения стабилизации стабилитронов. Схема, показанная на рисунке ниже, имеет два стабилитрона, соединенных последовательно, но направленных противоположно друг другу, чтобы симметрично ограничивать сигнал примерно на уровне напряжения стабилизации. Резистор ограничивает потребляемый стабилитронами ток до безопасного значения.

Ограничитель напряжения на стабилитронахОграничитель напряжения на стабилитронах
*SPICE 03445.eps
D1 4 0 diode
D2 4 2 diode
R1 2 1 1.0k
V1 1 0 SIN(0 20 1k)
.model diode d bv=10
.tran 0.001m 2m
.end

Напряжения пробоя стабилитрона устанавливается на уровень 10 В с помощью параметра bv=10 модели диода в списке соединений spice, приведенном выше. Это заставляет стабилитроны ограничивать напряжение на уровне около 10 В. Встречно включенные стабилитроны ограничивают оба пика. Для положительного полупериода, верхний стабилитрон смещен в обратном направлении, пробивающем стабилитрон при напряжении 10 В. На нижнем стабилитроне падает примерно 0,7 В, так как он смещен в прямом направлении. Таким образом, более точный уровень отсечки составляет 10 + 0,7 = 10,7 В. Аналогично отсечка при отрицательном полупериоде происходит на уровне –10,7 В. Рисунок ниже показывает уровень отсечки немного больше ±10 В.

Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)

Подведем итоги:

  • Стабилитроны предназначен для работы в режиме обратного смещения, обеспечивая относительно низкий, стабильный уровень пробоя, то есть напряжение стабилизации, при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать в качестве стабилизатора напряжения, действуя в качестве вспомогательной нагрузки, потребляющей больший ток от источник, если его напряжение слишком большое, или меньший ток, если напряжение слишком низкое.

Оригинал статьи:

Теги

LTspiceДиодМоделированиеСтабилитронУчебникЭлектроника

Сохранить или поделиться

Стабилитрон | Volt-info

Стабилитрон, это диод, имеющий пороговое значение напряжения обратного смещения, при котором происходит обратимый пробой p-n перехода. Что это значит?

Работа стабилитрона

При прямом включении стабилитрон работает как обычный диод, т.е. открывается, проводя электрический ток. При обратном включении до определённого значения напряжения стабилитрон заперт, как обычный диод, а при достижении и превышении этого порогового значения в некоторых пределах происходит обратимый пробой p-n перехода, через стабилитрон начинает протекать ток, сильно зависящий от величины превышения напряжения пробоя. Если последовательно стабилитрону подключить резистор, то на нём при протекании тока будет падать часть приложенного напряжения, а напряжение на стабилитроне будет находиться практически на одном уровне. В таком режиме работы стабилитрон как бы пытается удержать напряжение на своём переходе в определённом узком диапазоне, стабилизировать его, от чего и получил своё название. Последовательный резистор принимает на себя часть избыточного напряжения, снижая ток стабилитрона и позволяя использовать его при более широких колебаниях напряжения. Называется он балластным сопротивлением.

Вольтамперная характеристика стабилитрона

Вольтамперную характеристику стабилитрона можно условно разбить на два участка – характеристика прямого и обратного включения. Характеристика прямого включения стабилитрона идентична характеристике прямого включения выпрямительного диода. Рассмотрим характеристику обратного включения (рисунок), которая для стабилитрона является рабочей.

При обратном напряжении на стабилитроне не достигшим значения напряжения стабилизации Uст.мин., он ведёт себя как обычный выпрямительный диод, через него протекает незначительный ток, обусловленный токами утечки через p-n переход.

Как только обратное напряжение достигает значения минимального напряжения стабилизации Uст.мин., происходит лавинный пробой p-n перехода, и стабилитрон начинает проводить ток в обратном направлении.

В некоторых пределах, от минимального тока стабилизации Iст.мин. до предельно допустимого значения обратного тока IПДО, на p-n переходе выделяется некоторое количества тепла, отводимое через корпус стабилитрона. Отвод тепла не позволяет p-n переходу перегреться, что предотвращает его термическое разрушение. Как только величина напряжения на стабилитроне снижается до значений меньше минимального напряжения стабилизации, лавинная проводимость прекращается, p-n переход восстанавливается и прекращает проводить электрический ток, за исключением тока утечки. На этом участке характеристики напряжение стабилизации может варьироваться от некоторого минимального до максимального значений: Uст.минUст.макс..

Если обратный ток стабилитрона превысит значение предельно допустимого, отвод выделяемого тепла на p-n переходе может оказаться не достаточным, при этом переход «спекается», лавинный пробой становится необратимым, стабилитрон выходит из строя. При проверке такого стабилитрона мульметром может наблюдаться как обрыв цепи стабилитрона, так и короткое замыкание.

Основные параметры стабилитрона

Для расчета параметров схем с применением стабилитронов требуется знать три основных его параметра: Напряжение стабилизации, минимальный ток стабилизации и предельно-допустимый обратный ток. В некоторых случаях может потребоваться величина предельно допустимого прямого тока стабилитрона, если он используется в цепи переменного напряжения и должен проводить ток в оба полупериода.

Напряжение стабилизации

Напряжение стабилизации, это усреднённое значение между минимальным и максимальным напряжениями стабилизации. В справочниках приводится как основной параметр. Дополнительно может указываться погрешность этого напряжения, а также минимальное и максимальное значение напряжения стабилизации.

Минимальный ток стабилизации

Минимальным током стабилизации является значение тока, при котором начинается обратимый лавинный пробой p-n перехода. Это значение тока соответствует минимальному напряжению стабилизации.

Максимально допустимый ток стабилизации

Это максимальное значение обратного тока, при котором p-n переход может быть подвержен длительное время обратимому пробою, без термического разрушения и изменения параметров стабилизации.

Максимально допустимый прямой ток

Максимальное значение прямого тока стабилитрона, которое длительное время может выдержать его p-n переход без термического разрушения и ухудшения параметров проводимости.

Применение стабилитронов

Стабилитроны используются в различных схемах. Наиболее часто они используются в схемах стабилизации напряжения, в схемах сравнения в качестве источника эталонного напряжения.

Обозначение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *