Изобретение графена – Материал Будущего, История Открытия, Физические и Химические Свойства, Возможности Применения, Проблемы и Прогнозы Массового Использования

Содержание

Графен — Википедия

Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp²-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость слоистого графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью[4] и рекордно большой теплопроводностью[5]. Высокая подвижность носителей заряда, которая оказывается максимальной среди всех известных материалов (при той же толщине), делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники[6] и возможную замену кремния в интегральных микросхемах.

Один из существующих в настоящее время способов получения графена в условиях научных лабораторий[7][8] основан на механическом отщеплении или отшелушивании слоёв графита от высокоориентированного пиролитического графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другие известные способы — метод термического разложения подложки карбида кремния

[9][10] и xимическое осаждение из газовой фазы — гораздо ближе к промышленному производству. С 2010 года доступны листы графена метрового размера, выращенные с помощью последнего метода[11].

Из-за особенностей энергетического спектра носителей графен проявляет специфические[12], в отличие от других двумерных систем, электрофизические свойства. Графен был первым полученным элементарным двумерным кристаллом, но впоследствии были получены другие материалы силицен, фосфорен, германен.

За «передовые опыты с двумерным материалом — графеном» Андрею Константиновичу Гейму и Константину Сергеевичу Новосёлову была присуждена Нобелевская премия по физике за 2010 год[13][14]. В 2013 году Михаил Иосифович Кацнельсон награждён премией Спинозы за разработку базовой концепции и понятий, которыми оперирует наука в области графена

[15].

Графен — первый известный истинно двумерный кристалл[1]. В отличие от более ранних попыток создания двумерных проводящих слоёв, к примеру, двумерный электронный газ (ДЭГ), из полупроводников методом управления шириной запрещённой зоны, электроны в графене локализованы в плоскости гораздо сильнее.

Многообразие химических и физических свойств обусловлено кристаллической структурой и π-электронами атомов углерода, составляющих графен. Широкое изучение материала в университетах и исследовательских лабораториях связано, прежде всего, с доступностью и простотой его приготовления с использованием механического расщепления кристаллов графита[1]. Материалом, проявившим свои уникальные свойства — высокую проводимость и теплопроводность, прочность

[16], гидрофобность, — заинтересовались не только учёные, но и технологи, а также связанные с производством процессоров корпорации IBM[17], Samsung[18]. Принцип работы транзисторов из графена существенно отличается от принципа работы традиционных полевых кремниевых транзисторов, так как графен имеет запрещённую зону нулевой ширины, и ток в графеновом канале течёт при любом приложенном затворном напряжении, поэтому развиваются иные подходы к созданию транзисторов[19].

Качество графена для транспортных измерений характеризуется таким параметром, как подвижность, который характеризует силу отклика носителей тока на приложенное электрическое поле. Двумерный электронный газ в полупроводниковых гетероструктурах обладает рекордными подвижностями при температурах ниже 1 K. Графен уступает ДЭГ в GaAs при столь низких температурах, но, так как электрон-фононное рассеяние в графене намного слабее, подвижность достигает 250 000 см

−1с−1 при комнатной температуре[1]. Эта подвижность представляет собой один из основных параметров, необходимых для создания быстродействующих высокочастотных транзисторов[19].

Уникальные электронные свойства графена проявляются и в оптике. В частности, графен позволяет глазом «увидеть» постоянную тонкой структуры α, сравнивая интенсивность света, прошедшего через закрытую графеном апертуру и прошедшего свободно. Коэффициент прохождения для графена в области видимого света хорошо описывается простой формулой T ≈ 1−πα ≈ 97,7 %[20]. Постоянная тонкой структуры оказывается связана с величиной кванта сопротивления, измеряемого в Квантовом эффекте Холла. В этом случае точность её настолько высока, что позволяет использовать графен для создания эталона сопротивления,

RK = h/e2 = 25 812,807557(18) Ом[21]. Связь между графеном и постоянной тонкой структуры оказывается даже глубже, поскольку динамика электронного газа в графене определяется релятивистским уравнением квантовой механики — уравнением Дирака, — и по существу является твердотельным аналогом (2+1)-мерной квантовой электродинамики. Несколько аналогичных эффектов, предсказанных для квантовой электродинамики можно наблюдать в графене[22].

Несмотря на сильное взаимодействие света с графеном[23], отыскать осаждённые плёнки графена на подложке кремния оказывается трудной задачей. Существуют предпочтительные толщины оксида кремния (90 нм, 290 нм для длин волн видимого света), которые дают максимальный контраст, что существенно упрощает поиск плёнок[24]. Хотя тренированный человек достаточно легко отличает монослой графена от двухслойного графена по контрасту, хорошим доказательством служит также рамановская спектроскопия

[25], выгодно отличающаяся быстротой анализа и чувствительностью к количеству слоёв. Альтернативные методы, такие как определение толщины атомно-силовым микроскопом и идентификация по квантовому эффекту Холла требуют гораздо большего времени[24].

Методы роста графена на больших площадях отличаются от механических методов однородностью и чистотой процесса. Газофазная эпитаксия углерода на медную фольгу (CVD-графен) позволяет создавать очень однородные поликристаллические плёнки графена с размерами порядка метров[11]. Размер монокристаллов графена составляет сотни микрон. Меньшие кристаллиты получаются при термическом разложении карбида кремния.

Самый непроизводительный метод механического расщепления оказывается наиболее приспособленным для получения высококачественных кристаллов графена, хотя CVD-графен по качеству приближается к нему. Как механический метод, так и выращивание на поверхности другого материала обладают существенными недостатками, в частности, малой производительностью, поэтому технологи изобретают химические методы получения графена из графита для получения из монокристалла графита плёнки, состоящей преимущественно из графеновых слоёв, что существенно продвинет графен на рынке.

Благодаря сильным углеродным ковалентным связям графен инертен по отношению к кислотам и щелочам при комнатной температуре. Однако присутствие определённых химических соединений в атмосфере может приводить к легированию графена, что нашло применение в обладающих рекордной чувствительностью сенсорах — детекторах отдельных молекул[26]. Для химической модификации с образованием ковалентных связей графена необходимы повышенные температуры и обладающие сильной реакционной способностью вещества. Например, для создания гидрогенизированного графена нужно наличие протонов в плазме газового разряда

[27], для создания фторографена — сильного фторирующего агента дифторида ксенона[28]. Оба этих материала показали диэлектрические свойства, то есть их сопротивление растёт с понижением температуры. Это обусловлено формированием запрещённой зоны.

Количество публикаций, посвящённых графену, растёт год от года, превысив 10000 в 2012 году[29]. Несмотря на то, что треть статей (доля от общего числа составляет 34 %) публикуется научными учреждениями и фирмами из Европы, главными держателями патентов (из приблизительно 14000 патентов на июль 2014 года) выступают фирмы и университеты Китая (40 %), США (23 %) и Южной Кореи (21 %), а европейская доля составляет 9 %[30]. Среди фирм и университетов Самсунг является лидером по количеству патентов

[31].

Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку.

Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристалл графита. Графен является базой для построения теории этого кристалла. Графит является полуметаллом, и, как было показано[32] в 1947 году Ф. Уоллесом, в зонной структуре графена также отсутствует запрещённая зона, причём в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают безмассовые фотоны и ультрарелятивистские частицы, а также нейтрино. Поэтому говорят, что эффективная масса электронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что, несмотря на сходство фотонов и безмассовых носителей, у графена есть несколько существенных отличий, делающих носители в нём уникальными по своей физической природе, а именно: электроны и дырки являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет.

Несмотря на такие специфические особенности, до 2005 года[12] экспериментального подтверждения эти выводы не получили, поскольку не удавалось получить графен. Кроме того, ещё раньше было теоретически показано, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания

[33][34][35]. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.

Интерес к графену появился снова после открытия углеродных нанотрубок, поскольку вся первоначальная теория графена строилась на простой модели развёртки цилиндра нанотрубки. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.

Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа[36] для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит — соединения, подобные графитиду калия KC8)[33] в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) тоже не привело к результату.

В 2004 году британскими учёными российского происхождения Андреем Геймом и Константином Новоселовым из Манчестерского университета была опубликована работа в журнале Science[7], где сообщалось о получении графена на подложке окислённого кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO2 по аналогии с тонкими плёнками, выращенными с помощью МПЭ. Впервые были измерены проводимость, эффект Шубникова — де Гааза, эффект Холла для образцов, состоящих из плёнок углерода атомарной толщины.

Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабосвязанные (по сравнению с силами в плоскости) слои двумерных кристаллов. В последующей работе[8] авторы показали, что его можно использовать для получения других двумерных кристаллов: BN, MoS

2, NbSe2, Bi2Sr2CaCu2Ox.

В 2011 году ученые из Национальной радиоастрономической обсерватории объявили, что им, вероятно, удалось зарегистрировать графен в космическом пространстве (планетарные туманности в Магеллановых облаках)[37].

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит или киш-графит[38]. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди множества полученных плёнок могут попадаться одно- и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окислённого кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм)[8]. Найденные с помощью оптического микроскопа слабо различимые (при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или используя комбинационное рассеяние. Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Кусочки графена также можно приготовить из графита, используя химические методы[39]. Сначала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита[40].

Один из химических методов получения графена основан на восстановлении оксида графита. Первое упоминание о получении хлопьев восстановленного монослойного оксида графита (оксида графена) было уже в 1962 году[41].

Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD)[42] и рост при высоком давлении и температуре (англ. HPHT)[43]. Последний можно использовать для получения плёнок большой площади.

Большую площадь графена растят на подложках карбида кремния SiC(0001)[9][10]. Графитовая плёнка формируется при термическом разложении поверхности подложки SiC, причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. Этот метод получения графена гораздо ближе к промышленному производству. В работах[44][45] та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного рода дефектам. Например, дефект Стоуна — Уэйлса возникает в случае пересоединения углеродных связей и в результате формируются два пятиугольных цикла и два семиугольных[46].

Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами известна под названием фуллерен. Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.

На основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджия заявила, что ими был получен полевой транзистор на графене выращенном на подложке карбида кремния (то есть на большой площади), а также квантово-интерференционный прибор, то есть измерили слабую локализацию и универсальные флуктуации кондактанса[en][47]. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом[48].

Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным из-за отсутствия запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных к затвору напряжениях, то есть не получается задать два состояния, пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно как-то создать запрещённую зону достаточной ширины при рабочей температуре, чтобы термически возбуждённые носители давали малый вклад в проводимость. Один из возможных способов предложен в работе (см. ссылку)[6]. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерному эффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (значительно большей при комнатной температуре, чем подвижность в кремнии, используемом в микроэлектронике) 104 см²·В−1·с−1 быстродействие такого транзистора будет заметно выше. Впрочем при уменьшении размеров до определённого размера (порядка 10 нм) подвижность должна уменьшаться в связи с дефектами графена на границах, что и было продемонстрировано в экспериментах, но при дальнейшем уменьшении размеров теоретические исследования говорят о достижении баллистического транспорта и соответственно росте подвижности и быстодействия. Графеновые транзисторы с коротким каналом (около 50 нм) обладают частотой отсечки 427 ГГц[49].

В статье[50] и продемострировали использование графена в качестве очень чувствительного сенсора для обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, как NH3, CO, H2O, NO2. Сенсор размером 1 × 1 мкм2 использовался для детектирования присоединения отдельных молекул NO2 к графену. Принцип действия этого сенсора заключается в том, что разные молекулы выступают донорами и акцепторами, что в свою очередь ведёт к изменению сопротивления графена. В работе[51] теоретически исследуется влияние различных использованных в отмеченном выше эксперименте примесей на проводимость графена. В работе[52] было показано, что примеси, молекулы которых имеют магнитный момент (неспаренный электрон), обладают более сильными легирующими свойствами.

Высокая подвижность носителей тока, гибкость и низкая плотность позволяет использовать графен в ещё одной перспективной области — использование для изготовления электродов в ионисторах (суперконденсаторах). Опытные образцы ионисторов на графене имеют удельную энергоёмкость 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг)[53] и впоследствии можно достичь 250 Вт·ч/кг[54].

Отсутствие запрещённой зоны имеет преимущества над полупроводниками в инфракрасной области спектра, что продемонстрировали при создании новых типов светодиодов и фотодетекторов на основе графена (LEC)[55][56].

Физические свойства нового материала можно изучать по аналогии с другими подобными материалами. В настоящее время экспериментальные и теоретические исследования графена сосредоточены на стандартных свойствах двумерных систем: проводимости, квантовом эффекте Холла, слабой локализации и других эффектах, исследованных ранее в двумерном электронном газе.

Теория[править | править код]

В этом параграфе кратко описываются основные положения теории, некоторые из которых получили экспериментальное подтверждение, а некоторые ещё ждут верификации.

Кристаллическая структура[править | править код]
Рис. 3. Изображение гексагональной решётки графена. Жёлтым цветом показана элементарная ячейка, красным и зелёным цветами показаны узлы различных подрешёток кристалла. e1 и e2 — вектора трансляций

Кристаллическая решётка графена представляет собой плоскость, состоящую из шестиугольных ячеек, то есть является двумерной гексагональной кристаллической решёткой. Для такой решётки известно, что её обратная решётка тоже будет гексагональной. В элементарной ячейке кристалла находятся два атома, обозначенные A и B. Каждый из этих атомов при сдвиге на вектора трансляций (любой вектор вида rA=me1+ne2{\displaystyle \mathbf {r} _{A}=m\mathbf {e} _{1}+n\mathbf {e} _{2}}, где m и n — любые целые числа) образует подрешётку из эквивалентных ему атомов, то есть свойства кристалла независимы от точек наблюдения, расположенных в эквивалентных узлах кристалла. На рисунке 3 представлены две подрешётки атомов, закрашенные разными цветами: зелёным и красным.

Расстояние между ближайшими атомами углерода в шестиугольниках, обозначенное a0{\displaystyle a_{0}}, составляет 0,142 нм. Постоянную решётки (a{\displaystyle a}) можно получить из простых геометрических соображений. Она равна a=3a0{\displaystyle a={\sqrt {3}}a_{0}}, то есть 0,246 нм. Если определить за начало координат точку, соответствующую узлу кристаллической решётки (подрешётка A), из которой начинаются векторы трансляций e1,e2{\displaystyle \mathbf {e} _{1},\,\mathbf {e} _{2}} с длиной векторов, равной a,{\displaystyle a,} и ввести двумерную декартову систему координат в плоскости графена с осью ординат, направленной вниз, и осью абсцисс, направленной по отрезку, соединяющему соседние узлы A и B, то тогда координаты концов векторов трансляций, начинающихся из начала координат, запишутся в виде[32]:

e1=[3a/2,−a/2],e2=[0,a],(1.1){\displaystyle \mathbf {e} _{1}=[{\sqrt {3}}a/2,-a/2],\,\mathbf {e} _{2}=[0,a],\qquad (1.1)}

а соответствующие им векторы обратной решётки:

g1=[2/(3a),0],g2=[1/(3a),1/a](1.2){\displaystyle \mathbf {g} _{1}=[2/({\sqrt {3}}a),0],\,\mathbf {g} _{2}=[1/({\sqrt {3}}a),1/a]\qquad (1.2)}

(без множителя 2π{\displaystyle 2\pi }). В декартовых координатах положение ближайших к узлу подрешётки A (все атомы которой на рисунке 3 показаны красным) в начале координат атомов из подрешётки B (показаны соответственно зелёным цветом) задаётся в виде:

[a/3,0],[−a/(23),a/2],[−a/(23),−a/2].(1.3){\displaystyle [a/{\sqrt {3}},0],\,[-a/(2{\sqrt {3}}),a/2],\,[-a/(2{\sqrt {3}}),-a/2].\qquad (1.3)}
Зонная структура[править | править код]

Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла.

[a/{\sqrt  {3}},0],\,[-a/(2{\sqrt  {3}}),a/2],\,[-a/(2{\sqrt  {3}}),-a/2].\qquad (1.3) Рис. 4: Ближайшие атомы в окружении центрального узла (A) решётки. Красная пунктирная окружность соответствует ближайшим соседям из той же самой подрешётки кристалла (A), а зелёная окружность соответствует атомам из второй подрешётки кристалла (B)

Зонная структура графена рассчитана в статье[32] в приближении сильно связанных электронов. На внешней оболочке атома углерода находятся 4 электрона, три из которых образуют связи с соседними атомами в решётке при перекрывании sp²-гибридизированных орбиталей, а оставшийся электрон находится в 2pz-состоянии (именно это состояние отвечает в графите за образование межплоскостных связей, а в графене — за образование энергетических зон). В приближении сильно связанных электронов полная волновая функция всех электронов кристалла записывается в виде суммы волновых функций электронов из разных подрешёток

ψ=ϕ1+λϕ2,(2.1){\displaystyle \psi =\phi _{1}+\lambda \phi _{2},\qquad (2.1)}

где коэффициент λ — некий неизвестный (вариационный) параметр, который определяется из минимума энергии. Входящие в уравнение волновые функции ϕ1{\displaystyle \phi _{1}} и ϕ2{\displaystyle \phi _{2}}

Графен и его создатели. Справка

Будучи открытым всего несколько лет назад (в 2004 г.) учеными Константином Новоселовым и Андреем Геймом, работающими ныне в Манчестерском университете, графен быстро завоевал право называться материалом — преемником кремния, так как вскоре после начала его интенсивного изучения стало понятно, что по многим параметрам он превосходит наиболее широко используемый полупроводник.

Благодаря своим свойствам, графен считается следующим поколением материалов, которые найдут свое применение в наноэлекронике. Он позволит существенно повысить скорость работы вычислительных машин, снизить их энергопотребление и нагревание в ходе работы, сделать их легкими. Графен также может быть использован в качестве замены тяжелых медных проводов в авиационной и космической индустрии, а также в широком наборе гибких электронных устройств, прототипы которых разрабатываются в наши дни.

Главный из существующих в настоящее время способов получения графена основан на механическом отщеплении или отшелушивании слоев графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура.

Другой известный способ — метод термического разложения подложки карбида кремния гораздо ближе к промышленному производству.

Поскольку графен впервые был получен только в 2004 г., он еще недостаточно хорошо изучен и привлекает к себе повышенный интерес. Данный материал не является просто кусочком других аллотропных модификаций углерода: графита, алмаза – из-за особенностей энергетического спектра носителей он проявляет специфические, в отличие от других двумерных систем, электрофизические свойства.

Согласно расчетам, микроэлектронные чипы на основе графена должны быть легче, производительнее, стабильнее в работе, должны потреблять меньше электроэнергии и меньше ее количество рассеивать в виде тепла. Наибольшая сложность в создании готовых электронных устройств на основе графена до сих пор заключалась в технической сложности получения углеродного листа больших размеров и отсутствия технологий манипуляций с ним.

В июне 2010 г. в Nature Nanotechnology была опубликована статья группы исследователей из Кореи и Японии, которые впервые сумели использовать углеродный наноматериал графен для создания сенсорного экрана с большой диагональю, что может приблизить появление гибких дисплеев и солнечных батарей и позволит существенно снизить их стоимость.

Ученые впервые сумели показать, что манипуляции с графеном возможны по принципам стандартной роликовой технологии, используемой, например, при печати газет и журналов. В своей работе они сумели получить большой лист графена, используя метод реакционного химического осаждения углеводородного сырья на гладкую пластину из меди. После этого с помощью роликов ученые покрыли графен слоем специального клейкого полимера, а медную подложку растворили травлением.

На следующем этапе ученые с помощью все той же роликовой технологии при нагревании перенесли графен с клейкой поверхности полимера на обычный пластик, используемый, например, для производства бутылок прохладительных напитков. Авторы публикации показали, что таким образом можно нанести несколько слоев графена друг на друга.

Полученный таким образом прямоугольный графеновый лист с диагональю 76 см ученые сумели превратить в прозрачный электрод для сенсорного дисплея. Такой дисплей, в отличие от современных аналогов, где в качестве прозрачного проводника используется оксид индия-олова, отличаются долговечностью, гибкостью, повышенной прозрачностью и, что наиболее важно, низкой стоимостью и экологичностью производства.

Создатели графена:

Как «мусорные физики» из России получили Нобелевскую премию

Это будущее приближают десятки лабораторий во всем мире. Путь от фундаментального открытия до практических результатов в случае с графеном преодолевается даже не за годы, а за месяцы. «Год назад я скептически относился к применению графена в электронике, сейчас это становится вполне реальным бизнесом», — говорит автор открытия Константин Новоселов.

Агентство Thomson Reuters в прошлом году сочло графен достойным Нобелевской премии. В список вероятных лауреатов включены Новоселов и его руководитель — Андрей Гейм, директор Центра мезоскопической физики при Манчестерском университете. «Нобелевку» они пока не получили, но их шансы с каждым годом будут расти. Даже удивительно, что материал со столь блестящими перспективами был получен с помощью липкой ленты, которая случайно не попала в мусорное ведро.

Графен представляет собой слой углерода толщиной в один атом. Миллиарды таких слоев образуют графит, из которого делают грифели для карандашей. В возможность отделить один слой никто не верил. Семьдесят лет назад Лев Ландау и Рудольф Пайерлс доказали, что таких материалов существовать не может: силы взаимодействия между атомами должны смять их в гармошку или свернуть в трубочку.

Графен оказался исключением из этого правила. Гейм и Новоселов обратили внимание на обычный скотч, с помощью которого готовят образцы графита для работы на сканирующем туннельном микроскопе. Скотч отрывает графитные слои, оставляя абсолютно гладкую поверхность. Ленту выбрасывают вместе с тем, что к ней прилипло. «За то, что мы ее подобрали и исследовали, нас обозвали garbage scientists — мусорными учеными», — смеется Новоселов. Склеивая и разлепляя ленту с хлопьями графита несколько раз, Новоселов получил то, что считалось невозможным, — слои графита толщиной в один атом. Их площадь достигала одного квадратного миллиметра: этого более чем достаточно, чтобы перенести графен на подложку и исследовать механические и электронные свойства. В 2004 году в журнале Science вышла эпохальная статья Гейма, Новоселова и их давнего коллеги Сергея Морозова. Свойства — проводимость, прочность, стабильность — оказались уникальными.

«У графена есть свойства, которых нет ни у одного материала, — говорит Новоселов, — это в буквальном смысле материя, ткань. С ней можно делать то же самое, что вот с этой салфеткой: сгибать, сворачивать, растягивать…» Бумажная салфетка неожиданно рвется у него в руках. С графеном такого не случится, замечает физик, это самый прочный материал на Земле.

Почему в графене видят материал, который вытеснит кремниевую электронику? Электроны в нем перемещаются в сотню раз быстрее, чем в кремнии. В прошлом году Гейм и Новоселов с соавторами показали, что из графена можно делать транзисторы, управляемые отдельными электронами. Все это позволит создать более миниатюрные и быстрые микросхемы, которые и греются намного меньше кремниевых.

Не хотел бы Новоселов заработать на своем открытии? Физик смотрит на меня с недоумением. Для него есть вещи поинтереснее. «Мы заканчиваем исследования задолго до того, как начинается коммерциализация, — объясняет он, — и не пытаемся заниматься технологиями». Представителей компаний, которые обращаются к ним, Гейм и Новоселов обычно отправляют в Graphene Industries — фирму, созданную их студентами. Те вручную делают пластинки графена и поштучно продают в лаборатории IBM, Intel, Samsung.

До 2020 года, по прогнозам исследовательской компании Lux Research, графен не поколеблет основы кремниевой электроники. Но уже сейчас новый материал обходит кремний по флангам, показывая себя в новых приложениях. Например, в сверхбыстрых высокочастотных транзисторах для приемников и передатчиков мобильной связи. «Опытные образцы появились в начале года, а сейчас у них уже наблюдаются рекордные показатели», — говорит Новоселов. Особенно продвинулись в их создании IBM и HRL (близкие к оборонному заказу исследовательские лаборатории, которыми совместно владеют Boeing и General Motors). В конце прошлого года HRL получили грант на 50-месячную программу графеновой электроники, которую координирует SPAWAR — инжиниринговый центр Военно-морского флота США. «Они даже не притворяются, что занимаются физикой, а прямо говорят, что делают приборы», — замечает Новоселов.

Развитие графеновой темы привлекло к ней внимание частных инвесторов. Несколько американских компаний замахнулись на производство сотен тонн графена к концу 2010 года. Такие объемы могут затоварить рынок радиочастотных транзисторов навечно, но производители пока ориентируются не на электронику.

Уже сейчас графен востребован как наполнитель для композитных материалов, говорит гендиректор фирмы XG Sciences Майкл Нокс. Гендиректор фирмы Angstron Materials Бор Джанг предлагает использовать графен в устройствах для хранения энергии — аккумуляторах и суперконденсаторах, а также топливных элементах, которые вырабатывают электроэнергию от соединения водорода с кислородом. Компания Vorbeck Materials продает Vor-ink — «чернила», позволяющие печатать электронные схемы.

Нокс узнал о графене в 2006 году от профессора Мичиганского университета Лоуренса Дрзала, который убедил его в том, что на графене можно хорошо заработать. «Я как раз продал свой предыдущий бизнес и искал какую-нибудь перспективную технологию, — вспоминает Нокс. — С тех пор ажиотаж вокруг графена непрерывно растет».

Джанг — пример ученого-предпринимателя, словно сошедший со страниц брошюры о коммерциализации технологий. С 2005 года он декан Колледжа технических и компьютерных наук при Университете Райта. Старт его компании Nanotek Instruments в 1997 году обеспечили гранты Министерства энергетики США. Затем от Nanotek отпочковалась Angstron. Свой первый патент, связанный с графеном, Джанг заявил еще в 2002-м — за два года до революционной работы русских физиков. «Их заслуга в том, что они первыми обнаружили необычные электронные свойства изолированных листов графена», — объясняет Джанг. К 2015 году он скромно планирует занять 30–40% мирового рынка графена, а еще раньше — провести IPO или продать компанию крупному инвестору. Vorbeck уже обзавелась серьезным партнером: для немецкого химического гиганта BASF фирма разрабатывает токопроводящую краску.

Чтобы фундаментальное открытие было применено на практике, оно должно обрасти тысячами изобретений. От создания первого транзистора в 1947 году до распространения интегральных схем, обеспечивших первенство кремниевой электроники, прошло почти два десятилетия. Если графеновая революция пойдет теми же темпами, универсальный гаджет, о котором мечтают южнокорейские исследователи, появится на прилавках самое позднее в 2022 году.

Материал Будущего, История Открытия, Физические и Химические Свойства, Возможности Применения, Проблемы и Прогнозы Массового Использования

14.06.2019

Структура графенаСтруктура графена

Так выглядит структура графена — всего лишь один слой атомов углерода

Разные периоды человеческой истории тесно связаны с теми или иными материалами. За каменным веком наступила эпоха бронзы, которую потом вытеснило железо. Последние десятилетия стали «звездным часом» кремния, который подарил нам цифровую революцию и интернет. Мы стремительно входим в следующий технологический уклад и судорожно ищем новый материал, достойный служить его символом. Возможно, что им станет углерод, вернее, одна из его разновидностей – графен.

В последние годы этот материал постоянно на слуху. Графен называют – ни много, ни мало – самым важным открытием XXI века и не жалеют в его описаниях превосходных степеней. Адепты технического прогресса обещают нам новый дивный «графеновый» мир, в котором мы окажемся буквально завтра. В нем железо не будет ржаветь, люди смогут делать топливо из воздуха и пить воду прямо из океана. Ну и по мелочи: мы получим новое поколение электроники, сверхпрочную броню, колоссальной емкости аккумуляторы и прочая, и прочая, и прочая. Скептики, слушая восторженные спичи такого рода, лишь привычно и гадко ухмыляются. Действительно, «графеновую революцию» нам обещают уже лет пятнадцать лет, а пока нет даже приемлемого способа получения материала.

Так что же такое графен: реальный прорыв или очередной научно-технический фейл? Почему его открытие вызвало такую истерию, и какие «пряники» сулит нам использование этого материала? И почему оно до сих пор не началось?

Химические и физические свойства

По химическому составу графен ничем не отличается от алмаза или графита – он состоит из тех же атомов углерода, вся «фишка» в их особом пространственном расположении. Именно оно приводит к колоссальному различию физических свойств. В традиционных материалах атомы упорядочены в трех измерениях, поэтому окружающие нас предметы имеют высоту, длину и ширину. Графен – это аллотропная модификация углерода, в которой атомы образуют двумерную гексагональную кристаллическую решетку толщиной всего лишь один атом. По сути, это просто единственный слой, «вытащенный» из объемного кристалла вещества – третьего измерения у него нет.

Прочность графенаПрочность графена

Графен — самый прочный из известных нам материалов

Графен – первый двумерный материал, полученный учеными. Благодаря такой уникальной атомарной структуре он может «похвастать» целым рядом удивительных свойств:

  • огромной теплопроводностью;
  • просто запредельной механической прочностью;
  • гибкостью;
  • высокой электропроводностью;
  • непроницаемостью для большинства жидкостей и газов;
  • прозрачностью.

Но самое поразительное другое: при своей атомарной тонкости графен абсолютно стабилен, он не распадается, хотя многие ученые не верили в это. Еще в 30-е годы выдающиеся физики Рудольф Пайерлс и Лев Ландау утверждали, что двумерные материалы будут неустойчивы и быстро разрушатся под действием внешних факторов. Оказалось, что атомы удерживаются вместе благодаря особым вибрациям.

Изучение этого чудо-материала продолжается, и он не устает удивлять исследователей. Так, например, недавно выяснилось, что двухслойный графен в определенном положении ведет себя как сверхпроводник, хотя раньше этого и не предполагали.

Открытие графена настолько воодушевило ученых, что буквально в течение десяти лет были получены еще три двумерных материала со схожими свойствами: силицен – на основе кремния, фосфорен – фосфора и германен – германия.

Как был открыт «материал столетия»?

Гипотеза о существовании двумерной формы углерода была выдвинута еще в XIX веке, но подтвердить ее фактически долгое время не получалось. В 1859 году Бенджамин Броуди впервые синтезировал оксид графена, но только в 1948 году с помощью электронного микроскопа удалось доказать чрезвычайно малую толщину этого материала. Позже ученые обнаружили, что среди кристаллов оксида графена попадаются частицы толщиной в один атом. В 70-е годы монослойный углерод пытались выращивать на различных металлических подложках.

«Крестным отцом» этого материала стал Ханс-Питер Бём, который в 1986 году предложил называть однослойный углерод графеном. В конце 90-х Йошико Охаши изучал электрические свойства тонких графитовых пленок толщиной в несколько десятков атомарных слоев.

Гейм и НовоселовГейм и Новоселов

Первооткрыватели графена — Гейм и Новоселов. В 2010 году за эту работу они получили Нобелевскую премию

Впервые получить графен удалось двум британским ученым российского происхождения – Андрею Гейму и Константину Новоселову. Для этого они использовали самые подручные материалы – кусок графита, обычный скотч ну и, конечно же, знаменитую русскую смекалку. Ученые наносили на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали, каждый раз разделяя вещество пополам. Когда пятно становилось совсем прозрачным, полученный графен переносился на подложку. Позже этот способ назвали «методом отшелушивания».

В 2010 году Гейм и Новоселов получили Нобелевскую премию и весьма обидную кличку от журналистов – «мусорные физики». Ученые всего мира наконец-то смогли исследовать графен, ибо липкой ленты хватало в любой лаборатории. Это стало настоящим прорывом: по словам людей, которые занимаются данным вопросом, за последние годы мы узнали о двумерных материалах куда больше, чем за все предыдущее столетие. В сети вы легко найдете подробное описание метода Гейма и Новоселова и при желании сможете повторить его в домашних условиях.

Новая эра в электронике?

Графен – уникальный по своей электропроводности материал: его сопротивление на 35% меньше, чем у меди, а по подвижности носителей заряда он превосходит и кремний, и антимонид индия.

Существующие сегодня чипы памяти и микропроцессоры уже преодолевают технологические границы в 10 нанометров. Процесс дальнейшей миниатюризации представляет значительные сложности. Все громче раздаются голоса, что мы практически достигли пределов кремниевых чипов. Сегодня разработчики топчутся на тактовой частоте около 4 ГГц, не в силах обеспечить дальнейшее увеличение быстродействия.

Гибкий экран из графенаГибкий экран из графена

На основе графена можно делать гибкие экраны электронных устройств. Скорее всего, это станет первой областью применения этого материала

Кремний всем хорош для микроэлектроники, но есть у него и существенный недостаток – низкая теплопроводность. С увеличением плотности элементов и ростом тактовой частоты это становится серьезным барьером для дальнейшего развития отрасли.

Правда, для изготовления полевого транзистора из графена нужно как-то создать в нем запрещенную зону, чтобы задавать два состояния, пригодных для двоичной логики: непроводящее и проводящее. Однако уже сегодня предложены несколько способов решения данной проблемы, и это позволяет надеятся на скорое появление подобных транзисторов. Инженеры полагают, что быстродействие графеновых микропроцессоров может быть на порядок выше существующих – на основе этого материала уже построены транзисторы, модуляторы, микросхемы, работающие на частотах выше 10 ГГц.

Помимо высокой электропроводности, графен отличается практически полной прозрачностью. Он поглощает всего лишь 2% света, причем в самом широком оптическом диапазоне. Список материалов, одновременно обладающих этими качествами, очень ограничен, и графен лучше их всех. Поэтому это идеальный материал для жидкокристаллических дисплеев. Кроме того, он отличается высокой механической прочностью, так что скоро вы сможете забыть о разбитых экранах смартфонов и ноутбуков. Мы уже можем получать материал подходящего качества, и сейчас вопрос стоит только в снижении его себестоимости.

Графен не только прочный и прозрачный, он еще и отличается прекрасной гибкостью – пластину из этого материала можно растянуть чуть ли не на 20%. Поэтому уже в ближайшем будущем нас точно ожидает эра гибкой электроники. Подобные девайсы уже не раз демонстрировались на выставках, но до коммерческого использования дело пока не дошло. Весьма активен в этом направлении корейский гигант Samsung.

Еще одной ожидаемой областью применения графена является производство различных измерительных устройств, датчиков, сенсорных систем. Например, газовые датчики из этого материала могут реагировать буквально на единичные акты адсорбции/реабсорбции молекул — то есть работать на пределе чувствительности для таких устройств. Еще в 2015 году специалисты из Американского химического общества (ACS) на основе графена разработали прототип тепловизора с высокочувствительной матрицей, не требующей охлаждения. В будущем это позволит создавать качественные и, главное, недорогие тепловизионные приборы и обычные телекамеры, способные вести съемку в полной темноте.

Графен в микропроцессорахГрафен в микропроцессорах

Графен — один из главных претендентов на смену кремния в микропроцессорах

Кто из нас не мечтал о новом смартфоне или ноутбуке с батареей, запаса которой хватало хотя бы на несколько дней? Очень может быть, что уже в ближайшем будущем это станет реальностью. Графен имеют максимальное отношение поверхности к объему, благодаря чему прекрасно подходит для аккумуляторов и суперконденсаторов.

Разработки в этом направлении ведутся самым активным образом. Несколько лет назад испанские инженеры сообщили о создании графенового аккумулятора для электромобилей, который может заряжаться всего за восемь минут, на 77% дешевле литиевых аналогов и в два раза легче их по весу. Разработчики утверждают, что заряда достаточно для 1000 километров пробега.

В 2017 году Институт передовых технологий Samsung (SAIT) заявил о создании революционной батареи на основе «графеновых шариков». Она, якобы, в несколько раз превосходит существующие аналоги по скорости зарядки и имеет на 45% большую емкость.

Тверже алмаза и легче перышка

Графен – самый прочный из известных нам материалов. По этому параметру он в двести раз превосходит сталь. Лист графена толщиной в один атом, выдержит давление острия карандаша, на другой стороне которого балансирует слон. А ученые из Georgia Tech пришли к выводу, что двухслойной пленке из этого материала не страшна даже пуля.

Понятно, что мимо таких способностей не могли пройти компании, занимающиеся военными разработками и защитным снаряжением. Уже появилось множество проектов графеновой брони, скафандров и легких бронежилетов. Правда, пока не совсем понятно, как из идеального двумерного материала сделать трехмерный, сохранив при этом его уникальные свойства.

На основе этого материал уже пробуют создать суперпрочные пластмассы и резину. Однако эти разработки пока находятся на начальном этапе.

Графен и проблема дефицита воды

Население планеты неуклонно растет, а количество водных ресурсов, наоборот, стремительно сокращается. Сегодня проблема нехватки питьевой воды не менее актуальна, чем проблема голода. И это при том, что ею покрыта большая часть поверхности земного шара. При чем тут графен, спросите вы?

Дело в том, что этот материал практически непрозрачен для большинства химических веществ, но воду он пропускает. Грубо говоря, фильтр с графеновой мембраной будет задерживать морскую соль, опресняя тем самым воду. Правда, неизвестно, насколько долговечным будет подобное устройство, ведь хлориды – очень агрессивные вещества. Ученым придется решить еще множество проблем на этом пути, но работы не прекращаются, ибо слишком уж заманчивы перспективы.

Очистка воды графеномОчистка воды графеном

На основе графена можно делать уникальные фильтры, которые будут способны не только очищать воду, но и опреснять ее

Точно так же можно очищать воду от любых токсинов, ядов и радиоактивных загрязнений. С помощью графена предлагают даже фильтровать ядерные отходы.

На страже здоровья или перспективы в медицине

Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.

Однако графен способен не только находить опухоли, но и эффективно уничтожать их. Биологи из Университета Манчестера выяснили, что частицы оксида графена могут поражать стволовые раковые клетки, никак не влияя на здоровые.

Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.

Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.

Уникальные динамики, краска будущего и презервативы

Презерватив из графенаПрезерватив из графена

Миллиардер и филантроп Билл Гейтс вложил круглую сумму в разработку презервативов из графена

Возможности применения графена фантастически широки – кажется, что он пригодится человечеству буквально везде. Достаточно добавить его и любой материал станет прочнее, долговечнее, устойчивее. Мария Шарапова играет ракеткой, выполненной из графена, строители хотят домешивать его в бетон, Билл Гейтс прилично вложился в создание сверхпрочных графеновых презервативов. Автопроизводители хотят делать из него кузова машин, а авиастроители – детали ракет и самолетов. Вот еще несколько примеров возможного использования материала:

  • Сейчас немецкие исследователи работают над специальной краской на основе графена, которая будет сигнализировать о возможных дефектах изменением цвета. Пока этот проект находится в начальной стадии, о его коммерческом использовании говорить рано;
  • Китайские ученые из Северо-Западного университета разработали покрытие на основе графена, которое защищает металлы от ржавчины. Причем, этот состав способен самовосстанавливаться после небольших повреждений;
  • В конце 2017 года исследователи из частного университета Райса представили общественности кроссовки с добавлением графена. Материал был использован при изготовлении подошвенной резины. Разработчики утверждали, что их обувь отличается повышенной износостойкостью и невероятно прочна. Кроме того, кроссовки поразили присутствующих своей эластичностью: их можно было легко гнуть, крутить и складывать;
  • На основе графена планируют создать новое поколение акустических систем. Современные динамики работают за счет генерации механических вибраций. Британские ученые показали, что графен способен издавать сложные и управляемые звуковые колебания при нагревании и охлаждении. Таким образом можно изготовить колонки, которые вообще не содержат движущихся деталей, при этом заметно уменьшив их размеры. В идеале такой динамик будет частью графенового экрана вашего телефона или другого устройства. Опытный образец имеет размер меньше ногтя, причем в него еще встроен эквалайзер.

Долгий путь между пробиркой и прилавком

Открытие графена нередко сравнивают с изобретением колеса, паровой машины, бумаги или транзистора. О росте интереса к графеновой теме можно судить по увеличению количества заявок на патенты: в 2010 году их было около 6 тыс. штук, а в 2016 – это число увеличилось до 50 тыс.

Больше всего заявок подали китайские компании и научные центры. В Поднебесной все, что связано с графеном пользуется огромной государственной поддержкой. Китай особо и не скрывает, что планирует забрать себе до 80% графенового рынка. Аналогичные программы поддержки отрасли существуют и в других странах. Почему же до сих не видно массовых графеновых технологий, несмотря на очень серьезные финансовые вливания в эту отрасль? Тому есть серьезные причины.

В настоящее время используется несколько способов получения графена, которые, в принципе, уже обеспечивают промышленные объемы этого вещества. Довольно серьезной проблемой является качество полученных образцов, а именно от него во многом зависят свойства и функционал материала. И если для красок или композитов вполне сгодится дешевый хлопьевидный графен, полученный химическим путем, то для высокочастотной электроники необходимо качественное сырье с минимумом дефектов и примесей.

К сожалению, пока не существует установленных стандартов качества графена, из-за чего страдает отрасль в целом. Недавно было проведено исследование продукции 60 компаний, которые, якобы, предлагали графен. Однако вместо него в образцах был обнаружен дешевый графит, к тому же содержащий еще и примеси других веществ.

Графеновый порошокГрафеновый порошок

В последние годы графен стремительно дешевеет

В принципе, нынешнее положение дел очень напоминает ситуацию на заре компьютерной эры, когда были огромные трудности с получением чистого кремния. Однако они уже давно решены.

Себестоимость графена неуклонно падает. Сегодня пластинка материала площадью 1 кв. см стоит меньше одного евро. Эксперт утверждают, что к 2022 году его цена упадет еще на порядок. Однако проблемы все еще остаются. Наибольшую трудность представляет процесс переноса графеновой пластины на ту или иную подложку – а это едва ли не основное требование для начала массового промышленного производства. Вероятно, что сначала мы получим графеновые экраны, затем дело дойдет до электронных устройств и различных детекторов. Другие, более экзотичные варианты применения материала, скорее всего, – дело ближайших десятилетий.

Внутри любого современного мобильного телефона «содержится» более двадцати Нобелевских премий, часть из которых была присуждена еще в середине 60-х годов. То есть, от идеи до ее воплощения прошло более пятидесяти лет. Графену не исполнилось еще и пятнадцати, а на рынке уже есть товары, содержащие этот материал. Так что графен не опаздывает, он, наоборот, опережает время.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С друзьями поделились:

История графена — Википедия

Материал из Википедии — свободной энциклопедии

Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку.

Химик Бенджамин Броуди (англ. Benjamin Brodie) первым (1859 год) испытал действие сильных кислот на графите, получил суспензию кристаллов оксида графена. Доказательства малой толщины этих кристаллов были получены только в 1948 году после эксперимента Дж. Руесса (англ. G. Ruess) и Ф. Фогта (англ. F. Vogt), которые использовали просвечивающий электронный микроскоп. Хотя эти кристаллы были не чистым графеном и их толщина составляла несколько нанометров, в последующих работах Ульриха Хоффмана (англ. Ulrich Hofmann) и Ханса-Питера Бёма (англ. Hanns-Peter Boehm) было показано, что при восстановлении оксида графита попадаются также фрагменты графита атомарной толщины.[1] В 1986 году Бём с коллегами предложил термин графен для обозначения монослойного графита. Первые графеновые слои, выращенные на металлических подложках Ru, Rb, Ni, были получены в 1970 году Джоном Грантом (англ. John Grant) и Блэкли (англ. Blakely)[2][3].

Транспортные измерения на плёнках с десятками слоёв провёл в 1997—2000 годах Йошико Охаши (англ. Yoshiko Ohashi), он продемонстрировал эффект электрического поля на сопротивление плёнок и измерил осцилляции Шубникова — де Гааза[2]. Впервые транспортные свойства графена с 2004 года[4] изучались в Манчестерском университете под руководством Андрея Гейма. В статье Константина Новосёлова в журнале Science от 2004 года были показаны основные электрические транспортные и магнетотранспортные свойства графитовых плёнок толщиной в несколько атомарных слоёв, продемонстрированы эффект поля и полевой транзистор на основе Si/SiO2, ставший основной структурой для последующих транспортных исследований. Позже в 2005 году та же группа измерила квантовый эффект Холла[5], доказали линейность энергетического спектра графена и применимость уравнения Дирака к носителям тока в графене[6]. Последнее примечательно тем, что открыло возможность изучать аналогичные эффекты квантовой электродинамики в лаборатории на столе[7].

Простой метод получения образцов графена, предложенный в работе 2004 года[4], позволил сотням лабораторий по всему миру включиться в исследования уникальных свойств графена[8][9]. Работа 2004 года с тех пор была процитирована более 10 000 раз согласно Google Scholar[10]. Эта статья вошла в список сотни статей с наибольшим числом цитирований[11]. За исследования свойств графена Андрей Гейм и Константин Новосёлов получили Нобелевскую премию по физике за 2010 год[12].

  1. ↑ Хотя метод, основанный на относительном ПЭМ-контрасте, и не даёт атомарного разрешения
  2. 1 2 Гейм, 2011, с. 1293.
  3. ↑ Geim & Novoselov, 2007.
  4. 1 2 Novoselov et. al., 2004.
  5. ↑ Группа Филиппа Кима независимо исследовала этот эффект.
  6. ↑ Novoselov et. al. Nature, 2005.
  7. ↑ Castro Neto et. al., 2009.
  8. ↑ Новосёлов, 2011.
  9. ↑ Andrei, 2012.
  10. ↑ Electric Field Effect in Atomically Thin Carbon Films (неопр.). Дата обращения 17 октября 2012.
  11. Noorden R. van et al. The top 100 papers (англ.) // Nature. — 2014. — Vol. 514. — P. 550—553. — DOI:10.1038/514550a.
  12. ↑ The Nobel Prize in Physics 2010 (англ.). NobelPrize.org. Дата обращения 8 января 2011. Архивировано 23 января 2012 года.
  • Новосёлов К. С. Графен: материалы Флатландии // УФН. — 2011. — Т. 181. — С. 1299—1311. — DOI:10.3367/UFNr.0181.201112f.1299.
  • Гейм А. К. Случайные блуждания: непредсказуемый путь к графену // УФН. — 2011. — Т. 181. — С. 1284—1298. — DOI:10.3367/UFNr.0181.201112e.1284.
  • Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. Электронные свойства графена (англ.) = The electronic properties of graphene // Rev. Mod. Phys. — 2009. — Vol. 81. — P. 109—162. — DOI:10.1103/RevModPhys.81.109. — arXiv:0709.1163.
  • Geim A. K., Novoselov K. S. Восход графена (англ.) = The rise of graphene // Nature Materials. — 2007. — Vol. 6. — P. 183—191. — DOI:10.1038/nmat1849. — arXiv:cond-mat/0702595.
  • Andrei E. Y., Li G., Du X. Электронные свойства графена: взгляд со стороны сканирующей туннельной микроскопии и магнетотранспорта (англ.) = Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport // Rep. Prog. Phys.. — 2012. — Vol. 75. — P. 056501. — DOI:10.1088/0034-4885/75/5/056501. — arXiv:1204.4532.
  • Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Эффект поля в атомарно тонких углеродных плёнках (англ.) = Electric Field Effect in Atomically Thin Carbon Films // Science. — 2004. — Vol. 306. — P. 666—669. — DOI:10.1126/science.1102896. — arXiv:cond-mat/0410550.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene (англ.) // Nature : journal. — 2005. — Vol. 438, no. 7065. — P. 197—200. — DOI:10.1038/nature04233. — Bibcode: 2005Natur.438..197N. — arXiv:cond-mat/0509330. — PMID 16281030.

Гейм, Андрей Константинович — Википедия

В Википедии есть статьи о других людях с фамилией Гейм.

Сэр Андре́й Константи́нович Гейм (нидерл. Andre Geim; род. 21 октября 1958[1], Сочи) — советский, нидерландский и британский физик, лауреат Нобелевской премии по физике 2010 года (совместно с Константином Новосёловым), известен в первую очередь как один из разработчиков первого метода получения графена[2][3]. В 2011 году указом королевы Елизаветы II за заслуги перед наукой ему присвоено звание рыцаря-бакалавра с официальным правом прибавлять к своему имени титул «сэр»[4]. Член Лондонского королевского общества (2007)[5] и иностранный член НАН США (2012).

Родился в 1958 году в Сочи, в семье инженеров немецкого происхождения[6] (единственным известным Гейму исключением среди его немецких предков была прапрабабка с материнской стороны, которая была еврейкой[7][8]). Гейм считает себя европейцем и полагает, что не нуждается в более подробной «таксономии»[8]. В 1964 году семья переехала в Нальчик.

Отец, Константин Алексеевич Гейм (1910—1998)[9], с 1964 года работал главным инженером Нальчикского электровакуумного завода[10]; мать, Нина Николаевна Байер (род. 1927), работала главным технологом там же[10]. Единокровный брат матери — известный физик-теоретик Владимир Николаевич Байер, сын Николая Николаевича Байера, деда Андрея Гейма.

В 1975 году Андрей Гейм окончил с золотой медалью среднюю школу № 3 города Нальчика[9][10] и пытался поступить в МИФИ, но неудачно (препятствием явилось немецкое происхождение абитуриента)[9]. Вернувшись в Нальчик, проработал 8 месяцев на Нальчикском электровакуумном заводе[1]. В это время познакомился с В. Г. Петросяном и занимался у него усиленной подготовкой по физике[11]. В 1976 году поступил в Московский физико-технический институт.

До 1982 года обучался на факультете общей и прикладной физики, окончил с отличием («четвёрка» в дипломе только по политэкономии социализма) и поступил в аспирантуру. В 1987 году получил степень кандидата физико-математических наук в Институте физики твёрдого тела РАН. Работал научным сотрудником в ИФТТ АН СССР и в Институте проблем технологии микроэлектроники АН СССР[12].

В 1990 году получил стипендию Английского королевского общества и уехал из Советского Союза[13][14]. Работал в Ноттингемском университете, университете Бата (англ.)русск., а также недолго в Копенгагенском университете, перед тем как стал доцентом университета Неймегена, а с 2001 года — Манчестерского университета. В настоящее время — руководитель Манчестерского центра по «мезонауке и нанотехнологиям», а также глава отдела физики конденсированного состояния[15].

Почётный доктор Делфтского технического университета, Швейцарской высшей технической школы Цюриха и Антверпенского университета. Имеет звание «профессор Лэнгуорти» Манчестерского университета (англ. Langworthy Professor, среди удостоенных этого звания были Эрнест Резерфорд, Лоурэнс Брэгг и Патрик Блэкетт).

В 2008 году получил предложение возглавить один из институтов Макса Планка в Германии, но ответил отказом[16].

Подданный Королевства Нидерландов[17]. Супруга — Ирина Григорьева (выпускница Московского института стали и сплавов), работала, как и Гейм, в ИФТТ АН СССР, в настоящее время работает вместе с мужем в лаборатории Манчестерского университета.

После присуждения Гейму Нобелевской премии директор департамента международного сотрудничества фонда «Сколково» Алексей Ситников объявил о намерении пригласить его работать в Сколково[18]. Гейм заявил:

« Там у вас люди что – с ума посходили совсем? Считают, что если они кому-нибудь отсыпят мешок золота, то можно всех пригласить?[19]»

При этом Гейм сказал, что не имеет российского гражданства и чувствует себя в Великобритании комфортно, выразив скептическое отношение к проекту российского правительства создать в стране аналог Кремниевой долины[20].

Среди достижений Гейма можно отметить создание биомиметического адгезива (клея), позднее ставшего известным как gecko tape[21].

» Левитирующая лягушка в эксперименте А. Гейма и М. Берри

Также широко известен эксперимент с диамагнитной левитацией, в том числе, со знаменитой «летающей лягушкой»[22], за который Гейм вместе с известным математиком и теоретиком сэром Майклом Берри из Бристольского университета получил в 2000 году Шнобелевскую премию.

В 2004 году Андрей Гейм совместно со своим учеником Константином Новосёловым изобрёл технологию получения графена — нового материала, представляющего собой одноатомный слой углерода. Как выяснилось в ходе дальнейших экспериментов, графен обладает рядом уникальных свойств: он обладает повышенной прочностью, проводит электричество так же хорошо, как медь, превосходит все известные материалы по теплопроводности, прозрачен для света, но при этом достаточно плотный, чтобы не пропустить даже атомы гелия. Всё это делает его перспективным материалом для ряда приложений, в частности создания сенсорных экранов, световых панелей и, возможно, солнечных батарей[23].

За это открытие Институт физики (Великобритания) в 2007 году наградил Гейма медалью Мотта (англ.)русск.. Он также получил престижную премию Еврофизика (совместно с Константином Новосёловым). В 2010 году за «передовые опыты с двумерным материалом — графеном» был удостоен Нобелевской премии по физике, которую разделил с Константином Новосёловым[24]. Гейм стал первым учёным, который был лично удостоен как Шнобелевской, так и Нобелевской премий[25]. В 2013 году получил Медаль Копли. Членкор Нидерландской королевской академии наук (2011).

Некоторые публикации[править | править код]

Рыцарь-бакалавр (2011).

Командор ордена Нидерландского льва (2010).

  • Андрей Гейм увлекается горным туризмом. Его первым «пятитысячником» стал Эльбрус, а любимая гора — Килиманджаро[13].
  • Учёный отличается своеобразным юмором. Одно из подтверждений тому — статья о диамагнитной левитации, в которой соавтором Гейма был указан его любимый хомяк («хамстер») Тиша[27]. Сам Гейм по этому поводу заявил, что вклад хомяка в эксперимент с левитацией был более непосредственным. Впоследствии эта работа использовалась при получении степени доктора философии[28].

Взгляд на развитие фундаментальной науки[править | править код]

В статье «Be afraid, very afraid, of the tech crisis», опубликованной в газете Financial Times 5 февраля 2013 года, Гейм высказал предположение, что мир охватывает технологический кризис, новые технологии появляются на свет гораздо реже, чем этого требует текущая экономическая ситуация.

Налицо глубокий кризис производства новых знаний. Не то чтобы открытия не делались вовсе, однако число их значительно уменьшилось. Но без новых знаний возможно появление только производных технологий, а они, какими бы важными ни были, не способны поддерживать тот уровень экономического роста, к которому мир успел привыкнуть после начала промышленной революции.

По словам Гейма, именно вложения в фундаментальные исследования, которые обывателю могут показаться бесполезными, дали начало таким изобретениям, как компьютер, GPS-навигатор и Интернет. Главной причиной развития фундаментальной науки во второй половине XX века Гейм называет холодную войну между СССР и США, что заставляло страны тратить огромные деньги на фундаментальные исследования, в надежде обогнать противника в возможном грядущем военном противостоянии. Текущие вызовы человечеству — глобальное потепление или истощение природных ресурсов, — по словам Гейма, не пугают широкие массы, а в результате правительства ведущих мировых держав сокращают траты на науку.

По мнению Гейма, новый бум научных открытий может быть вызван глобальной угрозой существованию человечества на Земле, например, огромным астероидом, который будет грозить столкнуться с Землей. Чтобы предотвратить это, человечеству придется усиленно развивать новые технологии. И, может, тогда, по выражению Гейма, «люди наконец поймут, что социальные сети могут сделать отдельных людей очень богатыми, но не могут спасти планету. Для этого нужны фундаментальные открытия»[29].

В 2016 году подписал письмо с призывом к Greenpeace, Организации Объединенных Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами (ГМО) [30][31][32].

  1. 1 2 Фото копии трудовой книжки А. К. Гейма (рус.) (html). сайт веб-музея МФТИ. Дата обращения 6 октября 2010. Архивировано 26 марта 2012 года.
  2. K. S. Novoselov et al. Electric Field Effect in Atomically Thin Carbon Films (англ.) // Science : journal. — 2004. — Vol. 306. — P. 666. — DOI:10.1126/science.1102896. Архивировано 13 октября 2006 года. Архивная копия от 13 октября 2006 на Wayback Machine
  3. ↑ It’s a thinner winner bbc.co.uk 19th October 2006
  4. ↑ BBC: Физики-россияне Новоселов и Гейм возведены в рыцари
  5. ↑ New Fellows — 2007 — New Fellows — The Royal Society
  6. ↑ Фото учебной карточки студента А. К. Гейма (рус.) (html). сайт веб-музея МФТИ. Дата обращения 6 октября 2010. Архивировано 26 марта 2012 года.
  7. Weinreb, Gali. Nobel laureate: Life sciences suited to small countries, The Jerusalem Post (20 ноября 2010). Дата обращения 5 октября 2011.
  8. 1 2 Andre Geim, Autobiography на сайте Нобелевского комитета
  9. 1 2 3 Наталья Веденеева, Екатерина Свешникова. Русские идут за Нобелевкой (рус.) (html). «МК» (6 октября 2010). Дата обращения 6 октября 2010. Архивировано 8 июня 2012 года.
  10. 1 2 3 Фото автобиографии абитуриента А. К. Гейма, написанной 7 июля 1976 года (рус.) (html). сайт веб-музея МФТИ. Дата обращения 6 октября 2010. Архивировано 26 марта 2012 года.
  11. ↑ Андрей Гейм — одноклассник о Нобелевском лауреате// М. Хоконов. Литературная Кабардино-Балкария (май 2014). (неопр.).
  12. А. К. Гейм. Случайные блуждания: непредсказуемый путь к графену // УФН. — 2011. — Т. 181. — С. 1284—1298.
  13. 1 2 Графен Гейма (рус.) (pdf). «Кабардино-Балкарская правда» (15 ноября 2008). — Интервью с Андреем Геймом. Дата обращения 15 ноября 2008. Архивировано 26 марта 2012 года.
  14. ↑ Жена Гейма: Андрей видит не так, как другие (рус.) (html). «Вести.ру» (5 октября 2010). — Интервью с Ириной Григорьевой. Дата обращения 6 октября 2010. Архивировано 26 марта 2012 года.
  15. ↑ nanotech.net
  16. ↑ Лауреат Нобелевской премии Андрей Гейм: «Да у вас нормально. Утечка мозгов практически прекратилась» (рус.) (html). «Комсомольская правда» (8 октября 2010). — Интервью с Андреем Геймом. Дата обращения 8 октября 2010. Архивировано 26 марта 2012 года.
  17. Hamish Johnston. Graphene pioneers bag Nobel prize (англ.). physicsworld.com (5 October 2010). Дата обращения 6 октября 2010. Архивировано 26 марта 2012 года.
  18. ↑ Новые Известия: «Сколково» хочет переманить Гейма и Новоселова, 2010-10-06
  19. ↑ Нобелевский лауреат Андрей Гейм не хочет ехать в Сколково — Ведомости, 6 октября 2010
  20. ↑ Нобелевский лауреат Андрей Гейм отказался работать в «Сколково»  (рус.)
  21. ↑ Gecko inspires sticky tape BBC News 1 June, 2003
  22. ↑ The Frog That Learned to Fly; webpage in Holland
  23. ↑ Пресс-релиз Нобелевского комитета
  24. ↑ The Nobel Prize in Physics 2010 (англ.). Официальный сайт Нобелевского комитета (5 October 2010). Дата обращения 5 октября 2010. Архивировано 26 марта 2012 года.
  25. ↑ Шнобель-2012: российские алмазы из боеприпасов (рус.). Русская служба Би-би-си (21 сентября 2012). Дата обращения 21 сентября 2012. Архивировано 24 октября 2012 года.
  26. ↑ The UK’s 100 leading practising scientists | Times Higher Education (THE)
  27. A. K. Geim and H.A.M.S. ter Tisha Physica B 294-295, 736—739 (2001) DOI:10.1016/S0921-4526(00)00753-5
  28. ↑ «Nature Nanotechnology» (April 2008, page 179)
  29. ↑ А.Гейм: Для новой индустриальной революции нужен грозящий Земле астероид (неопр.). РБК. Дата обращения 7 февраля 2013. Архивировано 12 февраля 2013 года.
  30. ↑ 107 Nobel laureates sign letter blasting Greenpeace over GMOs
  31. ↑ Laureates Letter Supporting Precision Agriculture (GMOs)
  32. ↑ Список нобелевских лауреатов подписавших письмо

Статьи[править | править код]

Интервью[править | править код]

Применение графена — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2019; проверки требует 1 правка.

Применение графена находится на начальной стадии научно-исследовательских разработок и исследований. В перспективе графеновая электроника рассматривается как основное применение графена. Отсутствие запрещённой зоны позволяет рассматривать графен как идеальный материал для детектирования инфракрасного света и терагерцового излучения.

В 2011 году в журнале Science была опубликована работа[1], где на основе графена предлагалась схема двумерного метаматериала (может быть востребован в оптике и электронике).

Коробчатая графеновая наноструктура (КГНС), представляющая собой многослойную систему расположенных вдоль поверхности параллельных полых наноканалов с четырёхугольным поперечным сечением, может служить основой для создания сверхчувствительных датчиков, высокоэффективных каталитических ячеек, наноканалов для манипулирования-секвенирования ДНК, высокоэффективных теплоотводящих поверхностей, аккумуляторов с улучшенными характеристиками, наномеханических резонаторов, каналов умножения электронов в приборах эмиссионной наноэлектроники, сорбентов большой ёмкости для безопасного хранения водорода.

В 2014 году исследователи из Массачусетского технологического института разработали технологию, позволяющую делать в листах графена отверстия определённого диаметра и получать сверхтонкие фильтры для высокой степени опреснения и очистки воды[2]. В феврале 2018 года специалисты Объединения научных и прикладных исследований Австралии (CSIRO) предложили дешёвый способ массового и недорогого производства подходящих листов графена. По мнению представителей CSIRO, разработанная технология позволит отказаться от дорогостоящих и многоступенчатых методов очистки воды и способна привести к прорыву в решении проблемы нехватки питьевой воды[3].

В медицинских исследованиях графен демонстрирует противораковые свойства. Команда исследователей из Университета Манчестера в Великобритании во главе с Майклом Лизанти (Michael Lisanti) опубликовали статью в журнале «Oncotarget», посвящённую тому, как окись графена выборочно поражает стволовые клетки, относящиеся к категории раковых[4][5]. Во время исследования учёные оценили эффекты графена при шести разных видах рака: молочной железы, лёгких, поджелудочной железы, простаты, яичников и головного мозга. Во всех случаях получен положительный результат. Предполагается, что графен может быть эффективен при широком диапазоне опухолей.

Термоэлектрический эффект для графена превосходит резистивный омический нагрев, что в перспективе позволит создание на его базе схем, не требующих охлаждения[6][7].

Пневматические аккумуляторы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *