Как найти работу по физике формула: Недопустимое название — Викиверситет

{2}}{2}(1)$$

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ($\bar{F}$).

Содержание

Элементарная работа

Элментарная реабота $(\delta A)$ некоторой силы $\bar{F}$ определяется как скалярное произведение:

$$\delta A=\bar{F} \cdot d \bar{r}=F \cdot d s \cdot \cos \alpha(2)$$

$\bar{r}$ радиус – вектор точки, к которой приложена сила, $\bar{r}$ — элементарное перемещение точки по траектории, $\alpha$ – угол между векторами $d s=|d \bar{r}|$ и $d \bar{r}$. Если $\alpha$ является тупым углом работа меньше нуля, если угол $\alpha$ острый, то работа положительная, при $\alpha=\frac{\pi}{2} \delta A=0$

В декартовых координатах формула (2) имеет вид:

$$\delta A=F_{x} d x+F_{y} d y+F_{z} d z(3)$$

где Fx,Fy,Fz – проекции вектора $\bar{F}$ на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

$$\delta A=\bar{F} \bar{v} d t=\bar{v} d \bar{p}(4)$$

где $\bar{v}$ – скорость материальной точки, $\bar{p}$ – импульс материальной точки. {4}$$

Ответ. n=4

Читать дальше: Формула силы Ампера.

Механическая работа. Мощность | Физика

1. Определение работы

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы

A = Fs     (1)


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

A = –Fs     (2)


В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

A = 0      (3)

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

? 1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:

а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

? 2. Чему равна:
а) сумма работ всех действующих на брусок сил?

б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α     (4)

? 3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


? 4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты hн до конечной высоты hк.

Если тело движется вниз (hн > hк, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (hн < hк, рис. 28.2, б), то работа силы тяжести отрицательна.


В обоих случаях работа силы тяжести

A = mg(hн – hк).     (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

? 5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

Aт = mg(hн – hк),

где hн – начальная высота тела, h

к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

? 6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3.

Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

F = kx.     (6)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.


Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

? 7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx2)/2.     (7)


? 8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x

н до xк работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

? 9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

? 10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см.

Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

? 11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5.

Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

P = A/t.      (9)

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

? 12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv.     (10)

? 13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

? 14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м3, а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Как обозначается полезная работа в физике. Механическая работа: определение и формула

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называетсязамкнутой .

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьегозаконов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения (рис. 1.1.9):

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α джоулях (Дж).

Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Если проекция силы на направление перемещения не остается постоянной, работу следует вычислять для малых перемещений и суммировать результаты:

Примером силы, модуль которой зависит от координаты, может служить упругая сила пружины, подчиняющаяся закону Гука . Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу модуль которой пропорционален удлинению пружины (рис. 1.1.11).

Зависимость модуля внешней силы от координаты x изображается на графике прямой линией (рис. 1.1.12).

По площади треугольника на рис. 1.18.4 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины:

Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы равна по модулю работе внешней силы и противоположна ей по знаку.

Если к телу приложено несколько сил, то общая работа всех сил равна алгебраической сумме работ, совершаемых отдельными силами, и равна работе равнодействующей приложенных сил.

Работа силы, совершаемая в единицу времени, называется мощностью . Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

Каждое тело, совершающее движение, можно охарактеризовать работой. Иными словами, она характеризует действие сил.

Работа определяется как:
Произведение модуля силы и пути пройденного телом, умноженное на косинус угла между направлением силы и движения.

Работа измеряется в Джоулях:
1 [Дж] = = [кг* м2/c2]

К примеру, тело A под действием силы в 5 Н, прошло 10 м. Определить работу совершенную телом.

Так как направление движения и действия силы совпадают, то угол между вектором силы и вектором перемещения будет равен 0°. Формула упроститься, потому что косинус угла в 0° равен 1.

Подставляя исходные параметры в формулу, находим:
A= 15 Дж.

Рассмотрим другой пример, тело массой 2 кг, двигаясь с ускорением 6 м/ с2, прошло 10 м. Определить работу проделанную телом, если оно двигалось по наклоненной плоскости вверх под углом 60°.

Для начала, вычислим какую силу нужно приложить, что бы сообщить телу ускорение 6 м/ с2.

F = 2 кг * 6 м/ с2 = 12 H.
Под действием силы 12H, тело прошло 10 м. Работу можно вычислить по уже известной формуле:

Где, а равно 30°. Подставляя исходные данные в формулу получаем:
A= 103, 2 Дж.

Мощность

Множество машин механизмов выполняют одну и ту же работу за различный промежуток времени. Для их сравнения вводится понятие мощности.
Мощность – это величина, показывающая объем работы выполненный за единицу времени.

Мощность измеряется в Ватт, в честь Шотландского инженера Джеймса Ватта.
1 [Ватт] = 1 [Дж/c].

К примеру, большой кран поднял груз весом 10 т на высоту 30 м за 1 мин. Маленький кран на эту же высоту за 1 мин поднял 2 т кирпича. Сравнить мощности кранов.
Определим работу выполняемую кранами. Груз поднимается на 30м, при этом преодолевая силу тяжести, поэтому сила, затрачиваемая на поднятие груза, будет равна силе взаимодействия Земли и груза(F = m * g). А работа – произведению сил на расстояние пройденное грузами, то есть на высоту.

Для большого крана A1 = 10 000 кг * 30 м * 10 м / с2 = 3 000 000 Дж, а для маленького A2 = 2 000 кг * 30 м * 10 м / с2 = 600 000 Дж.
Мощность можно вычислить, разделив работу на время. Оба крана подняли груз за 1 мин (60 сек).

Отсюда:
N1 = 3 000 000 Дж/60 c = 50 000 Вт = 50 кВт.
N2 = 600 000 Дж/ 60 c = 10 000 Вт = 10 к Вт.
Из выше приведенных данных наглядно видно, что первый кран в 5 раз мощнее второго.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа — это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 — 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай — когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай — когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай — когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 — 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. — 17-е изд. — М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. — 14-е изд., стереотип. — М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. — М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Основные теоретические сведения

Механическая работа

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.

Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:

Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (F упр = kx ).

Мощность

Работа силы, совершаемая в единицу времени, называется мощностью . Мощность P (иногда обозначают буквой N ) – физическая величина, равная отношению работы A к промежутку времени t , в течение которого совершена эта работа:

По этой формуле рассчитывается средняя мощность , т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:

По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.

КПД – коэффициент полезного действия , равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:

Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.

Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).

В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:

Кинетическая энергия

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения) :

То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Е к = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.

Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.

Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой m движется со скоростью v , то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.

Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.

Потенциальная энергия

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы ). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести Земли рассчитывается по формуле:

Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.

Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Потенциальная энергия растянутой пружины рассчитывается по формуле:

где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы ). Понятие потенциальной энергии для силы трения вводить нельзя.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).

КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.

В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.

Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.

Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.

Закон сохранения механической энергии

Полной механической энергией называется сумма кинетической энергии (т. е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):

Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:

Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах . Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.

Алгоритм решения задач на закон сохранения энергии:

  1. Найти точки начального и конечного положения тела.
  2. Записать какой или какими энергиями обладает тело в данных точках.
  3. Приравнять начальную и конечную энергию тела.
  4. Добавить другие необходимые уравнения из предыдущих тем по физике.
  5. Решить полученное уравнение или систему уравнений математическими методами.

Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

Разные задачи на работу

Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:

  1. Работу можно найти по формуле: A = FS ∙cosα . Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
  2. Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
  3. Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh , где h – высота, на которую поднимается центр тяжести тела .
  4. Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt .
  5. Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.

Закон сохранения энергии и динамика вращательного движения

Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:

  1. Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
  2. Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
  3. Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
  4. В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
  5. Провести остальные необходимые математические операции для получения окончательного результата.

При решении задач надо помнить, что:

  • Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
  • При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
  • Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.

Неупругие соударения

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).

Абсолютно упругий удар

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.

Законы сохранения. Сложные задачи

Несколько тел

В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.

Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:

  1. выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
  2. записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
  3. учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
  4. при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.
Разрыв снаряда

В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.

Столкновения с тяжёлой плитой

Пусть навстречу тяжёлой плите, которая движется со скоростью v , движется лёгкий шарик массой m со скоростью u н. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты . В таком случае, для конечной скорости шарика получим:

Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:

По физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа — мера воздействия силы.

Определение механической работы

Определение 1

Работа А, совершаемая постоянной силой F→, — это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

A=Fs cos α.

Работа – это скалярная величина. Единица измерения работы по системе СИ — Джоуль (Дж).

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Рисунок 1. Работа силы F→: A=Fs cos α=Fss

При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsiсуммируется и производится по формуле:

A=∑∆Ai=∑Fsi∆si.

Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.

Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.

F→упр=-F→

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

A=kx22.

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

N=At.

Определение 4

Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт — это мощность, которую совершает работу в 1 Дж за время 1 с.

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.  

в чем измеряется в физике, как вычислить, формула для определения

Что такое механическая работа

В результате воздействия силы определенной интенсивности тело меняет свое положение в пространстве. В качестве примеров можно рассмотреть поднятие человеком груза на высоту, подкидывание вверх предмета, толкание впереди себя нагруженной тележки и т. п. В перечисленных случаях человек силой своих мышечных сокращений способствует возникновению движения тела. С другой стороны, мяч, падающий сверху вниз, движется под действием обычной силы тяжести. Таким образом, не само тело производит работу, а сила, которая на него действует.

Определение

Механическая работа — скалярная величина, характеризующая силу, действующую на тело и перемещающую его на определенное расстояние. Она прямо пропорциональна величине этой силы и пути, которое тело совершает под этим воздействием.

Исходя из определения понятно, что для вычисления работы (A) необходимо знать модуль действующей силы (F) и расстояние (S), на которое тело перемещается. Умножив эти две величины, можно судить о работе, для измерения которой введена единица — Джоуль.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

\(A=F\times S\)

Направление действующей силы может быть не только параллельно поверхности, по которой ему предстоит двигаться. На рисунке показаны примеры воздействия под углом:

 

В таком случае формула для вычисления работы выглядит следующим образом:

\(A=F\times r\times\cos\alpha\)

Примечание

Поэтому математическое выражение работы, вычисляемой по приведенной выше формуле, может быть как положительным, так и отрицательным (в зависимости от величины альфа). В случае, если α=90о, искомая работа будет равна нулю.

В чем измеряется в физике, единицы

Для количественного выражения величины механической работы в физике введена специальная единица — Джоуль. При этом считается, что один Джоуль (Международная система единиц) равняется той работе, которую совершает сила величиной 1 Ньютон, перемещая при этом тело на 1 метр.

Примечание

Значение работы может равняться нулю даже в случае воздействия силы. Происходит это тогда, когда перемещение отсутствует. Таким образом, чтобы присутствовала работа, необходимо два условия: наличия воздействия силы и расстояния, на которое тело переместилось.

 

С другой стороны, для примера, допустим в состоянии невесомости, космонавт толкает от себя предмет, который двигается от него. В этой ситуации работы также нет, поскольку космонавт не прикладывает к предмету силы (условия космоса). Такой вид движения является инерцией.

Для измерения работы используется также килоджоуль (кДж), который равен 1000 Дж.

Как найти, основные формулы и примеры вычислений

Кроме формул, приведенных выше, для нахождения механической работы применяются следующие способы математических расчетов:

  1. Через известное значение кинетической энергии: A=Ek2-Ek1, где Ek2 и Ek1 — значения начальной и конечной кинетической энергии тела. При этом скорости движения тел значения не имеют.
  2. Через значения потенциальной энергии: A=-(Ep2-Ep1), где Ep2 и Ep1 — значения начальной и конечной потенциальной энергии тела.  
  3. При совершении работы силой упругости пружины: A=(kx12)\(\div\)2-(kx22)\(\div\)2; (k — коэффициент упругости, х1 и х2 — координаты тела до и после совершения работы силой упругости, т.е. величина растяжения пружины).
  4. При совершении работы силой Кулона (при передвижении электрического заряда): A=(q1\(\times\)q2)\(\div4\pi\xi \)or1-(q1\(\times\)q2)\(\div4\pi\xi \)or2 (r1 и r2 — радиусы нахождения заряда в начале и конце движения, q1 и q2 — величины этих зарядов). Если расстояние между зарядами увеличивается, силы отталкивания «работают положительно», если уменьшается — «отрицательно».
  5. Для определения работы, совершаемой силами гравитации: A=\(ϒ\times\)(m1\(\times\)m2\(\div\)r2)-\(ϒ\times\)(m1\(\times\)m2\(\div\)r1). В данном случае расчет производится с привлечением гравитационной постоянной величины ϒ.  Механическая работа сил гравитации определяется исходя из радиус-векторов в начальной и конечной точках движения.

Особенности практического применения механической работы

Если две силы, различные по своей величине, совершают аналогичную работу, то время, затраченное на передвижение тела, будет различным. Величина этой разницы зависит от мощности силы.

Определение

Мощность — физическая величина, от которой зависит скорость совершаемой работы.

Для обозначения мощности используется буква N. Это понятие вводится для возможности сравнения потенциальных характеристик сил (приборов, оборудования). Мощность равна работе, соотнесенной к временному промежутку, в течение которого она была произведена.

Смысл понятия заключается в представлении о том, какую работу может совершить сила за единицу времени.

\(N=A\div t\\\)

Где N — мощность, A — работа, t — промежуток времени.  

Для общего обозначения мощности в СИ применяется Ватт. Ватт равняется мощности силы, которая за 1 секунду совершает работу величиной 1 Джоуль.

В размерности существуют единицы: киловатт (кВт), мегаватт (МВт). Кроме того, 1 Вт равняется одному вольт-амперу.

Физика 8 класс. Работа и мощность электрического тока :: Класс!ная физика

Физика 8 класс. РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы:
I = q/t ….. и ….. U = A/q
можно вывести формулу для расчета работы электрического тока:

Работа электрического тока равна произведению силы тока на напряжение
и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ:
[ A ] = 1 Дж = 1A. B . c


НАУЧИСЬ, ПРИГОДИТСЯ !

При расчетах работы электрического тока часто применяется
внесистемная кратная единица работы электрического тока:
1 кВт. ч (киловатт-час).

1 кВт.ч = ………..Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные
приборы-счетчики электроэнергии, которые показывают работу электрического тока,
совершенную за какой-то отрезок времени при включении различных бытовых электроприборов.
Эти счетчики показывают работу электрического тока ( расход электроэнергии) в «кВт.ч».

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии!
Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) !

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени
и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р)
так как А = IUt, то мощность электрического тока равна:

или


Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

КНИЖНАЯ ПОЛКА

 

ВАУ, ИНТЕРЕСНЫЕ ЯВЛЕНИЯ !

 

Устали? — Отдыхаем!

Определение работы силы с помощью интеграла

Известную формулу из физики A = Fs для определения работы силы можно использовать лишь тогда, когда на тело воздействует постоянная сила, направленная по направлению движения. Однако часто требуется определить работу тогда, когда сила изменяется с пройденным путём. Например, чтобы растянуть пружину, нужно приложить силу, которая пропорциональна пройденному пути — удлиннению пружины.

Пусть тело перемещается по отрезку [ab] оси Ox, при этом проекция вектора силы на ось Ox является функцией F(x) аргумента x. Чтобы определить работу, совершённую силой, разделим отрезок [ab] на n частей точками a = x0 < x1 < x2 < . ..xn = b. Таким образом, всё перемещение тела из a в b состоит из n участков пути.

Приложенная сила A будет равна сумме элементарных работ, совершённых при перемещении тела по каждому из участков пути.

Поэтому вся приложенная сила для перемещения тела по прямой будет равна пределу интегральной суммы или определённому интегралу

. (1)

Это и есть формула для определения работы силы.

Пример 1. Сжатие S винтовой пружины пропорционально приложенной силе F. Вычислить работу силы F при сжатии пружины на 5 см, если для сжатия её на 1 см нужна сила в 1 кг.

Решение. Сила F и перемещение S связаны по условию зависимостью F=kS, где k — постоянная. Будем выражать S в метрах, F — в килограммах. При S=0,01 F=1, то есть 1=k*0,01, откуда k=100, F=100S.

По формуле (1) определяем работу силы:

.

Пример 2. Сила F, с которой электрический заряд e1 отталкивает заряд e2 (того же знака), находящийся от него на расстоянии r, выражается формулой

,

где k — постоянная.

Вычислить работу силы F при перемещении заряда e2 из точки A1, отстоящей от e1 на расстоянии r1, в точку A2, отстоящую от e1 на расстоянии r2, полагая, что заряд e1 помещён в точке A0, принятой за начала отсчёта.

Решение. По формуле (1) вычисляем работу силы:

.

При получим

.

При получим . Последняя величина называется потенциалом поля, создаваемого зарядом e1.

Пример 3. Вычислить работу, которую нужно совершить, чтобы вытащить шарик массой 9 г из бочки, высота которой 3 м.

Решение. Из физики известно, что F=Ph, то есть . Вес шарика будет равен произведению массы на ускорение свободного падения, то есть P=gm, где g=9,8. Теперь можем вычислить работу силы:

Начало темы «Интеграл»

Расчетная работа — Высшая школа физики

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Что такое формула работы? Примеры

Формула работы используется для расчета работы. Прежде чем изучать формулу, давайте вспомним, что такое работа. Говорят, что работа выполняется, когда мы прикладываем силу к объекту, и объект испытывает смещение.Если смещение в направлении силы равно нулю, то проделанная работа становится нулевой. Формула работы используется для расчета работы, выполненной при перемещении объекта. Давайте узнаем больше о формуле для работы вместе с решенными примерами в следующем разделе.

Что такое формула для работы?

Формула работы используется для расчета работы, проделанной для перемещения любого объекта. Работа — это произведение приложенной силы и смещения в направлении приложенной силы. Работа — это скалярное произведение двух векторов: силы и смещения.Таким образом, работа — это скалярная величина. Единица работы СИ — Джоуль (Дж).

Рабочая формула

Формула Работы может быть выражена как,

Вт = F.d

Вт = (Fcos θ) d

Где,

  • Вт = Работа выполнена
  • F = Величина приложенной силы
  • d = Величина смещения в направлении силы.
  • θ = угол между векторами: силы и смещения

Единица работы СИ — Джоуль (Дж).Если выполняется 1 джоуль работы, то формула для работы оказывается равной 1 Дж = 1 Н · м

.

Вывод формулы работы

Рассмотрим блок, расположенный на горизонтальном полу без трения, на который действует постоянная сила F, благодаря которой этот блок перемещается на расстояние d по прямой в направлении силы.

В общем, работа, совершаемая силой F, равна изменению кинетической энергии

W = (1/2) mv 2 — (1/2) mu 2 = 1 / 2m (v 2 -u 2 )

Применение v 2 -u 2 = 2as

Вт = (1/2) м (2ас)

Вт =

мас.

Поскольку F = ma (2-й закон Ньютона), следовательно, W = Fs.(s = d = смещение)

Теперь, если эффективная составляющая силы вдоль направления смещения — это Fcosθ, ответственная за смещение любого объекта в данном направлении, то работа, совершаемая силой F при перемещении тела посредством смещения d, равна W = (| F | cosθ) | d |

Хотите найти сложные математические решения за секунды?

Воспользуйтесь нашим бесплатным онлайн-калькулятором для решения сложных вопросов. Cuemath находит решения простым и легким способом.

Забронируйте бесплатную пробную версию Класс

Примеры использования формулы для работы

Пример 1: К телу приложена сила 10 Ньютон, которая смещает его на 2 метра. Рассчитайте проделанную работу, используя формулу работы.
Решение:

Найти: Работа выполнена

Дано: Сила (F) = 10N

Водоизмещение (d) = 2 м

Использование формулы для работы,

Вт = F. d

= (10) (2)

= 20 Нм

Ответ: 20 Нм работы выполняются, когда сила в 10 Ньютон смещает объект на 2 метра.

Пример 2: Кули на железнодорожной станции несет мешок весом 100 Н на некоторое расстояние. Рассчитайте работу кули над сумкой, используя формулу для работы.
Решение:

Найти работу, проделанную кули.

Дано: Вес мешка = 100N

Кроме того, вес мешка будет действовать в вертикальном направлении, а его движение будет происходить в горизонтальном направлении. Таким образом, смещение мешка в направлении силы (веса) равно нулю.

д = 0

Использование формулы для работы,

Вт = F.d

= (100) (0)

= 0 Дж

Ответ: Работа кули над сумкой равна нулю.

Пример 3: Рассчитайте количество работы, выполняемой силой при перемещении объекта на расстояние 7 м, если объект горизонтально тащит по поверхности силой 150 Н, действующей параллельно поверхности.
Решение:

Найти: Работа, совершаемая силой при перемещении объекта на расстояние 7 м.

Дано: F = 150 Н, d = 7 м

Так как F и d в одном направлении,

θ = 0, [θ — угол действия силы к направлению движения]

W = F × Cos θ × d

= 150 × 7 × Cos 0

= 1050 Дж [Поскольку Cos 0 = 1]

Ответ: Объем работы, совершаемой силой при перемещении объекта, составляет 800 Дж.

Часто задаваемые вопросы о Formula for Work

Что такое формула работы?

Формула работы определяется как формула для расчета работы, выполненной при перемещении объекта. Проделанная работа равна произведению величины приложенной силы и расстояния, на которое тело перемещается от своего начального до конечного положения. Математическая формула выполненной работы имеет вид W = Fd

.

Каковы варианты формулы работы?

Математически концепция проделанной работы W равна силе f, умноженной на расстояние (d), то есть W = f. d, и если сила приложена под углом θ к смещению, то выполненная работа рассчитывается как W = f. d cos θ.

Каковы применения формулы работы?

Рабочая формула имеет множество приложений, например, для вычисления проделанной работы, силы или смещения в любой задаче.

Что такое d в формуле работы?

В рабочей формуле W = F. d, d — это смещение, т.е. насколько объект сдвинулся с исходного места.

Расчетная работа

Расчетная работа

Ниже приводится алгебраическое обоснование метода (ов) для расчетная работа…

Работа, совершенная силой, действующей в направлении движения:

Объект массой 2 кг находится на отдых, поэтому его кинетическая энергия равна 0 Джоули. Предположим, что на него действует (чистая) сила в 10 Ньютонов.

По Секунду Ньютона Закон, объект ускорение (= F нетто / масса) = 10 Н / 2 кг = 5 м / с 2 , из которых конечно, означает, что скорость объекта будет изменение силы на 5 м / с каждую секунду.

Через 2 секунды его скорость увеличится на (5 м / с 2 ) (2 с) = 10 м / с. В это время кинетическая энергия объекта (= mv 2 /2) = (2 кг) (10 м / с) 2 /2 = 100 Джоулей.

Следовательно, во время этого эпизода кинетическая энергия объекта увеличился на 100 Джоулей (с 0 Джоулей до 100 Джоулей). В соответствии с тогда, используя уравнение Работа / Энергия, должно быть выполнено 100 Джоулей работы. в теме.

С другой стороны, средняя скорость объекта за эти 2 секунды (= (v + v 0 ) / 2) = (10 м / с + 0 м / с) / 2 = 5 м / с.В объект имел среднюю скорость 5 м / с в течение 2 секунд, поэтому он путешествовал 10 метров. Обратите внимание, что F net . расстояние = (10 N) (10 м) = 100 Дж.

Странное совпадение, что работа, проделанная на объекте в этом case = сила x расстояние? №


Если направление силы совпадает с направлением движение объекта, работа, совершаемая силой = сила x расстояние.

Работа, выполненная под действием силы Напротив направления движения:

Предположим, что объект массой 2 кг движется по скорость 10 м / с.Его кинетическая энергия (= mv 2 /2) = (2 кг) (10 м / с) 2 = 100 Джоулей. Внезапно чистая сила 10 Ньютоны в направлении, противоположном скорости, начинают действовать на объект. Второй закон Ньютона гласит, что ускорение объекта составит (-10 Н) / (2 кг) = -5 м / с 2 . Отрицательный знак для сила и ускорение указывают на то, что они находятся в направлении противоположно скорости. Через 2 секунды скорость объекта уменьшится на (-5 м / с 2 ) (2 сек) = -10 м / с — объект будет остановлен, а его кинетическая энергия составит 0 Джоулей.

Таким образом, во время этого захватывающего эпизода кинетическая энергия объект изменен на -100 Джоулей (со 100 Джоулей до 0 Джоулей.) Согласно уравнению работы / энергии, -100 Джоулей работы должны иметь было сделано на нем.

С другой стороны, в течение этого 2-секундного периода объект средняя скорость (= (v + v o ) / 2) составила (0 м / с + 10 м / с) / 2 = 5 РС. Поскольку объект имел среднюю скорость 5 м / с в течение 2 секунд, он проехал 10 метров.Обратите внимание, что сила x расстояние = (-10 Н) (10 м) = -100 Джоулей. Здесь проделанная работа — это сила x расстояние, если учесть сила быть отрицательной. В противном случае:


Если направление силы противоположно направлению движение объекта, работа, совершаемая силой = — сила x расстояние.


Последнее обновление 21 ноября 2007 г., автор: JL Stanbrough

Теорема работы-энергии

— видео по физике от Brightstorm

Согласно теореме о рабочей энергии , чистая работа над объектом вызывает изменение кинетической энергии объекта.Формула для чистой работы: чистая работа = изменение кинетической энергии = конечная кинетическая энергия — начальная кинетическая энергия .

Теорема рабочей энергии, это теорема, которая утверждает, что чистая работа на объекте вызывает изменение кинетической энергии объекта. Итак, давайте рассмотрим кинетическую энергию, вспомним, что кинетическая энергия, которую мы будем сокращать ke, равна половине массы, умноженной на квадрат скорости, хорошо.Таким образом, чистая работа — это изменение кинетической энергии или конечной кинетической энергии за вычетом начальной кинетической энергии. Давайте рассмотрим задачу, в которой вас могут попросить использовать теорему об энергии работы для решения проблемы, связанной с работой в сети. Допустим, у меня есть объект размером 3, массой 3 кг, и мне нужно разогнать его с 2 метров в секунду до 4 метров в секунду. И я хочу знать, какая чистая работа необходима, чтобы обеспечить нормальное ускорение. Таким образом, я могу использовать эту формулу, где чистая работа равна моей конечной кинетической энергии за вычетом моей начальной кинетической энергии.

Давайте решим эту проблему, хорошо? Итак, моя конечная кинетическая энергия равна половине, моя масса — 3 килограмма, а моя конечная скорость — 4 метра в секунду в квадрате, верно? Моя начальная скорость равна, и поэтому моя начальная кинетическая энергия составляет 3 килограмма на 2 метра в секунду в квадрате, хорошо, так что давайте продолжим и вычислим эти числа, и я должен получить половину этого, давайте исправим это, прежде чем двигаться дальше. Итак, у меня есть 4 в квадрате, это 16 умножить на 3, это 48, а половина из 48 — это 24 килограмма на метры на секунду в квадрате, и я собираюсь вычесть из этого, у меня 2 в квадрате — это 4 метра на секунду в квадрате и умноженное на 3. равно 12, а минус половина от 12 составляет 6 килограммов, и если я вычту 6 из 24, я получу 18, и это также равно этой единице, здесь килограммы на метры и секунды в квадрате равняются 18 джоулям энергии.Итак, это моя сетевая работа, которая требуется для ускорения этого объекта с 2 метров в секунду до 4 метров в секунду. Вот как вы можете решить проблему, применяя теорему о рабочей энергии.

Кинетическая энергия и теорема об энергии работы — College Physics

Цели обучения

  • Объясните работу как передачу энергии, а чистую работу — как работу, совершаемую чистой силой.
  • Объясните и примените теорему работы-энергии.

Работа передает энергию

Что происходит с работой, выполняемой в системе? Энергия передается в систему, но в какой форме? Он останется в системе или продвинется дальше? Ответы зависят от ситуации. Например, если газонокосилку на (Рисунок) (a) толкать достаточно сильно, чтобы она продолжала работать с постоянной скоростью, то энергия, вложенная в газонокосилку человеком, непрерывно удаляется за счет трения и в конечном итоге оставляет систему в форма теплопередачи. Напротив, работа, проделанная с портфелем человеком, несущим его по лестнице на (Рисунок) (d), хранится в системе портфель-Земля и может быть восстановлена ​​в любое время, как показано на (Рисунок) (e).Фактически, строительство пирамид в Древнем Египте является примером хранения энергии в системе путем выполнения работы с системой. Некоторая часть энергии, передаваемой каменным блокам при их подъеме во время строительства пирамид, остается в системе камень-Земля и имеет потенциал для выполнения работы.

В этом разделе мы начинаем изучение различных видов работы и форм энергии. Мы обнаружим, что некоторые виды работы, например, оставляют энергию системы постоянной, тогда как другие каким-то образом изменяют систему, например заставляют ее двигаться.Мы также разработаем определения важных форм энергии, таких как энергия движения.

Чистая работа и теорема работы-энергии

Мы знаем из изучения законов Ньютона в динамике: сила и законы движения Ньютона, что результирующая сила вызывает ускорение. В этом разделе мы увидим, что работа, совершаемая чистой силой, дает системе энергию движения, и в процессе мы также найдем выражение для энергии движения.

Давайте начнем с рассмотрения общей, или чистой, работы, проделанной в системе.Чистая работа определяется как сумма работы, выполненной всеми внешними силами, то есть чистая работа — это работа, выполненная чистой внешней силой. В форме уравнения это угол между вектором силы и вектором смещения.

(рисунок) (а) показывает график зависимости силы от смещения для составляющей силы в направлении смещения, то есть график зависимости. В этом случае постоянно. Вы можете видеть, что площадь под графиком есть или проделанная работа. (Рисунок) (b) показывает более общий процесс, в котором сила изменяется.Область под кривой разделена на полосы, каждая из которых имеет среднюю силу. Проделанная работа относится к каждой полосе, а общая проделанная работа представляет собой сумму. Таким образом, общая проделанная работа — это общая площадь под кривой, полезное свойство, о котором мы поговорим позже.

Чистую работу будет проще исследовать, если мы рассмотрим одномерную ситуацию, когда сила используется для ускорения объекта в направлении, параллельном его начальной скорости. Такая ситуация возникает для упаковки на конвейерной системе роликового конвейера, показанной на (Рисунок).

Пакет на роликовой ленте продвигается горизонтально на расстояние.

Сила тяжести и нормальная сила, действующая на упаковку, перпендикулярны перемещению и не работают. Более того, они также равны по величине и противоположны по направлению, поэтому они сокращаются при вычислении чистой силы. Итоговая сила возникает исключительно из приложенной горизонтальной силы и горизонтальной силы трения. Таким образом, как и ожидалось, результирующая сила параллельна перемещению, так что и, а чистая работа равна

.

Эффект чистой силы заключается в ускорении упаковки от до.Кинетическая энергия пакета увеличивается, указывая на то, что чистая работа, проделанная в системе, положительна. (См. (Рисунок).) Используя второй закон Ньютона и немного занимаясь алгеброй, мы можем прийти к интересному выводу. Подстановка из второго закона Ньютона дает

Чтобы получить взаимосвязь между работой сети и скоростью, придаваемой системе действующей на нее чистой силой, мы берем и используем уравнение, изученное в Уравнениях движения для постоянного ускорения в одном измерении, для изменения скорости на расстоянии, если ускорение имеет постоянное значение; а именно (обратите внимание, что появляется в выражении для сети).Решение для ускорения дает. Когда подставляется в предыдущее выражение для, получаем

Отмены, и мы переставляем это, чтобы получить

Это выражение называется теоремой работы-энергии, и оно фактически применяет в общем случае (даже для сил, которые меняются по направлению и величине), хотя мы вывели его для частного случая постоянной силы, параллельной смещению. Из теоремы следует, что чистая работа системы равна изменению количества.Эта величина — наш первый пример формы энергии.

Теорема работы-энергии

Чистая работа в системе равна изменению количества.

Величина в теореме работы-энергии определяется как поступательная кинетическая энергия (KE) массы, движущейся со скоростью. ( Поступательная кинетическая энергия отличается от кинетической энергии при вращении , которая будет рассмотрена позже.) В форме уравнения поступательная кинетическая энергия

— энергия, связанная с поступательным движением.Кинетическая энергия — это форма энергии, связанная с движением частицы, отдельного тела или системы объектов, движущихся вместе.

Мы знаем, что требуется энергия, чтобы довести объект, такой как автомобиль или пакет на (Рисунок), до скорости, но может быть немного удивительно, что кинетическая энергия пропорциональна квадрату скорости. Эта пропорциональность означает, например, что автомобиль, движущийся со скоростью 100 км / ч, имеет в четыре раза большую кинетическую энергию, чем при 50 км / ч, что помогает объяснить, почему столкновения на высокой скорости настолько разрушительны.Теперь мы рассмотрим серию примеров, чтобы проиллюстрировать различные аспекты работы и энергии.

Расчет кинетической энергии упаковки

Предположим, что 30,0-килограммовая упаковка на роликовой ленточной конвейерной системе (рисунок) движется со скоростью 0,500 м / с. Какова его кинетическая энергия?

Стратегия

Так как масса и скорость даны, кинетическая энергия может быть рассчитана на основе определения, данного в уравнении.

Решение

Кинетическая энергия определяется как

.

Ввод известных значений дает

, что дает

Обсуждение

Обратите внимание, что единицей кинетической энергии является джоуль, то же самое, что и единица работы, как упоминалось при первом определении работы.Также интересно то, что, хотя это довольно массивный пакет, его кинетическая энергия невелика при такой относительно низкой скорости. Этот факт согласуется с наблюдением, что люди могут перемещать пакеты таким образом, не изнуряя себя.

Определение работ по ускорению пакета

Предположим, что вы толкаете 30,0-килограммовый пакет в (Рисунок) с постоянной силой 120 Н на расстояние 0,800 м, а сила трения противоположной стороны в среднем составляет 5,00 Н.

(a) Рассчитайте чистую работу, проделанную с упаковкой.(b) Решите ту же задачу, что и в части (a), на этот раз найдя работу, выполняемую каждой силой, которая вносит вклад в результирующую силу.

Стратегия и концепция (а)

Это движение в задаче одного измерения, потому что направленная вниз сила (от веса упаковки) и нормальная сила имеют равную величину и противоположное направление, так что они сводятся к нулю при вычислении чистой силы, в то время как приложенная сила, трение, и смещения все горизонтальные. (См. (Рисунок).) Как и ожидалось, чистая работа — это чистая сила, умноженная на расстояние.

Решение для (а)

Чистая сила — это сила толчка за вычетом трения, или. Таким образом, чистая работа

Обсуждение для (а)

Это значение представляет собой чистую работу, выполненную с пакетом. На самом деле человек выполняет больше работы, потому что трение препятствует движению. Трение совершает негативную работу и удаляет часть энергии, которую человек тратит, и преобразует ее в тепловую энергию. Чистая работа равна сумме работы, проделанной каждой отдельной силой.

Стратегия и концепция (b)

Силы, действующие на упаковку, — это сила тяжести, нормальная сила, сила трения и приложенная сила.Нормальная сила и сила тяжести перпендикулярны перемещению и поэтому не работают.

Решение для (b)

Приложенная сила работает.

Сила трения и смещение имеют противоположные направления, так что работа, совершаемая трением, равна

Таким образом, количество работы, совершаемой гравитацией, нормальной силой, приложенной силой и трением, составляет, соответственно,

.

Общая проделанная работа как сумма работы, проделанной каждой силой, тогда составляет

.

Обсуждение для (б)

Рассчитанная общая работа как сумма работы каждой силы согласуется, как и ожидалось, с работой, проделанной чистой силой.Работа, выполняемая совокупностью сил, действующих на объект, может быть рассчитана любым подходом.

Определение скорости работы и энергии

Найдите скорость пакета в (Рисунок) в конце толчка, используя концепции работы и энергии.

Стратегия

Здесь можно использовать теорему работы-энергии, потому что мы только что вычислили чистую работу, и начальную кинетическую энергию,. Эти расчеты позволяют нам найти конечную кинетическую энергию, и, следовательно, конечную скорость.

Решение

Теорема работы-энергии в форме уравнения:

Решение для дает

Таким образом,

Определение конечной скорости в соответствии с запросом и ввод известных значений дает

Обсуждение

Используя работу и энергию, мы не только приходим к ответу, мы видим, что конечная кинетическая энергия — это сумма начальной кинетической энергии и чистой работы, проделанной с упаковкой. Это означает, что работа действительно увеличивает энергию упаковки.

Работа и энергия могут определять расстояние, слишком

Как далеко паковка на (рис.) Продвигается по инерции после толчка, если трение остается постоянным? Используйте соображения работы и энергии.

Стратегия

Мы знаем, что как только человек перестанет толкать, трение остановит упаковку. Что касается энергии, трение выполняет отрицательную работу до тех пор, пока не убирает всю кинетическую энергию упаковки. Работа, совершаемая трением, — это сила трения, умноженная на пройденное расстояние, умноженное на косинус угла между силой трения и смещением; следовательно, это дает нам способ определить расстояние, пройденное после того, как человек прекратил толкать.

Решение

Нормальная сила и сила тяжести отменяются при вычислении чистой силы. Горизонтальная сила трения тогда является результирующей силой, и она действует противоположно смещению, так что. Чтобы уменьшить кинетическую энергию пакета до нуля, работа за счет трения должна быть минус кинетическая энергия, с которой пакет был запущен, плюс то, что пакет накопил в результате толкания. Таким образом . Кроме того, где расстояние до остановки. Таким образом,

и так

Обсуждение

Это разумное расстояние, на котором упаковка может двигаться по инерционной катушке на конвейерной системе без трения.Обратите внимание, что работа, совершаемая трением, отрицательна (сила направлена ​​в противоположном направлении движения), поэтому она снимает кинетическую энергию.

Некоторые примеры в этом разделе могут быть решены без учета энергии, но за счет упущения понимания того, какая работа и энергия делают в этой ситуации. В целом решения, использующие энергию, обычно короче и проще, чем решения, использующие только кинематику и динамику.

Концептуальные вопросы

Человек на (Рисунок) работает с газонокосилкой.При каких условиях газонокосилка будет набирать энергию? При каких условиях он потеряет энергию?

Работа, проделанная над системой, вкладывает в нее энергию. Работа, выполняемая системой, лишает ее энергии. Приведите пример для каждого утверждения.

При вычислении скорости в (Рисунок) мы сохранили только положительный корень. Почему?

Задачи и упражнения

Сравните кинетическую энергию грузовика массой 20 000 кг, движущегося со скоростью 110 км / ч, с кинетической энергией космонавта весом 80,0 кг на орбите, движущегося со скоростью 27 500 км / ч.

(a) Насколько быстро должен двигаться слон весом 3000 кг, чтобы иметь такую ​​же кинетическую энергию, как у спринтера весом 65,0 кг, бегущего со скоростью 10,0 м / с? (б) Обсудите, как большая энергия, необходимая для передвижения более крупных животных, будет связана со скоростью метаболизма.

Подтвердите значение, указанное для кинетической энергии авианосца на (Рисунок). Вам нужно будет найти определение морской мили (1 узел = 1 морская миля / ч).

(a) Рассчитайте усилие, необходимое для остановки автомобиля массой 950 кг со скорости 90.0 км / ч на расстоянии 120 м (довольно типичное расстояние для остановки без паники). (b) Предположим, что вместо этого автомобиль на полной скорости врезается в бетонную опору и останавливается через 2,00 м. Рассчитайте силу, действующую на автомобиль, и сравните ее с силой, указанной в части (а).

Бампер автомобиля спроектирован таким образом, чтобы выдерживать столкновение с неподвижным предметом на скорости 4,0 км / ч (1,1 м / с) без повреждения кузова автомобиля. Бампер амортизирует удар, поглощая силу на расстоянии. Рассчитайте величину средней силы, действующей на бампер, который разрушается 0.200 м при остановке автомобиля массой 900 кг с начальной скорости 1,1 м / с.

Боксерские перчатки имеют мягкую подкладку для уменьшения силы удара. (a) Рассчитайте силу, прилагаемую боксерской перчаткой к лицу соперника, если перчатка и лицо сжимают 7,50 см во время удара, при котором рука и перчатка весом 7,00 кг останавливаются с начальной скорости 10,0 м / с. (b) Рассчитайте силу, оказываемую идентичным ударом в дни, когда не использовались перчатки, а суставы и лицо сжимались только 2 раза.00 см. (c) Обсудите величину силы в перчатке. Кажется, что он достаточно высок, чтобы нанести урон, даже если он ниже силы без перчатки?

Используя соображения энергии, рассчитайте среднюю силу, которую спринтер весом 60 кг прикладывает назад на трассе, чтобы разогнаться с 2,00 до 8,00 м / с на расстоянии 25,0 м, если он встречает встречный ветер, который оказывает на него среднюю силу 30,0 Н. .

Глоссарий

чистая работа
Работа, совершаемая чистой силой или векторной суммой всех сил, действующих на объект
теорема работы-энергии
результат, основанный на законах Ньютона, о том, что чистая работа, выполняемая над объектом, равна его изменению кинетической энергии
кинетическая энергия
энергия, которую объект имеет за счет своего движения, равная поступательной (т.е.е., без вращения) движение объекта массы, движущегося со скоростью

14 Карьера в области физики и математики

Если вы заинтересованы в логической и творческой карьере, рассмотрите одну из многих рабочих мест по физике и математике. Знание вакансий, которыми вы можете заниматься в этих областях, поможет вам сузить круг поиска работы и поможет понять, чего ожидать. В этой статье мы объясним, какие навыки вам понадобятся для выполнения одной из этих работ, и перечислим различные профессии в области физики и математики, которыми нужно заниматься.

Связано: Лучшие способы укрепить свои навыки логического мышления

Зачем вам нужны навыки для карьеры в области физики и математики?

Чтобы продолжить карьеру в области физики или математики, вам потребуется определенный набор навыков, которые помогут вам с большей легкостью выполнять свои служебные обязанности. Эти навыки могут даже повысить ваши шансы получить работу в любой из этих областей. Вот некоторые навыки, необходимые для карьеры в области физики и математики:

  • Решение проблем: Имея карьеру в области физики или математики, важно знать, как подходить к проблеме и использовать логические рассуждения для ее решения.В частности, использование научного метода помогает прийти к стратегическому решению множества проблем. Навыки решения проблем помогают систематизировать данные, выявлять закономерности и помогают применять информацию к сложным проблемам и ситуациям.
  • Технические знания: Вам необходимы технические знания в области технологических инструментов, таких как компьютеры, для выполнения различных задач в области физики или математики. Например, знание того, как использовать электронную таблицу, может помочь вам организовать данные и помочь вам вводить формулы для выполнения различных вычислений.
  • Математические навыки: Как и ожидалось, вам потребуются сильные математические способности для карьеры в математике и физике. Вы не только должны понимать математические концепции, но также должны знать, как их применять.

Связано: Математические навыки: определение, примеры и способы их развития

Карьера в математике и физике

Вы можете использовать свои математические и физические навыки в различных отраслях на рабочем месте.Благодаря обилию карьерных возможностей вы обязательно найдете должность, которая соответствует вашей квалификации и интересам. Используйте этот список, чтобы изучить множество профессий в области физики и математики:

Средняя зарплата по стране: 58100 долларов в год

Основные обязанности: Технические писатели передают сложный и технически сложный контент в четкую документацию. Они готовят и просматривают техническую документацию, а также собирают и оценивают техническую информацию и информацию о продукте, чтобы отметить новые или изменяющиеся функциональные возможности продукта.

Связано: Узнайте о том, как стать техническим писателем

Средняя зарплата по стране: 63 974 доллара в год

Основные обязанности: Инженеры-химики занимаются химическими производственными процессами. Они устраняют проблемы этих процессов и создают системы измерения и управления для химических предприятий. По сути, они решают разные задачи, связанные с химическим производством.

Связано: Узнайте, как стать инженером-химиком

Средняя зарплата по стране: 65136 долларов в год

Основные обязанности: Метеорологи изучают прогноз погоды.Используя научные принципы, они наблюдают за атмосферной атмосферой Земли, чтобы определить ее влияние на мир и человеческую жизнь. Метеорологи анализируют данные, выпускают предупреждения о погоде и передают прогноз погоды.

Средняя заработная плата по стране: 73 372 долл. США в год

Основные обязанности: Аналитики данных собирают данные и оценивают их, чтобы прийти к осмысленным выводам. Они создают базы данных и системы для сбора данных, поддерживают эти системы данных и выявляют закономерности или тенденции в большом наборе данных.

Связано: Узнайте о том, как стать аналитиком данных

Средняя зарплата по стране: 77 722 доллара в год

Основные обязанности: Системные аналитики оценивают текущие системы баз данных компании. Они создают и тестируют системные стандарты и решения. Системные аналитики также определяют и анализируют системные проблемы, создают спецификации для новых или улучшенных систем и внедряют эти новые системы.

Связано: Узнайте о том, как стать системным аналитиком

Средняя заработная плата по стране: 87 188 долларов в год

Основные обязанности: Инженеры-строители проектируют крупные транспортные проекты.Помимо проектирования, они также проектируют и контролируют процесс строительства и обслуживания различных объектов инфраструктуры. Некоторые проекты, над которыми они могут работать, включают мосты, дороги, железную дорогу и электростанции.

Связано: Узнайте, как стать инженером-строителем

Средняя зарплата по стране: 87 795 долларов в год

Основные обязанности: Инженеры-конструкторы создают идеи для новых продуктов и систем для их производства. Они улучшают существующие продукты и процессы для большей эффективности, разрабатывают чертежи, создают тестовые прототипы и контролируют производственный процесс для новых продуктов.

Связано: Узнайте, как стать инженером-проектировщиком

Средняя зарплата по стране: 88 855 долларов в год

Основные обязанности: Инженеры-технологи создают и устанавливают оборудование и производственные процессы, которые превращают сырье в конечную продукцию. Они работают с руководителями производства, чтобы оценить существующие процессы, внедрить новые процедуры, разработать идеи процессов для снижения затрат и повышения производительности, а также проанализировать показатели, чтобы найти области, которые нуждаются в улучшении.

Связано: Узнайте, как стать инженером-технологом

Средняя зарплата по стране: 96 628 долларов в год

Основные обязанности: Математики просматривают данные и используют математические и статистические методы для решения проблем в таких областях, как бизнес, здравоохранение и инженерия. Их конкретные обязанности зависят от области их работы. Обычно математики создают новые математические теории и правила, собирают данные, выявляют закономерности и взаимосвязи в наборах данных и определяют достоверность данных и ошибку выборки.

Средняя заработная плата по стране: 97 990 долларов в год

Основные обязанности: Статистики используют статистические методы и модели для решения реальных проблем. Они разрабатывают опросы, эксперименты и опросы для сбора данных, выявляют тенденции в наборах данных, разрабатывают процессы сбора данных, сообщают результаты своих исследований заинтересованным сторонам и используют их для принятия решений.

Связано: Узнайте, как стать статистиком

Средняя заработная плата по стране: 102 945 долларов в год

Основные обязанности: Геофизики изучают физические аспекты Земли и атмосферу с помощью различных методов, пытаясь решить проблемы.Они проводят полевые испытания, анализируют и интерпретируют данные, представляют отчеты заинтересованным сторонам проекта и соблюдают стандарты охраны труда, здоровья и окружающей среды.

Средняя заработная плата по стране: 112 544 долларов в год

Основные обязанности: Экономисты анализируют экономические и статистические данные, исследуют экономические вопросы, проводят опросы, создают экономические прогнозы и модели, готовят отчеты и отслеживают экономические тенденции. В своих исследованиях они используют различные методологии и источники.

Средняя зарплата по стране: 114 245 долларов в год

Основные обязанности: Инженеры-оптики используют концепции оптики для разработки решений проблем и создания устройств, успешно использующих свет. Они создают прецизионные оптические системы для таких вещей, как камеры или системы линз. Инженеры-оптики также определяют требуемые характеристики и модифицируют оптические устройства по мере необходимости.

Средняя заработная плата по стране: 121 673 доллара в год

Основные обязанности: Специалисты по обработке данных определяют цели компании и рассматривают, как они могут использовать данные, чтобы помочь этим компаниям в их достижении.Они задают вопросы в процессе обнаружения, собирают, обрабатывают и интегрируют данные, проводят исследование и анализ данных, создают прогностические модели и алгоритмы, измеряют результаты и представляют их заинтересованным сторонам бизнеса.

Связано: Узнайте о том, как стать специалистом по данным

Мнение: Изучение математики может улучшить вашу жизнь

Многие ученики жалуются и ставят под сомнение изучение математики в школе, потому что считают, что это не обязательно для их будущей жизни.Однако многие студенты не осознают, что математика используется и применяется повсюду.

Математика — это не просто школьный предмет, который вы изучаете, потому что обязаны; На самом деле это ценная тема для изучения для многих профессий и профессий, она делает вас умнее, и отсутствие учебы может повредить вашему мозгу.

Многие рабочие места и карьеры по всему миру требуют больше математики, чем люди думают. Больше технологий означает больше математического использования и приложений.

Страны и компании соревнуются за развитие технологий, поэтому карьера и получение специализации в области медицины, науки и информатики могут эффективно помочь вам найти работу.

Математика часто требуется для выполнения этих заданий по науке, технологиям и математике (STEM). По сути, больше математики означает больше рабочих мест.

По данным факультета математики Университета Вандербильта, «Распространенное заблуждение состоит в том, что специальность по математике бесполезна, если вы не планируете преподавать математику. Но правда в том, что для людей с математическим образованием существует множество интересных и полезных работ ».

Люди, которые изначально думают, что математика бесполезна для карьеры, совершенно ошибаются в своих убеждениях, потому что не осознают, сколько рабочих мест их ждет в этом технологическом мире.

Многие профессии, которые получают выгоду от математических знаний помимо инженерии и медицины, включают компьютерных программистов, статистиков, актуариев, экономических консультантов и даже бизнес-менеджеров, и это лишь некоторые из длинного списка. Математика неизбежна в большем количестве профессий, чем люди думают.

Например, будучи инженером-строителем, если вы проектируете аэропорт для небольших самолетов, вам необходимо определить, достаточно ли длинна взлетно-посадочная полоса для взлета самолета, если он должен достичь определенной скорости, прежде чем это сделать.2 + 2a (x-x0)) для постоянного ускорения. Используя эту математическую формулу, вы можете найти скорость самолета, необходимую для взлета, и, таким образом, рассчитать минимальную длину взлетно-посадочной полосы.

Это всего лишь один пример работы, требующей знания математики. Чем больше вы знаете математики, тем на большее количество вакансий вы можете претендовать и из чего выбирать.

Есть даже свидетельства того, что математика полезна для вашего мозга. Как сообщает The Guardian, японский нейробиолог Рюта Кавасима из Университета Тохоку обнаружил в своем исследовании, что математические вычисления развивают человеческий мозг лучше, чем игры в видеоигры, прослушивание музыки или чтение текста вслух.

Профессор Стэнфорда Кейт Девлин сказал The Guardian: «Мозг эволюционировал на протяжении сотен тысяч лет, чтобы справляться с проблемами в физическом и социальном мирах. Но математика появилась недавно — числам не более 10 000 лет, поэтому мозг не развился, чтобы так думать. Вот почему математика дается не так легко, как знание языка ».

Математика, наконец, очень важна, потому что, если вы ее не выучите, это может повредить ваш мозг. Некоторыми последствиями незнания математики являются «снижение уровней торможения мозга в ключевой области мозга, участвующей в рассуждении и когнитивном обучении», как утверждается в Трудах Национальной академии наук Соединенных Штатов Америки (PNAS).По сути, PNAS обнаружил, что отказ от изучения математики в критические времена в подростковом возрасте может привести к недостаточному развитию мозга.

В обзоре литературы, опубликованном в исследовательской статье PNAS, они также сообщают о том, как математика связана с прогрессом в образовании, трудоустройстве, психическом и физическом здоровье, социально-экономическом статусе и финансовой стабильности, что дополнительно показывает, насколько важно изучение математики для общего качества человека.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *