Ньютон (единица измерения) — Википедия
Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Ньютон.Нью́то́н (русское обозначение: Н; международное: N) — единица измерения силы в Международной системе единиц (СИ).
Ньютон — производная единица. Исходя из второго закона Ньютона она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с2.
В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ньютон пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ньютона. Например, обозначение единицы момента силы ньютон-метр записывается как Н·м.
Определение единицы силы, как силы, придающей телу с массой 1 килограмм ускорение в 1 метр в секунду за секунду, было принято для системы единиц МКС Международным комитетом мер и весов (МКМВ) в 1946 году. В 1948 году IX Генеральная конференция по мерам и весам (ГКМВ) ратифицировала данное решение МКМВ и утвердила для этой единицы наименование «ньютон». В Международной системе единиц (СИ) ньютон стал использоваться с момента её принятия XI ГКМВ в 1960 году
Единица названа в честь английского физика Исаака Ньютона, открывшего законы движения и связавшего понятия силы, массы и ускорения. В своих работах, однако, Исаак Ньютон не вводил единиц измерения силы и рассматривал её как абстрактное явление.[3] Измерять силу в ньютонах стали спустя более чем два века после смерти великого учёного, когда была принята система СИ.
С другими единицами измерения силы ньютон связывают следующие выражения:
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Н | деканьютон | даН | daN | 10−1 Н | дециньютон | дН | dN |
102 Н | гектоньютон | гН | hN | 10−2 Н | сантиньютон | сН | cN |
103 Н | килоньютон | кН | kN | 10−3 Н | миллиньютон | мН | mN |
106 Н | меганьютон | МН | MN | 10−6 Н | микроньютон | мкН | µN |
109 Н | гиганьютон | ГН | GN | 10−9 Н | наноньютон | нН | nN |
1012 Н | тераньютон | ТН | TN | 10−12 Н | пиконьютон | пН | pN |
1015 Н | петаньютон | ПН | PN | 10−15 Н | фемтоньютон | фН | fN |
1018 Н | эксаньютон | ЭН | EN | 10−18 Н | аттоньютон | аН | aN |
1021 Н | зеттаньютон | ЗН | ZN | 10−21 Н | зептоньютон | зН | zN |
1024 Н | иоттаньютон | ИН | YN | 10−24 Н | иоктоньютон | иН | yN |
применять не рекомендуется |
что такое n в физике? :: SYL.ru
Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?
Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?
Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.
Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).
Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).
Что такое N в физике, помимо уже указанных величин? Это может быть:
постоянная Авогадро;
увеличение оптического прибора;
концентрация вещества;
число Дебая;
полная мощность излучения.

Что может обозначать строчная буква n в физике?
Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:
показатель преломления, причем он может быть абсолютным или относительным;
нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;
частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).
Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?
Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.
Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N
Первая из них определяет мощность, которая равна отношению работы ко времени:
N = А : t.
В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро:
ν = N : NА.
Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.
Чтобы определить электрический заряд, потребуется формула:
q = N × e.
Еще одна формула с N в физике – частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:
ν = N : t.
Появляется буква «эн» в формуле для периода обращения:
Т = t : N.

Формулы, в которых встречается строчная n
В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.
Так, для абсолютного показателя преломления формула записывается следующим образом:
n = с : v.
Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.
Формула для относительного показателя преломления несколько сложнее:
n21 = v1 : v2 = n2 : n1,
где n1 и n2 — абсолютные показатели преломления первой и второй среды, v1 и v2 — скорости световой волны в указанных веществах.
Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n21= sin α : sin γ.

Чему равно n в физике, если это показатель преломления?
Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.
Среда | Абсолютный показатель преломления |
воздух | 1,00029 |
лед | 1,31 |
вода | 1,33298 |
спирт этиловый | 1,36 |
сахар | 1,56 |
алмаз | 2,419 |
Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.
Задача на мощность
№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.
Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.
Выбор формул. Как уже было сказано выше, N = А : t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.
Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000 : 600 = 20 000 Вт.
Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления
№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.
В СИ переводить данные не требуется.
При выборе формул остановиться нужно на этой: n = с : v.
Решение. Из указанной формулы видно, что v = с : n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.
Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.
№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.
Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.
Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n21= sin α: sin γ. А также: n = с : v.
Решение. В первой формуле n21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n2 и n1. Если записать вторую указанную формулу для предложенных сред, то получатся такие: n1= с : v1 и n2 =с : v2. Если составить отношение двух последних выражений, получится, что n21 = v1 : v2. Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v2 : v1).
Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.
Ответ. Значение угла преломления — 26º.
Задачи на период обращения
№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.
Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.
Подбор формул. Период вращения и число оборотов связаны формулой Т = t : N.
Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600 : 5 = 720.
Ответ. Число оборотов лопастей мельницы равно 720.
№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?
Все данные приведены с СИ, поэтому переводить ничего не нужно.
Необходимая формула: частота ν = N : t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.
Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.
Ответ. Винт самолета совершает 3000 оборотов за 120 с.
Подведем итоги
Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.
Ньютон (единица измерения) — это… Что такое Ньютон (единица измерения)?
У этого термина существуют и другие значения, см. Ньютон.Ньютон (обозначение: Н) — единица измерения силы в Международной системе единиц (СИ). Принятое международное название — newton (обозначение: N).
Ньютон — производная единица. Исходя из второго закона Ньютона она определяется как сила, изменяющая за 1 с скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с2.
Единица названа в честь английского физика Исаака Ньютона, открывшего законы движения и связавшего понятия силы, массы и ускорения. В своих работах, однако, Исаак Ньютон не вводил единиц измерения силы и рассматривал её как абстрактное явление.
Связь с другими единицами
С другими единицами измерения силы ньютон связывают следующие выражения:
- 1 Н = 105дин.
- 1 Н ≈ 0,10197162 кгс.
- 1 Н = 10−3стен.
- 1 Н ≈ 8,262619·10−45Fp.
- 1 Н ≈ 0,224808943 lbf.
- 1 Н ≈ 7,233013851 pdl.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | обозначение | |||
101 Н | деканьютон | даН | daN | 10−1 Н | дециньютон | дН | dN |
102 Н | гектоньютон | гН | hN | 10−2 Н | сантиньютон | сН | cN |
103 Н | килоньютон | кН | kN | 10−3 Н | миллиньютон | мН | mN |
106 Н | меганьютон | МН | MN | 10−6 Н | микроньютон | мкН | µN |
109 Н | гиганьютон | ГН | GN | 10−9 Н | наноньютон | нН | nN |
1012 Н | тераньютон | ТН | TN | 10−12 Н | пиконьютон | пН | pN |
1015 Н | петаньютон | ПН | PN | 10−15 Н | фемтоньютон | фН | fN |
1018 Н | эксаньютон | ЭН | EN | 10−18 Н | аттоньютон | аН | aN |
1021 Н | зеттаньютон | ЗН | ZN | 10−21 Н | зептоньютон | зН | zN |
1024 Н | йоттаньютон | ИН | YN | 10−24 Н | йоктоньютон | иН | yN |
применять не рекомендуется |
Примеры
Описание | Значение |
---|---|
Сила, действующая на электрон со стороны ядра атома водорода | 3,6967·10−10 Н |
Сила, которая давила бы на солнечный парус спутника Космос 1 в случае его успешного запуска | 3,5343·10−3 Н |
Вес тела массой 102 г (т. е. сила гравитации, действующая на это тело на поверхности Земли) | 1 Н |
Сила притяжения, действующая на человека массой 70 кг | 686 Н |
Суммарная сила давления воздуха на тело человека[2] (при нормальных условиях) | 202 650 Н |
Примечания
Ньютон-метр — Википедия
Материал из Википедии — свободной энциклопедии

Ньютон-метр (русское обозначение Н·м; международное: N·m) — единица измерения момента силы в Международной системе единиц (СИ). Один ньютон-метр равен моменту силы, создаваемому силой, равной 1 Н, относительно точки, расположенной на расстоянии 1 м от линии действия силы.
По правилам форматирования, принятым в СИ, буквенные обозначения единиц, входящих в произведение, разделяются точкой на средней линии (знаком умножения). Допускается также разделять их пробелом, если это не может вызвать недоразумения. Символ «х» для этих целей не используется[1].
За основу единицы был принят ньютон.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Н·м | деканьютон-метр | даН·м | 10−1 Н·м | дециньютон-метр | дН·м | dN·m | |
102 Н·м | гектоньютон-метр | гН·м | hN·m | 10−2 Н·м | сантиньютон-метр | сН·м | cN·m |
103 Н·м | килоньютон-метр | кН·м | kN·m | 10−3 Н·м | миллиньютон-метр | мН·м | mN·m |
106 Н·м | меганьютон-метр | МН·м | MN·m | 10−6 Н·м | микроньютон-метр | мкН·м | µN·m |
109 Н·м | гиганьютон-метр | ГН·м | GN·m | 10−9 Н·м | наноньютон-метр | нН·м | nN·m |
1012 Н·м | тераньютон-метр | ТН·м | TN·m | 10−12 Н·м | пиконьютон-метр | пН·м | pN·m |
1015 Н·м | петаньютон-метр | ПН·м | PN·m | 10−15 Н·м | фемтоньютон-метр | фН·м | fN·m |
1018 Н·м | эксаньютон-метр | ЭН·м | EN·m | 10−18 Н·м | аттоньютон-метр | аН·м | aN·m |
1021 Н·м | зеттаньютон-метр | ЗН·м | ZN·m | 10−21 Н·м | зептоньютон-метр | зН·м | zN·m |
1024 Н·м | иоттаньютон-метр | ИН·м | YN·m | 10−24 Н·м | иоктоньютон-метр | иН·м | yN·m |
применять не рекомендуется |
1 килограмм-сила-метр (кгс·м; kp·m, Kilopond · Meter) = 9,80665 Н·м
1 кгс·см, kp·cm = 0,0980665 Н·м
1 дюйм-унция-сила = 7,0615518 мН·м
1 дина-сантиметр = 10−7 Н·м
0,7375621 ft·lb (Foot-pound) = 1 Н·м
1 ft·lb = 1,3558179483314004 Н·м
Количество вещества — Википедия
Материал из Википедии — свободной энциклопедии
Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы)[1]. Единица измерения количества вещества в Международной системе единиц (СИ) и в системе СГС — моль[2]. Без конкретизации объекта рассмотрения термин «количество вещества» не используют[K 1].
Эта физическая величина используется для измерения макроскопических количеств веществ в тех случаях, когда для численного описания изучаемых процессов необходимо принимать во внимание микроскопическое строение вещества, например, в химии, при изучении процессов электролиза, или в термодинамике, при описании уравнений состояния идеального газа.
При описании химических реакций, количество вещества является более удобной величиной, чем масса, так как молекулы взаимодействуют независимо от их массы в количествах, кратных целым числам.
Например, для реакции горения водорода (2H2 + O2 → 2H2O) требуется в два раза большее количество вещества водорода, чем кислорода. При этом масса водорода, участвующего в реакции, примерно в 8 раз меньше массы кислорода (так как атомная масса водорода примерно в 16 раз меньше атомной массы кислорода). Таким образом, использование количества вещества облегчает интерпретацию уравнений реакций: соотношение между количествами реагирующих веществ непосредственно отражается коэффициентами в уравнениях.
Так как использовать в расчётах непосредственно количество молекул неудобно, потому что это число в реальных опытах слишком велико, вместо измерения количества молекул в единицах «штука», их измеряют в молях. Фактическое количество единиц «штука» в 1 моле вещества называется числом Авогадро (NA = 6,02214076⋅1023 «штука»/моль[4]).
Количество вещества обозначается латинской n{\displaystyle n} (эн) и не рекомендуется обозначать греческой буквой ν{\displaystyle \nu } (ню), поскольку этой буквой в химической термодинамике обозначается стехиометрический коэффициент вещества в реакции, а он, по определению, положителен для продуктов реакции и отрицателен для реагентов[5]. Однако в школьном курсе широко используется именно греческая буква ν{\displaystyle \nu } (ню).
Для вычисления количества вещества на основании его массы пользуются понятием молярная масса: n=m/M{\displaystyle n=m/M}, где m — масса вещества, M — молярная масса вещества. Молярная масса — это масса, которая приходится на один моль данного вещества. Молярная масса вещества может быть получена произведением молекулярной массы этого вещества на количество молекул в 1 моле — на число Авогадро. Молярная масса (измеренная в г/моль) численно совпадает с относительной молекулярной массой.
По закону Авогадро, количество газообразного вещества можно также определить на основании его объёма: n{\displaystyle n} = V / Vm, где V — объём газа при нормальных условиях, а Vm — молярный объём газа при тех же условиях, равный 22,4 л/моль.
Таким образом, справедлива формула, объединяющая основные расчёты с количеством вещества:
- n=mM=NNA=VVm{\displaystyle n={\frac {m}{M}}={\frac {N}{N_{\mathrm {A} }}}={\frac {V}{V_{\mathrm {m} }}}}
- ↑ Можно говорить о количестве вещества для молекул (формульных единиц) водорода h3{\displaystyle {\ce {h3}}}, можно говорить о числе молей атомов водорода H{\displaystyle {\ce {H}}}, но словосочетание «один моль водорода» без конкретизации объекта обсуждения лишено смысла[3].
- ↑ Количество вещества (неопр.). Большой энциклопедический политехнический словарь (2004). Дата обращения 31 января 2014.
- ↑ Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 85. — 240 с. — ISBN 5-7050-0118-5.
- ↑ Пресс И. А., Основы общей химии, 2017, с. 119.
- ↑ Avogadro constant (англ.). Physical Measurement Laboratory. National Institute of Standards and Technology. Дата обращения 7 февраля 2017.
- ↑ 5B+4,5h3 → B5H9, Δh398∘=+62,8 kJ{\displaystyle {\mathsf {5B+4{,}5H_{2}\ {\xrightarrow {}}\ B_{5}H_{9}}},~\Delta H_{298}^{\circ }=+62{,}8~\mathrm {kJ} }
Когда теплота реакции записывается так, как это сделано в данном уравнении, подразумевается, что она выражена в килоджоулях на стехиометрическую единицу («моль») реакции по записанному уравнению. В рассматриваемом случае теплота реакции равна 62,8 кДж на моль (+62,8 кДж · моль−1) B5H9 (газообразного), но составляет только 12,56 кДж на моль израсходованного бора (твёрдого кристаллического) или 62,8 кДж на каждые 4,5 моля газообразного водорода. Теплоты реакций всегда табулируются в расчете на моль образующегося соединения.
Единицы силы. Динамометр. Видеоурок. Физика 7 Класс
Тема: Взаимодействие тел
Урок: Единицы силы. Динамометр
Прежде всего, вспомним, что такое сила. Когда на тело действует другое тело, физики говорят, что со стороны другого тела на данное тело действует сила.
Сила – это физическая величина, характеризующая действие одного тела на другое.
Сила обозначается латинской буквой F, а единица силы в честь английского физика Исаака Ньютона называется ньютоном (пишем с маленькой буквы!) и обозначается Н (пишем заглавную букву, так как единица названа в честь ученого). Итак,
Наравне с ньютоном, используются кратные и дольные единицы силы:
килоньютон 1 кН = 1000 Н;
меганьютон 1 МН = 1000000 Н;
миллиньютон 1 мН = 0,001 Н;
микроньютон 1 мкН = 0,000001 Н и т. д.
Под действием силы скорость тела изменяется. Другими словами, тело начинает двигаться не равномерно, а ускоренно. Точнее, равноускоренно: за равные промежутки времени скорость тела меняется одинаково. Именно изменение скорости тела под действием силы физики используют для определения единицы силы в 1 Н.
Единицы измерения новых физических величин выражают через так называемые основные единицы – единицы массы, длины, времени. В системе СИ – это килограмм, метр и секунда.
Пусть под действием некоторой силы скорость тела массой 1 кг изменяет свою скорость на 1 м/с за каждую секунду. Именно такая сила и принимается за 1 ньютон.
Один ньютон (1 Н) – это сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м/с каждую секунду.
Экспериментально установлено, что сила тяжести, действующая вблизи поверхности Земли на тело массой 102 г, равна 1 Н. Масса 102 г составляет приблизительно 1/10 кг, или, если быть более точным,
Но это означает, что на тело массой 1 кг, то есть на тело в 9,8 раз большей массы, у поверхности Земли будет действовать сила тяжести 9,8 Н. Таким образом, чтобы найти силу тяжести, действующую на тело любой массы, нужно значение массы (в кг) умножить на коэффициент, который принято обозначать буквой g:
Мы видим, что этот коэффициент численно равен силе тяжести, которая действует на тело массой 1 кг. Он носит название ускорение свободного падения. Происхождение названия тесно связано с определением силы в 1 ньютон. Ведь если на тело массой 1 кг действует сила не 1 Н, а 9,8 Н, то под действием этой силы тело будет изменять свою скорость (ускоряться) не на 1 м/с, а на 9,8 м/с каждую секунду. В старшей школе этот вопрос будет рассмотрен более подробно.
Теперь можно записать формулу, позволяющую рассчитать силу тяжести, действующую на тело произвольной массы m(Рис. 1).
Рис. 1. Формула для расчета силы тяжести
Следует знать, что ускорение свободного падения равно 9,8 Н/кг только у поверхности Земли и с высотой уменьшается. Например, на высоте 6400 км над Землей оно меньше в 4 раза. Однако при решении задач этой зависимостью мы будем пренебрегать. Кроме того, на Луне и других небесных телах также действует сила тяжести, и на каждом небесном теле ускорение свободного падения имеет свое значение.
На практике часто приходится измерять силу. Для этого используется устройство, которое называется динамометр. Основой динамометра является пружина, к которой прикладывают измеряемую силу. Каждый динамометр, помимо пружины, имеет шкалу, на которую нанесены значения силы. Один из концов пружины снабжен стрелкой, которая указывает на шкале, какая сила приложена к динамометру (Рис. 2).
Рис. 2. Устройство динамометра
В зависимости от упругих свойств пружины, использованной в динамометре (от ее жесткости), под действием одной и той же силы пружина может удлиняться больше или меньше. Это позволяет изготавливать динамометры с различными пределами измерения (Рис. 3).
Рис. 3. Динамометры с пределами измерения 2 Н и 1 Н
Существуют динамометры с пределом измерения в несколько килоньютонов и больше. В них используется пружина с очень большой жесткостью (Рис. 4).
Рис. 4. Динамометр с пределом измерения 2 кН
Если подвесить к динамометру груз, то по показаниям динамометра можно определить массу груза. Например, если динамометр с подвешенным к нему грузом показывает силу 1 Н, значит, масса груза равна 102 г.
Обратим внимание на то, что сила имеет не только численное значение, но и направление. Такие величины называют векторными. Например, скорость – это векторная величина. Сила – также векторная величина (говорят еще, что сила – вектор).
Рассмотрим следующий пример:
Тело массой 2 кг подвешено на пружине. Необходимо изобразить силу тяжести, с которой Земля притягивает это тело, и вес тела.
Вспомним, что сила тяжести действует на тело, а вес – это сила, с которой тело действует на подвес. Если подвес неподвижен, то численное значение и направление веса такие же, как у силы тяжести. Вес, как и сила тяжести, рассчитываются по формуле, изображенной на рис. 1. Массу 2 кг необходимо умножить на ускорение свободного падения 9,8 Н/кг. При не слишком точных расчетах часто ускорение свободного падения принимают равным 10 Н/кг. Тогда сила тяжести и вес приблизительно будут равны 20 Н.
Для изображения векторов силы тяжести и веса на рисунке необходимо выбрать и показать на рисунке масштаб в виде отрезка, соответствующего определенному значению силы (например, 10 Н).
Тело на рисунке изобразим в виде шара. Точка приложения силы тяжести – центр этого шара. Силу изобразим в виде стрелки, начало которой расположено в точке приложения силы. Стрелку направим вертикально вниз, так как сила тяжести направлена к центру Земли. Длина стрелки, в соответствии с выбранным масштабом, равна двум отрезкам. Рядом со стрелкой изображаем букву , которой обозначается сила тяжести. Так как на чертеже мы указали направление силы, то над буквой ставится маленькая стрелка, чтобы подчеркнуть, что мы изображаем векторную величину.
Поскольку вес тела приложен к подвесу, начало стрелки, изображающей вес, помещаем в нижней части подвеса. При изображении также соблюдаем масштаб. Рядом помещаем букву , обозначающую вес, не забывая над буквой поместить небольшую стрелку.
Полное решение задачи будет выглядеть так (Рис. 5).
Рис. 5. Оформленное решение задачи
Еще раз обратите внимание на то, что в рассмотренной выше задаче численные значения и направления силы тяжести и веса оказались одинаковыми, а точки приложения – различными.
При расчете и изображении любой силы необходимо учитывать три фактора:
· численное значение (модуль) силы;
· направление силы;
· точку приложения силы.
Сила – физическая величина, описывающая действие одного тела на другое. Обычно она обозначается буквой F. Единица измерения силы – ньютон. Для того чтобы рассчитать значение силы тяжести, необходимо знать ускорение свободного падения, которое у поверхности Земли составляет 9,8 Н/кг. С такой силой Земля притягивает к себе тело массой 1 кг. При изображении силы необходимо учитывать ее числовое значение, направление и точку приложения.
Список литературы
- Перышкин А. В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
- Перышкин А. В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
- Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
Дополнительные ссылки на ресурсы сети Интернет
- Единая коллекция цифровых образовательных ресурсов (Источник).
- Единая коллекция цифровых образовательных ресурсов (Источник).
- Единая коллекция цифровых образовательных ресурсов (Источник).
- Единая коллекция цифровых образовательных ресурсов (Источник).
Домашнее задание
- Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов №327, 335–338, 351.
Единицы физических величин — Википедия
Едини́ца физи́ческой величи́ны (едини́ца величи́ны, едини́ца, едини́ца измере́ния) (англ. Measurement unit, unit of measurement, unit; фр. Unité de mesure, unité) — физическая величина фиксированного размера, которой условно по соглашению присвоено числовое значение, равное 1{\displaystyle 1}. С единицей физической величины можно сравнить любую другую величину того же рода и выразить их отношение в виде числа. Применяется для количественного выражения однородных с ней физических величин. Единицы измерения имеют присвоенные им по соглашению наименования и обозначения[1][2][3].
Число с указанием единицы измерения называется именованным.
Различают основные и производные единицы. Основные единицы в данной системе единиц устанавливаются для тех физических величин, которые выбраны в качестве основных в соответствующей системе физических величин. Так, Международная система единиц (СИ) основана на Международной системе величин (англ. International System of Quantities, ISQ), в которой основными являются семь величин: длина, масса, время, электрический ток, термодинамическая температура, количество вещества и сила света. Соответственно, в СИ основными единицами являются единицы указанных величин.
Размеры основных единиц устанавливаются по соглашению в рамках соответствующей системы единиц и фиксируются либо с помощью эталонов (прототипов), либо путём фиксации численных значений фундаментальных физических постоянных.
Производные единицы определяются через основные путём использования тех связей между физическими величинами, которые установлены в системе физических величин.
Существует большое количество различных систем единиц, которые различаются как системами величин, на которых они основаны, так и выбором основных единиц.
Государство, как правило, законодательно устанавливает какую-либо систему единиц в качестве предпочтительной или обязательной для использования в стране. В Российской Федерации в соответствии с Положением о единицах величин, допускаемых к применению в Российской Федерации, используются единицы величин системы СИ[4]. Это же положение устанавливает правила, касающиеся использования единиц измерения. Метрология непрерывно работает над улучшением единиц измерения и основных единиц и эталонов.
Использование термина «единица измерения» противоречит нормативным документам[4] и рекомендациям метрологических изданий[5], однако он широко употребляется в научной и справочной литературе[1][6].
Правила написания обозначений единиц измерений при производстве научной литературы, учебников и другой полиграфической продукции определены ГОСТ 8.417—2002 «Государственная система обеспечения единства измерений». В печатных изданиях допускается применять либо международные, либо русские обозначения единиц. Одновременно применение обоих видов обозначений в одном и том же издании не допускается, за исключением публикаций по единицам физических величин.[7]
Единицы измерения были среди самых ранних инструментов, изобретенных людьми. Первобытные общества нуждались в элементарных мерах для решения повседневных задач: строительства жилищ определённого размера и формы, создания одежды, обмена продуктами питания или сырьём.
Самые ранние известные единые системы измерения, по всей видимости, были созданы в 4-м и 3-м тысячелетиях до н. э. древними народами Месопотамии, Египта, долины Инда, а также, возможно, Персии.
Упоминания веса и меры имеются в Библии (Книга Левит 19:35—36) — это заповедь быть честным и иметь справедливые меры.
В Великой хартии вольностей 1215 года — соглашении короля Иоанна Безземельного с баронами Англии — в пункте 35 указано: «Одна мера вина пусть будет по всему нашему королевству, и одна мера пива, и одна мера хлеба, именно лондонская кварта, и одна ширина крашеных сукон и некрашеных и сукон для панцирей, именно два локтя между краями; то же, что о мерах, пусть относится и к весам».
Введение метрической системы[править | править код]
На начало XXI век во всём мире всё ещё используется множество систем единиц: британская, международная система и др. Первые целенаправленные усилия по разработке приемлемой для всех системы единиц датируются 1790 годом, когда Национальное собрание Франции поручило Французской академии наук создать универсальную систему единиц. Эта система была предшественником метрической системы — одного из самых судьбоносных завоеваний Великой французской революции.
В 1875 году между 17 странами был подписан договор о Метрической конвенции. С подписанием этого договора были учреждены Международное бюро мер и весов и Международный комитет мер и весов и положено начало Генеральным конференциям по мерам и весам (ГКМВ), собирающимся обычно раз в четыре года. Эти международные органы создали нынешнюю систему СИ, которая была принята в 1954 году на 10-й ГКМВ и утверждена на 11-й ГКМВ в 1960 году.
16 ноября 2018 года в Версале во Дворце конгресса состоялась сессия 26-й ГКМВ, закрепившая новые определения четырёх из семи базовых единиц Международной системы единиц СИ (килограмма, ампера, кельвина и моля) и положившая конец зависимости СИ от конкретного материального объекта — международного платино-иридиевого прототипа килограмма (существующего с 1889 года), который будет официально заменён новой реализацией в виде физического эксперимента, основанного на значении постоянной Планка.
Метрические системы[править | править код]
Системы естественных единиц измерения[править | править код]
Традиционные системы мер[править | править код]
Единицы измерения, сгруппированные по физическим величинам[править | править код]
- ↑ 1 2 Международный словарь по метрологии: основные и общие понятия и соответствующие термины / Пер. с англ. и фр.. — 2-е изд., испр. — СПб.: НПО «Профессионал», 2010. — С. 20. — 82 с. — ISBN 978-5-91259-057-3.
- ↑ РМГ 29-99. Метрология. Основные термины и определения.
- ↑ Чертов А. Г. Физические величины (Терминология, определения, обозначения, размерности, единицы). — М.: «Высшая школа», 1990. — С. 12. — 335 с. — ISBN 5-06-001011-2.
- ↑ 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
- ↑ «Не допускается применять термин единица измерения физической величины или единица измерения вместо стандартизированного термина единица физической величины или единица, поскольку понятие измерение определяют через понятие единица. Надо писать: ампер — единица силы тока, квадратный метр — единица площади и нельзя писать: ампер — единица измерения силы тока, квадратный метр — единица измерения площади» (Словарь-справочник автора / Сост. Л.А.Гильберг и Л.И.Фрид. — М.: Книга, 1979. — С. 98–99. — 304 с.).
- ↑ Аналогичная вариативность имеется и в иностранной терминологии. Так, в английском языке наряду с термином unit используется unit of measure(ment): Are, a metric unit of measurement, equal to 100 square metres (Concise Oxford English Dictionary, 11th edition, 2004).
- ↑ Справочник (рус.). — Правила написания обозначений единиц измерений. Дата обращения 7 февраля 2016.
- Сена Л.А. Единицы физических величин и их размерности. — 2000.
- Чертов А.Г. Единицы физических величин. — Москва: Высшая школа, 1977. — 288 с.
- Система единиц // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М: Сов. энциклопедия, 1976. — Т. XXIII. — С. 465. — 640 с.