Как найти угол фи – Как вычислить коэффициент реактивной мощности синус фи, если известен только коэффициент активной мощности cos фи?

Содержание

Угол между векторами.

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

Примеры задач на вычисление угла между векторами


Примеры вычисления угла между векторами для плоских задачи

Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

|a| = √32 + 42 = √9 + 16 = √25 = 5
|b| = √42 + 32 = √16 + 9 = √25 = 5

Найдем угол между векторами:

cos α =  a · b  =  24  =  24  = 0.96
|a| · |b| 5 · 5 25
Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.

Решение: Найдем скалярное произведение векторов:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2
|b| = √52 + 52 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α =  a · b  =  40  =  40  =  4  = 0.8
|a| · |b| 5√2 · 5√2 50 5

Примеры вычисления угла между векторами для пространственных задач

Пример 3. Найти угол между векторами a = {3; 4; 0} и b = {4; 4; 2}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5
|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6

Найдем угол между векторами:

cos α =  a · b  =  28  =  14
|a| · |b| 5 · 6 15
Пример 4. Найти угол между векторами a = {1; 0; 3} и b = {5; 5; 0}.

Решение: Найдем скалярное произведение векторов:

a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

|a| = √12 + 02 + 32 = √1 + 9 = √10
|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α = a · b|a| · |b| = 5√10 · 5√2 = 12√5 = √510 = 0.1√5

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите элементы уравнения в ячейки и нажимайте на кнопку «Решить». Теоретическую часть смотрите ниже.

Очистить все ячейки?

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1) направляющий вектор прямой L1, а q

2=(m2, p2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (1.3) получим:

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы

φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (1.5) имеет направляющий вектор q1=(m1, p1)=(3, 4), а прямая (1.6) − q2=(m2, p2)=(− 3, 1). Для определения угла между прямыми (1.5) и (1.6) подставим значения m1, p1

, m2, p2 в (1.4):

Упростим и решим:

Найдем угол φ

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Ответ.

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Сделаем преобразования с выражением (1.7):

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (1.10) имеет направляющий вектор

q1=(m1, p1)=(3, 3), а прямая (1.11) − q2=(m2, p2)=(−2, −2). Тогда

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.14) имеет направляющий вектор q1=(m1, p1)=(3, 1), а прямая (1.15) − q2=(m2, p2)=(−2, 6). Тогда

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

и

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой

L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Из определения скалярного произведения двух векторов, имеем:

где |n1| и |n2| модули нормальных векторов n1 и n2 соответственно, φ -угол между векторами n1 и n2.

Из уравнения (19) получим

Пример 4. Найти угол между прямыми

и

Решение. Прямая (1.21) имеет нормальный вектор

n1=(A1, B1)=(5, −2), а прямая (1.22) − n2=(A2, B2)=(1, 3). Задача определения угла между прямыми L1 и L2 сводится к определению угла между векторами n1 и n2. Из определения скалярного произведения векторов имеем: (n1,n2)=|n1||n2|cosφ. Тогда

Подставляя значения A1, B1, A2, B2 в (1.23), получим:

Упростим и решим:

Найдем угол φ:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

и

Решение. Прямая (1.26) имеет нормальный вектор n1=(A1, B1)=(4, 2), а прямая (1.27) − n2=(A2, B2)=(2, 1). Тогда подставляя значения A1, B1, A2, B2 в (1.24), получим

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.29) имеет нормальный вектор n1=(A1, B1)=(4, −1), а прямая (1.30) − n2=(A2, B2)=(2, 8). Тогда подставляя значения A1, B1, A2, B2 в (28), получим

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1, l1) направляющий вектор прямой L1, а q2=(m2, p2, l2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (2.3) получим:

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (2.5) имеет направляющий вектор q1=(m1, p1, l1)=(1, 1, 3), а прямая (2.6) − q2=(m2, p2, l2)=(− 3, 1, 2). Для определения угла между прямыми (2.5) и (2.6) подставим значения m1, p1, l1, m2, p2, l2 в (2.4):

Упростим и решим:

Найдем угол φ

Ответ.

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 4), а прямая (2.10) − q2=(m2, p2, l2)=(6, 4, 8). Тогда

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(1, 2, 0), а прямая (2.10) − q2=(m2, p2, l2)=(2, 4, 0). Подставляя значения m1, p1, l1, m2, p2, l2 в (2.8), получим

Выражение (2.13) нужно понимать так:

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (2.16) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 1), а прямая (2.17) − q2=(m2, p2, l2)=(4, −6, 0). Тогда

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Угол между прямыми

Определение угла между прямыми

Угол между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Определение Угол между прямыми — размер наименьшего из углов, образованных этими прямыми.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

Если две прямые заданы уравнениями с угловым коэффициентом

y = k1x + b1,
y = k2x + b2,

то угол между ними можно найти, используя формулу:

tg γ = k1 — k21 + k1·k2

Если знаменатель равен нулю (1 + k1·k2 = 0), то прямые перпендикулярны.

Угол между прямыми Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

tg α = k1
tg β = k2

Соответственно легко найти угол между прямыми

γ = α — β

tg γ = tg (α — β) = tg α — tg β1 + tg α ·tg β = k1 — k21 + k1·k2

Угол между прямыми через направляющие векторы этих прямых

Угол между прямыми Если a — направляющий вектор первой прямой и b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано параметрически

x = l t + ay = m t + b

то вектор направляющей имеет вид {l; m}

Если уравнение прямой задано как

A x + B y + C = 0

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = -CB значит точка на прямой имеет координаты K(0, -CB), при y = 0 => x = -CA значит точка на прямой имеет координаты M(-CA, 0). Вектор направляющей KM = {-CA; CB}.

Если дано каноническое уравнение прямой

x — x0l = y — y0m

то вектор направляющей имеет вид {l; m}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b). Вектор направляющей KM = {1; k}

Угол между прямыми через векторы нормалей этих прямых

Угол между прямыми Если a — вектор нормали первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано как

A x + B y + C = 0

то вектор нормали имеет вид {A; B}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то вектор нормали имеет вид {1; -k}

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Угол между прямыми Если a — направляющий вектор первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = |a · b||a| · |b|

Примеры задач на вычисления угла между прямыми на плоскости

Угол между прямыми Пример 1. Найти угол между прямыми y = 2x — 1 и y = -3x + 1.

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k1 — k21 + k1·k2 = 2 — (-3)1 + 2·(-3) = 5-5 = 1

Ответ. γ = 45°

Угол между прямыми Пример 2. Найти угол между прямыми y = 2x — 1 и x = 2t + 1y = t.

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор {1; 2}, для второй прямой направляющий вектор {2; 1}

cos φ = |1 · 2 + 2 · 1|12 + 22 · 22 + 12 = 45 · 5 = 0.8

Ответ. φ ≈ 36.87°

Пример 3 Найти угол между прямыми 2x + 3y = 0 и x — 23 = y4.

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2x + 3y = 0 => y = -23x   (k1 = -23)

x — 23 = y4 => y = 43x — 83   (k2 = 43)

tg γ = k1 — k21 + k1·k2 = -23 — 431 + (-23)·43 = -631 — 89 = 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a — направляющий вектор первой прямой, а b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если дано каноническое уравнение прямой

x — x0l = y — y0m = z — z0n

то направляющий вектор имеет вид {l; m; n}

Если уравнение прямой задано параметрически

x = l t + ay = m t + bz = n t + c

то направляющий вектор имеет вид {l; m; n}

Пример 4. Найти угол между прямыми x = 2t + 1y = tz = -t — 1 и x = t + 2y = -2t + 1z = 1.

Решение: Так как прямые заданы параметрически, то {2; 1; -1} — направляющий вектор первой прямой, {1; -2; 0} направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0|22 + 12 + (-1)2 · 12 + (-2)2 + 02 = 06 · 5 = 0

Ответ. φ = 90°

Пример 5 Найти угол между прямыми x — 23 = y4 = z — 35 и -x — 22 = 1 — 3y = 3z — 52.

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор {3; 4; 5}.

Преобразуем второе уравнение к каноническому вид.

-x — 22 = x — 2-2

1 — 3y = 1 + y-1/3 = y — 1/3-1/3

3z — 52 = z — 5/32/3

Получено уравнение второй прямой в канонической форме

x — 2-2 = y — 1/3-1/3 = z — 5/32/3

{-2; -13; 23} — направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(-13) + 5·2332 + 42 + 52 · (-2)2 + (-13)2 + (23)2 = -6 — 43 + 1039 + 16 + 25 · 4 + 19 + 49 = -450 · 41/9 = 12582 = 682205

Ответ. φ ≈ 74.63°

Угловой коэффициент — Википедия

Угловой коэффициент: k=ΔyΔx=tgθ{\displaystyle k={\frac {\Delta y}{\Delta x}}=\mathrm {tg} \,\theta }

Угловой коэффициент прямой — коэффициент k{\displaystyle k} в уравнении y=kx+b{\displaystyle y=kx+b} прямой на координатной плоскости, численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой.[1]

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен ΔyΔx{\displaystyle {\frac {\Delta y}{\Delta x}}}, то есть производной уравнения прямой по x.

Угловой коэффициент не существует (иногда формально говорят «обращается в бесконечность») для прямых, параллельных оси Oy.

При положительных значениях углового коэффициента k и нулевом значении коэффициента сдвига b прямая будет лежать в первом и третьем квадрантах (в которых x и y одновременно положительны и отрицательны). При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим — более пологая.

Прямые y=k1x+b1{\displaystyle y=k_{1}x+b_{1}} и y=k2x+b2{\displaystyle y=k_{2}x+b_{2}} перпендикулярны, если k1k2=−1{\displaystyle k_{1}k_{2}=-1}, а параллельны при k1=k2{\displaystyle k_{1}=k_{2}}.

  1. ↑ Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Угол между векторами, формулы и примеры

Определение и формула угла между векторами

ОПРЕДЕЛЕНИЕ Угол между двумя векторами и , имеющими общее начало, – это наименьший угол, на который нужно повернуть один из векторов вокруг точки приложения до положения, когда он станет сонаправленным с другим вектором (рис. 1).

Косинус угла между векторами и равен скалярному произведению векторов , деленному на произведение модулей (длин) этих векторов, то есть

   

Если векторы сонаправлены, то величина угла между ними равна (на рисунке 2 угол между векторами и ). Угол между противоположно направленными векторами равен (если совместить начала векторов и , изображенных на рисунке 2, то они будут сторонами развернутого угла).

Примеры нахождения углов между векторами

ПРИМЕР
Задание Найти угол между векторами и
Решение Вначале вычислим скалярное произведение заданных векторов, оно равно сумме произведений соответствующих координат векторов-сомножителей:

   

Модули заданных векторов равны корню квадратному из суммы квадратов координат:

   

   

Тогда косинус искомого угла

   

А тогда сам угол

   

Ответ
Понравился сайт? Расскажи друзьям!

Онлайн калькулятор: Инволюта угла

Поступила вот просьба сделать калькулятор для расчета цилиндрических шестерён — Техника,машиностроение.
Погружаясь в тему шестерён и их расчетов, встретил понятие инволюта, а потом — эвольвента. Показалось занятным и заслуживающим отдельных калькуляторов. Калькуляторы смотри ниже — первый рассчитывает инволюту, два следующих по заданной инволюте находят угол. Интересующимся — текст про инволюту после калькуляторов.

PLANETCALC, Инволюта угла
Инволюта угла
Точность вычисления

Знаков после запятой: 6

save Сохранить share Поделиться extension Виджет

PLANETCALC, Нахождение угла по инволюте методом Ласкина
Нахождение угла по инволюте методом Ласкина
Точность вычисления

Знаков после запятой: 2

Угол (градусы)

 

save Сохранить share Поделиться extension Виджет

PLANETCALC, Нахождение угла по инволюте методом Ченга
Нахождение угла по инволюте методом Ченга
Точность вычисления

Знаков после запятой: 2

Угол (градусы)

 

save Сохранить share Поделиться extension Виджет

Так вот, в дифференциальной геометрии кривых эвольвента — это кривая, нормаль в каждой точке которой является касательной к исходной кривой (см. Эвольвента в Википедии).

Поскольку сразу осознать сказанное выше сложно, перескажу своими словами более образное определение, данное в английской версии статьи (см. Involute on Wikipedia).

Итак, представим себе катушку ниток, где свободный край нити лежит на катушке. Если взять этот край и начать разматывать нить, все время держа ее натянутой, край нити опишет некую кривую, которая и будет эвольвентой, причем эвольвентой окружности (катушка суть исходная кривая, представляющая собой окружность).

Рисунок ниже изображает эвольвенту окружности (Источник — Википедия). Красная линия — исходная кривая (окружность), черная — натянутая нить, зеленая — траектория конца нити, кривая, называемая эвольвентой окружности.

Animated_involute_of_circle.gif

Что касается инволюты — в англоязычных источниках, как я понял, термин инволюта (involute) применяется взаимозаменяемо с термином эвольвента (evolvent). То есть может обозначать как саму кривую, так и ее функцию. В русскоязычных источниках, которые я видел, эвольвента — это кривая, а инволюта — ее функция.

Думаю, что такое эвольвента, стало более менее ясно после картинки сверху. Теперь разберемся, что это за функция такая.
В этом нам поможет рисунок, который я нарисовал

На рисунке отрезок равен дуге (потому что эта наша «нить»). Угол «фи», соответствующий дуге называется углом развернутости эвольвенты, и состоит суммы угла «тета» (эвольвентного угла) и угла «альфа» (угла давления). Длина дуги

Поскольку — прямоугольный треугольник, то

Приравнивая эти две дуги друг к другу, получим , откуда

Вот эта-то функция — и называется инволютой, или эвольвентной функцией.

Уравнения эвольвентной кривой в полярных координатах выглядят так

По построению видно, что угол «альфа» может меняться от 0 до 90, не включая 90, так как в таком случае прямая KK будет параллельна MxN.

Зачем это все? Эвольвента окружности используется в эвольвентном зацеплении — зубчатом зацеплении, в котором профили зубьев очерчены по эвольвенте окружности. При эвольвентном зацеплении общая нормаль к соприкасающимся профилям зубьев всегда совпадает с общей касательной к основным окружностям. Эта касательная называется линией зацепления, так как по ней перемещается точка касания зубьев при движении колёс (картинка). Это наиболее распространенный вид зубчатого зацепления.

А инволюта используется в расчетах, связанных с эвольвентным зацеплением. Причем возникает задача как расчета самой инволюты (что просто), так и обратная задача — нахождение угла давления по его инволюте. Вот обратная задача является не такой простой, ибо уравнение является трансцендентным уравнением, и решить его можно только численными методами.

В завершение рассмотрим численные методы, использованные в калькуляторах выше — метод Ласкина и метод Ченга (подробнее — здесь)

Метод Ласкина (Laskin)
Основан на методе Ньютона, заключающемся в итерационной процедуре вычисления

Ноу-хау, как я понимаю, здесь в выборе начального значения, которое по методу Ласкина вычисляется как
, где I — заданное значение инволюты.

Для вычисления следующих приближений после раскрытия производной получается выражение

В калькуляторе используется пять итераций, но уже четыре должны давать точность до шести знаков после запятой. Метод работает для значений инволюты в диапазоне от 0 до 1, то есть можно находить углы от 0 до 64.87 градусов. На практике этого хватает. Для нахождения инволюты выпускаются таблицы, подобные таблицам тригонометрических функций, так вот там приводимый диапазон углов от 0 до 60.

Метод Ченга (Cheng)
Основан на нахождении приближенного значения с помощью асимптотических кривых. Ченг вывел следующую формулу:

Метод работает для значения инволюты строго меньших 1.8, то есть может находить углы примерно до 71.87 градуса. А дальше оно и не надо — при приближении к 90 тангенс стремится к бесконечности, со всеми вытекающими отсюда последствиями, и, в общем, ну не бывает зубчатых передач с такими большими углами.

Как вычислить углы между векторами? :: SYL.ru

При изучении геометрии немало вопросов возникает по теме векторов. Особенные трудности обучающийся испытывает при необходимости найти углы между векторами.

Основные термины

Перед тем как рассматривать углы между векторами, необходимо ознакомиться с определением вектора и понятием угла между векторами.

углы между векторами

Вектором называют отрезок, имеющий направление, то есть отрезок, для которого определено его начало и конец.

Углом между двумя векторами на плоскости, имеющих общее начало, называют меньший из углов, на величину которого требуется переместить один из векторов вокруг общей точки, до положения, когда их направления совпадут.

Формула для решения

Поняв, что собой представляет вектор и как определяется его угол, можно вычислить угол между векторами. Формула решения для этого достаточно проста, и результатом её применения будет значение косинуса угла. Согласно определению, он равен частному скалярного произведения векторов и произведения их длин.

Скалярное произведение векторов считается как сумма помноженных друг на друга соответствующих координат векторов-сомножителей. Длина вектора, или его модуль, вычисляется как квадратный корень из суммы квадратов его координат.

Получив значение косинуса угла, вычислить величину самого угла можно с помощью калькулятора или воспользовавшись тригонометрической таблицей.

Пример

После того как вы разберетесь с тем, как вычислить угол между векторами, решение соответствующей задачи станет простым и понятным. В качестве примера стоит рассмотреть несложную задачу о нахождении величины угла.

 угол между векторами формула

Первым делом удобнее будет вычислить необходимые для решения значения длин векторов и их скалярного произведения. Воспользовавшись описанием, представленным выше, получим:

вычислить угол между векторамиугол между векторами решение

Подставив полученные значения в формулу, вычислим значение косинуса искомого угла:

углы между векторами

Это число не является одним из пяти распространённых значений косинуса, поэтому для получения величины угла, придётся воспользоваться калькулятором или тригонометрической таблицей Брадиса. Но перед тем, как получить угол между векторами, формула может быть упрощена, чтобы избавиться от лишнего отрицательного знака:

угол между векторами формула

Итоговый ответ для сохранения точности можно оставить в таком виде, а можно вычислить значение угла в градусах. По таблице Брадиса его величина составит примерно 116 градусов и 70 минут, а калькулятор покажет значение 116,57 градуса.

Вычисление угла в n-мерном пространстве

При рассмотрении двух векторов в трёхмерном пространстве, понять, о каком угле идёт речь гораздо сложнее, если они не лежат в одной плоскости. Для упрощения восприятия можно начертить два пересекающихся отрезка, которые образуют наименьший угол между ними, он и будет искомым. Несмотря на наличие третьей координаты в векторе, процесс того, как вычисляются углы между векторами, не изменится. Вычислите скалярное произведение и модули векторов, арккосинус их частного и будет являться ответом на данную задачу.

В геометрии нередко встречаются задачи и с пространствами, имеющими больше трёх измерений. Но и для них алгоритм нахождения ответа выглядит аналогично.

Разница между 0 и 180 градусами

Одна из распространённых ошибок при написании ответа на задачу, рассчитанную на то чтобы вычислить угол между векторами, — решение записать, что векторы параллельны, то есть искомый угол получился равен 0 или 180 градусам. Этот ответ является неверным.

Получив по итогам решения значение угла 0 градусов, правильным ответом будет обозначение векторов как сонаправленных, то есть у векторов будет совпадать направление. В случае получения 180 градусов векторы будут носить характер противоположно направленных.

Специфические векторы

Найдя углы между векторами, можно встретить один из особых типов, помимо описанных выше сонаправленных и противоположно направленных.

  • Несколько векторов параллельных одной плоскости называются компланарными.
  • Векторы, одинаковые по длине и направлению, называются равными.
  • Векторы, лежащие на одной прямой, независимо от направления, именуются коллинеарными.
  • Если длина вектора равна нулю, то есть его начало и конец совпадают, то его называют нулевым, а если единице, то единичным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *