Излучение высокочастотное: Источники высокочастотных излучений (от 3 кГц до 300 гГц). – Сверхвысокочастотное излучение Википедия

Источники высокочастотных излучений (от 3 кГц до 300 гГц).

К этой группе относятся функциональные передатчики — источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц – 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Таблица 1

Классификация опасных и вредных излучений

Род излучения, название диапазона длин волн

Диапазон

Название диапазона частот

длин волн

частот, Гц

Радиоволны:

 

Радиочастоты:

Мириаметровые

100 000–10 км

3–3·104

Очень низкие частоты (ОНЧ)

Километровые

10–1км

3·104–3·105

Низкие частоты (НЧ)

Гектометровые

1000–100м

3·105–3·106

Средние частоты (СЧ)

Декаметровые

100–10м

3·106–3·107

Высокие частоты (ВЧ)

Метровые

10–1м

3·107–3·108

Очень высокие частоты (ОВЧ)

Дециметровые

100–10 см

3·108–3·109

Ультравысокие частоты (УВЧ)

Сантиметровые

10–1 см

3·109–3·1010

Сверхвысокие частоты (СВЧ)

Миллиметровые

10–1 мм

3·1010–3·1011

Крайне высокие частоты (КВЧ)

Децимиллиметровые

1–0,1 мм

3·1011–3·1012

Сверхкрайне высокие частоты (СКВЧ)

    1. Излучение бытовых приборов

Источником электромагнитного поля в жилых помещениях является разнообразная электротехника — холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др., а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1–10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера.

Замеры напряженности магнитных полей от бытовых электроприборов показали, что их кратковременное воздействие может оказаться даже более сильным, чем долговременное пребывание человека рядом с линией электропередачи. Если отечественные нормы допустимых значений напряженности магнитного поля для населения от воздействия линии электропередачи составляют 1000 мГс, то бытовые электроприборы существенно превосходят эту величину.

Индукция магнитного поля от электроплит типа «Электра» на расстоянии 20–30 см от передней панели — там, где стоит хозяйка, — составляет 1–3 мкТл. У конфорок, оно, естественно, больше. А на расстоянии 50 см уже неотличимо от общего поля в кухне, которое составляет около 0,1–0,15 мкТл.

Невелики и магнитные поля от холодильников и морозильников. Так, по данным Центра электромагнитной безопасности (см. ниже), у обычного бытового холодильника поле выше предельно допустимого уровня (0,2 мкТл) возникает в радиусе 10 см от компрессора и только во время его работы. Однако у холодильников, оснащенных системой «no frost», превышение предельно допустимого уровня можно зафиксировать на расстоянии метра от дверцы.

СВЧ-печи, в силу принципа своей работы, служат мощнейшим источником излучения. Но по той же причине их конструкция обеспечивает соответствующую экранировку, да и пища разогревается или готовится в них быстро. Но все же опираться локтем на включенную «микроволновку» не стоит. На расстоянии 30 см печь создает заметное переменное (50 Гц) магнитное поле (0,3–8 мкТл). Неожиданно малыми оказались поля от мощных электрических чайников. Так, на расстоянии 20 см от чайника «Tefal» поле составляет около 0,6 мкТл, а на расстоянии 50 см неотличимо от общего электромагнитного поля в кухне.

У большинства утюгов поле выше 0,2 мкТл обнаруживается на расстоянии 25 см от ручки и только в режиме нагрева.

Зато поля стиральных машин оказались достаточно большими. Например, у малогабаритной «Спини» поле на частоте 50 Гц у пульта управления составляет более 10 мкТл, на высоте 1 метра — 1 мкТл, сбоку на расстоянии 50 см — 0,7 мкТл. В утешение можно заметить, что большая стирка — не столь частое занятие, да и при работе автоматической или полуавтоматической стиральной машины хозяйка может отойти в сторонку или просто выйти из ванной. Еще больше поле у пылесоса «Тайфун». Оно порядка 100 мкТл. Впрочем, здесь тоже есть утешительное обстоятельство: пылесос обычно таскают за шланг и находятся от него достаточно далеко. Рекорд держат электробритвы. Их поле измеряется сотнями мкТл. Таким образом, бреясь электробритвой, убивают сразу двух зайцев: приводят себя в порядок и попутно проводят магнитную обработку лица.

Западная промышленность уже реагирует на повышающийся спрос к бытовым приборам и персональным компьютерам, чье излучение не угрожает жизни и здоровью людей, рискнувших облегчить себе жизнь с их помощью. Так, в США многие фирмы выпускают безопасные приборы, начиная от утюгов с бифилярной намоткой и кончая неизлучающими компьютерами.

В нашей стране существует Центр электромагнитной безопасности, где разрабатываются всевозможные средства защиты от электромагнитных излучений: специальная защитная одежда, ткани и прочие защитные материалы, которые могут обезопасить любой прибор. Но до внедрения подобных разработок в широкое и повседневное их использование пока далеко. Так что каждый пользователь должен позаботиться о средствах своей индивидуальной защиты сам, и чем скорее, тем лучше. Сотрудники Центра электромагнитной безопасности провели независимое исследование ряда компьютеров, наиболее распространенных на нашем рынке, и установили, что «уровень электромагнитных полей в зоне размещения пользователя превышает биологически опасный уровень».

Сверхвысокочастотное излучение Википедия

Микрово́лновое излучение, сверхвысокочасто́тное излуче́ние (СВЧ-излучение) — электромагнитное излучение, включающее в себя дециметровый, сантиметровый и миллиметровый диапазоны радиоволн, частоты микроволнового излучения изменяются от 300 МГц до 300 ГГц (длина волны от 1 м до 1 мм). Данное определение относит к микроволнам как УВЧ диапазон (дециметровые волны), так и КВЧ диапазон (миллиметровые волны), тогда как в радиолокации микроволновым диапазоном принято обозначать волны с частотами от 1 до 100 ГГц (с длинами волн от 300 до 3 мм). В обоих определениях микроволновое излучение включает в себя СВЧ диапазон.

Микроволновое излучение большой интенсивности используется для бесконтактного нагрева тел (в бытовых микроволновых печах — для разогрева продуктов, в промышленных — для термообработки металлов, в хирургии — при радиочастотной абляции вен

[1]; основным элементом здесь служит магнетрон), а также для радиолокации.

Микроволновое излучение малой интенсивности используется в средствах связи, преимущественно портативных — рациях, сотовых телефонах (кроме первых поколений), устройствах Bluetooth, Wi-Fi и WiMAX.

Поддиапазоны[ | ]

Поддиапазоны СВЧ в различных системах обозначений различаются; используемые в спутниковой связи приведены в таблице.

Диапазоны частот
Название Частотный диапазон, ГГц
Название диапазона Диапазон частот РЛС Диапазон частот в спутниковой связи
L 1,0—2,0
S 2,0—4,0
C 4,0—8,0 3,4—8,0
X 8,0—12,0 7,0—10,7
Ku 12,0—18,0 10,7—18,0
K 18,0—26,5 18,3—20,2; 27,5—31,5
Ka 26,5—40,0

См. также[ | ]

Примечания[ | ]

Предложения со словосочетанием ВЫСОКОЧАСТОТНОЕ ИЗЛУЧЕНИЕ

Такой вшитый в мозг человека компьютер или модем связи может породить не мысли, а раковые клетки от облучения здоровых клеток высокочастотными излучениями. — Потом, — шеф переключился с бумажки на отвёрнутый от меня экран «Хрюндига» — здоровенного золотого блюдечка оригинальной конструкции, по которому каталось не наливное яблочко, а аппетитная наливная… жирком свинка, постепенно подрумянивающаяся от высокочастотного излучения блюдца. Он увидел человеческое тело в образе передающей станции, внутри которой каждая клетка, ткань и орган общаются между собой при помощи сигналов,
высокочастотных излучений
. Автономные топливные элементы не позволяли задействовать постоянное высокочастотное излучение, и слабые радары выдавали грубую схему из квадратов и прямоугольников, к тому же, несмотря на то что соединялись сигналы всех костюмов, значительная часть пространства оставалась размытой. От пламенных тел драконов шло мощное высокочастотное излучение
.

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова складчатость (существительное):

Кристально
понятно

Понятно
в общих чертах

Могу только
догадываться

Понятия не имею,
что это

Другое
Пропустить

Затем она проходила обработку высокочастотным излучением. Есть довольно мощное не высокочастотное излучение, но сильно падающее на небольшом удалении. Но о вредоносности высокочастотных излучений тогда особенно не задумывались, а потому мер по защите ни в конструкции аппаратуры, ни в инструкциях по эксплуатации не предусматривалось. Вне всякого сомнения, оценка степени влияния высокочастотных излучений на живые организмы сложна сама по себе из-за отсутствия не только критериев, но и разноплановости воздействия многообразных технических устройств, недостаточного познания биологической природы организма, его поведения в долгосрочной перспективе при воздействии излучений различной частоты. Однако для этого потребовалось бы направленное на рептилоида высокочастотное излучение, безвредное для людей, но невыносимое для представителя расы рептилий. Раздавался входящий звонок, абонент брал трубку, и вместе с этим одновременно передавалось высокочастотное излучение, оказывающее гипнотическое воздействие на человека, снимающее всякую волю к сопротивлению. — Врезать по нему высокочастотным излучением, чтобы потом эти разгильдяи выложили денежки за починку из своего кармана… У полковника в руках был специальный прибор «Линок-С», который помогал обнаружению предметов высокочастотного излучения.

Неточные совпадения

Контроль за излучениями радиоэлектронных средств и высокочастотных устройств является одной из составляющих государственной политики в области связи. Квантовая медицина (КМ), по сути, является сочетанием различных (причём, нелекарственных) методов лечения: лазерного, инфракрасного, крайне высокочастотного, светового — то есть различных видов электромагнитного излучения. Понятно, что это не обычные электромагнитные излучения из известных диапазонов радио — или телесигналов, а более высокочастотные, которые сегодня не улавливаются нашими измерительными приборами. Средства связи, иные радиоэлектронные средства и высокочастотные устройства, являющиеся источниками электромагнитного излучения, подлежат регистрации. Он хорошо видел мины левым глазом в фоновом режиме бездисплейного отображения информации, локатор давал примерное местоположение каждой мины, хотя точность была очень слабой: как ни мудрили конструкторы, им всё равно не удалось разместить внутри шлема высокочастотный локатор, а наличный давал приборную ошибку в пределах длины волны излучения.

5.4.1. Низкочастотные излучения

 

Источниками низкочастотных излучений являются системы производства, передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропередачи), электросети жилых и административных зданий, транспорт на электроприводе и его инфраструктура.

При длительном воздействии низкочастотного излучения могут появиться головные боли, изменение артериального давления, развиваться утомление. Могут наблюдаться выпадение волос, ломкость ногтей, снижение массы тела, стойкое снижение работоспособности.

Для защиты от низкочастотного излучения экранируют либо источники излучения (рис. 88), либо зоны, где может находиться человек.

 

5.4.2. Радиочастотные излучения

 

Источником электромагнитных полей радиочастот являются:

         в диапазоне 60 кГц — 3 МГц — неэкранированные элементы оборудования для индукционной обработки металла (закалка, отжиг, плавка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радиосвязи и радиовещании;

         в диапазоне 3 МГц — 300 МГц — неэкранированные элементы оборудования и приборов, применяемых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлектриков;

         в диапазоне 300 МГц — 300 ГГц — неэкранированные элементы оборудования и приборов, применяемых в радиолокации, радиоастрономии, радиоспектроскопии, физиотерапии и т.п.

Длительное воздействие радиоволн на различные системы организма человека по последствиям имеют многообразные проявления.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения от нормального состояния центральной нервной системы и сердечно-сосудистой системы человека. Субъективными ощущениями облучаемого персонала являются жалобы на частую головную боль, сонливость или общую бессонницу, утомляемость, слабость, повышенную потливость, снижение памяти, рассеянность, головокружение, потемнение в глазах, беспричинное чувство тревоги, страха и др.

Выявлено влияние ЭМП средневолнового диапазона при длительном воздействии на центральную нервную систему, которое проявляется в возбудительных процессах, нарушении положительных рефлексов. Отмечают изменения в крови, вплоть до лейкоцитоза. Установлено нарушение функции печени, дистрофические изменения в головном мозге, внутренних органах и половой системе.

ЭМП коротковолнового диапазона провоцирует изменения в коре надпочечников, сердечно-сосудистой системе, биоэлектрических процессах коры головного мозга.

ЭМП УКВ диапазона оказывает на человека вредное влияние, выраженное в функциональных изменениях нервной, сердечно-сосудистой, эндокринной и других систем организма.

Степень опасности влияния на человека СВЧ-излучения зависит от мощности источника электромагнитных излучений, режима работы излучателей, конструктивных особенностей излучающего устройства, от параметров ЭМП, плотности потока энергии, напряженности поля, времени воздействия, размера облучаемой поверхности, индивидуальных свойств человека, расположения рабочих мест и эффективности защитных мероприятий.

Различают тепловое и биологическое воздействие СВЧ-излучения.

Тепловое воздействие является следствием поглощения энергии ЭМП СВЧ-излучения. Чем выше напряженность поля и больше время воздействия, тем сильнее проявляется тепловое воздействие. При плотности потока энергии W=10 Вт/м2 организм не справляется с отводом теплоты, температура тела повышается и начинаются необратимые процессы.

Биологическое (специфическое) воздействие проявляется в ослаблении биологической активности белковых структур, в нарушении сердечно-сосудистой системы и обмена веществ. Это воздействие проявляется при интенсивности ЭМП менее теплового порога, который равен 10 Вт/м2.

Воздействие ЭМП СВЧ-излучения особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте). Помимо катаракты при воздействии ЭМП СВЧ-излучения возможны ожоги роговицы.

Для обеспечения безопасности работ с источниками электромагнитных волн производится систематический контроль фактических нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напряженности электрического и магнитного поля, а также измерением плотности потока энергии.

Защита персонала от воздействия радиоволн применяется при всех видах работ, если условия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами и средствами:

         согласованных нагрузок и поглотителей мощности, снижающих напряженность и плотность поля потока энергии электромагнитных волн;

         экранированием рабочего места и источника излучения;

         рациональным размещением оборудования в рабочем помещении;

         подбором рациональных режимов работы оборудования и режима труда персонала.

Наиболее эффективно использование согласованных нагрузок и поглотителей мощности (эквивалентов антенн) при изготовлении, настройке и проверке отдельных блоков и комплексов аппаратуры.

Эффективным средством защиты от воздействия электромагнитных излучений является экранирование источников излучения и рабочего места с помощью экранов, поглощающих или отражающих электромагнитную энергию. Выбор конструкции экранов зависит от характера технологического процесса, мощности источника, диапазона волн.

Отражающие экраны используют в основном для защиты от паразитных излучений (утечки из цепей в линиях передачи СВЧ-волн, из катодных выводов магнетронов и других), а также в тех случаях, когда электромагнитная энергия не является помехой для работы генераторной установки или радиолокационной станции. В остальных случаях, как правило, применяются поглощающие экраны.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, например металлы (в виде сплошных стенок) или хлопчатобумажные ткани с металлической основой. Сплошные металлические экраны наиболее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. Поглощающие экраны изготавливаются в виде прессованных листов резины специального состава с коническими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной карбонильным железом, с впрессованной металлической сеткой. Эти материалы приклеиваются на каркас или на поверхность излучающего оборудования.

Важное профилактическое мероприятие по защите от электромагнитного облучения — это выполнение требований для размещения оборудования и для создания помещений, в которых находятся источники электромагнитного излучения.

Защита персонала от переоблучения может быть достигнута за счет размещения генераторов ВЧ, УВЧ и СВЧ, а также радиопередатчиков в специально предназначенных помещениях.

Экраны источников излучения и рабочих мест блокируются с отключающими устройствами, что позволяет исключить работу излучающего оборудования при открытом экране.

Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.

 

Источники высокочастотных излучений (от 3 кГц до 300 ГГц) — Мегаобучалка

Введение

Волновые процессы очень обширно распространены в природе. В природе существует два вида волн: механические и электромагнитные. Механические волны распространяются в веществе: газе, воды либо жестком теле. Электромагнитные волны не нуждаются в веществе для собственного распространения, к которым, в частности, относятся радиоволны и свет. Электромагнитное поле может существовать в вакууме, т. Е. В пространстве, не содержащем атомов. Несмотря на существенное различие электромагнитных волн от механических, электромагнитные волны при собственном распространении ведут себя подобно механическим.

В собственной работе я постараюсь разглядеть виды электромагнитных излучений, их виды, проявления их в повседневной жизни, изучить их влияние на человека, а так методы защиты от них.

 

Источники и действие электромагнитных излучений

Посреди разных физических факторов окружающей среды, которые могут оказывать неблагоприятное действие на человека и биологические объекты, огромную сложность представляют электромагнитные поля неионизирующей природы, в особенности, относящиеся к радиочастотному излучению. Электромагнитные поля — это особая форма существования материи, характеризующаяся совокупностью электрических и магнитных параметров. Основными параметрами, характеризующими электромагнитное поле, являются: частота, длина волны и скорость распространения. Электромагнитные поля окружают нас повсюду, но мы не можем их ощутить и вообще заметить, — поэтому мы не видим излучений милицейского радара, не видим лучей, поступающих от телевизионной башни либо полосы электропередачи.

 

Природные источники электромагнитных полей

Природные источники электромагнитных полей делят на две группы. Первая — поле Земли — неизменное электрическое и неизменное магнитное поле. Вторая группа — радиоволны, генерируемые космическими источниками (Солнце, звезды и т.д.), Атмосферные процессы — разряды молний и т.д. Естественное электрическое поле Земли создается лишним отрицательным зарядом на поверхности; его напряженность традиционно от 100 до 500 В/м. Грозовые облака могут увеличивать напряженность поля до десятков, а то и сотен кВ/м. Вторая группа природных электромагнитных полей характеризуется широким спектром частот.



 

Антропогенные источники электромагнитных полей

Антропогенные источники также делятся на 2 группы:

Источники низкочастотных излучений (0 — 3 кГц).

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (полосы электропередачи, трансформаторные подстанции, электростанции, разные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сейчас электромагнитное поле на 18-32% местности городов формируется в итоге автодвижения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное действие на организм человека. Транспорт на электроприводе является массивным источником магнитного поля в спектре от 0 до 1000 Гц. Железнодорожный транспорт употребляет переменный ток. Городской транспорт — неизменный. Наибольшие значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения — около 20 мкТл. Средние значения на транспорте с приводом от неизменного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод — рельсы, магнитные поля компенсируют друг друга на еще большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые огромные колебания магнитного поля — в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Только после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, время от времени не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле опять изменяется. В самом вагоне магнитное поле еще сильнее — 150-200 мкТл, то есть в десять раз больше, чем в обыкновенной электричке.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц).

К данной группе относятся функциональные передатчики — источники электромагнитного поля в целях передачи либо получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ., любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц — 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телеки и пр.) . Для научных исследований в медицине используют токи ультравысокой частоты. Возникающие при использовании таковых токов электромагнитные поля представляют определенную профессиональную вредность, поэтому нужно воспринимать меры защиты от их действия на организм.

Классификация опасных и вредных излучений

Радиоволны Спектр частот Радиочастоты Заглавие спектра частот
Мириаметровые 100000 – 10км 3-3·104 совсем низкие частоты (ОНЧ)
Километровые 10 – 1км 3·104-3·105 Низкие частоты (НЧ)
Гектометровые 1000 – 100м 3·105-3·106 Средние частоты (СЧ)
Декаметровые 100 – 10м 3·106-3·107 Высокие частоты (ВЧ)
Метровые 10 – 1 м 3·107-3·108 совсем высокие частоты (ОВЧ)
Дециметровые 100 – 10 см 3·108-3·109 Ультравысокие частоты (УВЧ)
Сантиметровые 10 – 1 см 3·109-3·1010 Сверхвысокие частоты (СВЧ)
Миллиметровые 10 – 1 мм 3·1010-3·1011 очень высокие частоты (КВЧ)
Дицимиллеметровые 1 – 0,1мм 3·1011-3·1012 Сверхкрайне высокие частоты (СКВЧ)

 

 

Влияние низкочастотных электромагнитных излучений на живые организмы. — НПО Промтрейд

Всё многообразие живого на нашей планете возникло, эволюционировало и ныне существует благодаря непрерывному взаимодействию с различными факторами внешней среды, приспосабливаясь к их влиянию и изменениям, используя их в процессах жизнедеятельности. А большинство этих факторов имеют электромагнитную природу. На протяжении всей эпохи эволюции живых организмов электромагнитные излучения существуют в среде их обитания ― биосфере. Такие электромагнитные поля называют естественными.

К естественным излучениям относятся слабые электромагнитные поля, создаваемые живыми организмами, поля атмосферного происхождения, электрические и магнитные поля Земли, солнечное излучение, а также космическое излучение. Когда человек стал активно использовать электроэнергию, пользоваться радиосвязью, и. т. д., то в биосферу стало поступать искусственное электромагнитное излучение, в широком диапазоне частот (примерно от 10-1 до 1012 Гц).

Электромагнитное поле необходимо рассматривать как состоящее из двух полей: электрического и магнитного. Можно считать, что в объектах, содержащих электрические цепи, электрическое поле возникает при напряжении на токоведущих частях, а магнитное ― при прохождении тока по этим частям. Допустимо также считать, что при малых частотах, (в том числе 50 Гц), электрическое и магнитное поля не связаны, поэтому их можно рассматривать раздельно, как и оказываемые ими влияния на биологический объект.

Эффект воздействия электромагнитного поля на биологический объект принято оценивать количеством электромагнитной энергии, поглощаемой этим объектом при нахождении его в поле.

Искусственные низкочастотные электромагнитные поля большей частью создаются энергетическими установками, линиями электропередачи (ЛЭП), электробытовой техникой, работающей от сети.

Выполненные для действительных условий расчеты показали, что в любой точке электромагнитного поля низкой частоты, возникающего в электроустановках, на промышленных объектах, и. т. д., поглощенная телом живого организма энергия магнитного поля примерно в 50 раз меньше поглощенной им энергии электрического поля. Вместе с теми измерениями в реальных условиях было установлено, что напряженность магнитного поля в рабочих зонах открытых распределительных устройств и воздушных линий с напряжением до 750 кВ, не превышает 25 А/м, в то время как вредное действие магнитного поля на биологический объект проявляется при напряженности, во много раз большей.

На основании этого можно сделать вывод, что отрицательное действие электромагнитного поля на биологические объекты в промышленных электроустановках обусловлено электрическим полем; магнитное же поле оказывает незначительное биологическое действие, и в практических условиях им можно пренебречь.

Электрическое поле низкой частоты можно рассматривать в каждый данный момент как электростатическое поле, т. е. применять к нему законы электростатики. Это поле создается по крайней мере между двумя электродами (телами), которые несут заряды разных знаков и на которых начинаются и оканчиваются силовые линии.

Низкочастотные радиоволны имеют очень большую длину волны (от 10 до 10000 км), поэтому установить экран, который бы не пропускал это излучение трудно. Радиоволны будут его беспрепятственно огибать. Поэтому низкочастотные радиоволны, имеющие достаточный запас энергии могут распространятся на достаточно большие расстояния.

Предполагается, что низкочастотные электромагнитные излучения наиболее масштабный вид загрязнения, имеющий глобальные неблагоприятные последствия для живых организмов и для человека.

Исследованы низкочастотные электромагнитные поля (НЧ ЭМП) в бытовых

условиях от различных внешних и внутренних источников, изучено влияние данного фактора на состояние здоровья населения.

В процессе эксплуатации электроэнергетических установок — открытых распределительных устройств (ОРУ) и воздушных линий (ВЛ) электропередачи сверхвысокого напряжения (330 кВ и выше) было отмечено ухудшение состояния здоровья персонала, обслуживающего указанные установки. Субъективно это выражалось в ухудшении самочувствия работающих, которые жаловались на повышенную утомляемость, вялость, головные боли. плохой сон. боли в сердце и т. п.

В условиях населенных мест основным внешним источником низкочастотных электрических и магнитных полей в квартирах жилых зданий, являются ЛЭП различного напряжения. В зданиях расположенных вблизи ЛЭП от 75 до 80% объема помещений квартир находятся под воздействием высоких уровней НЧ ЭМП и население, проживающее в них подвергается круглосуточному воздействию данного неблагоприятного фактора.

Специальные наблюдения и исследования, проводимые в Советском Союзе, в России и за рубежом, подтвердили обоснованность этих жалоб и установили, что фактором, влияющим на здоровье персонала, работающего с электрооборудованием, является электромагнитное поле, возникающее в пространстве вокруг токоведущих частей действующих электроустановок.

Интенсивное электромагнитное поле промышленной частоты вызывает у работающих нарушение функционального состояния центральной нервной и сердечно-сосудистой системы. При этом наблюдается повышенная утомляемость, снижение точности рабочих движений, изменение кровяного давления и пульса, возникновение болей в сердце, сопровождающихся сердцебиением и аритмией, и т. п.

Предполагается, что нарушение регуляции физиологических функции организма обусловлено воздействием низкочастотного электромагнитного поля на различные отделы нервной системы. При этом повышение возбудимости центральной нервной системы происходит вследствие рефлекторного действия поля, а тормозной эффект ― результат прямого воздействия поля на структуры головного и спинного мозга. Считается что, кора головного мозга, а также промежуточный мозг особенно чувствительны к воздействию электрического поля. Предполагается также, что основным материальным фактором, вызывающим указанные изменения в организме, является индуцируемый в теле ток (т. е. наведённый магнитной составляющей поля), а влияние самого электрического поля значительно меньше. Нужно отметить, что на самом деле влияние оказывают и индуцируемый ток и само электрическое поле.

Действие электромагнитных полей на клетки.

Рассмотрим действие электромагнитных полей (в том числе и низкочастотных) на клетки живых организмов.

Эффекты, вызываемые действием электрических полей на клеточные мембраны могут быть классифицированы следующим образом: 1) обратимое повышение проницаемости клеточных мембран (электропорация), 2) электрослияние, 3) движения в электрическом поле (электрофорез, диэлектрофорез и электроврашение), 4) деформации мембран, 5) электротрансфекция, 6) электроактивация мембранных белков.

Движение клеток в электрическом поле бывает двух типов. Постоянное поле вызывает перемещение клеток, имеющих поверхностный заряд, ― явление электрофореза. При воздействии на клеточные суспензии переменного неоднородного поля происходит движение клеток, называемое диэлектрофорезом. При диэлектрофорезе поверхностный заряд клеток не имеет существенного значения. Движение происходит из-за взаимодействия наведённого дипольного момента с внешним полем.

В теории диэлектрофореза клетку обычно рассматривают в виде сферы, имеющей диэлектрическую оболочку. Частотно-зависимая составляющая индуцируемого дипольного момента для такой сферической частицы записывется в виде:

где , ― циклическая частота. Параметры A1, A2, B1, B2, C1, C2 определяются независящими от частоты значениями проводимости и диэлектрической проницаемости наружной и внутренней сред, а также разделяющей оболочки.

Из приведённых соотношений рассчитаны частотные зависимости диэлектрофоретической силы,. Действующей на клетки в неоднородном электрическом поле, а также усилия, определяющего вращение клеток во вращающемся электрическом поле. Согласно теории, джиэлектрофоретическая сила пропорциональна действительной части безразмерного параметра К и градиенту квадрата напряжённости поля:

F=1/2·Re(K)·grad E2

Вращающий момент пропорционален мнимой части парпметра К и квадрату напряжённости вращающегося поля:

F=Im(K)·E2

Различие направлений диэлектрофоретической силына низких (килогерцы) и высоких (мегагерцы) частотах обусловлено различной ориентацией индуцированного дипольного момента по отношению к внешнему электрическому полю. Известно, что дипольные моменты плохо проводящих диэлектрических частиц в проводящей среде ориентируются противоположно вектору напряжённости электрического поля, а дипольные моменты хорошо проводящих частиц, окружённых малопроводящей средой, наоборот, ориентируются сонаправлено с вектором напряжённости.

В случае воздействия низкочастотного поля мембрана представляет собой хороший изолятор, и ток идёт в обход клетки по проводящей среде. Индуцированные заряды распределяются как показано на рисунке, и усиливают напряжённость поля внутри частицы. При этом дипольный момент антипараллелен напряжённости поля. Для высокочастотного поля проводимость мембран высока, следовательно дипольный момент будет сонаправлен с вектором напряжённости электрического поля.

Деформация мембран под влиянием электромагнитных полей происходит из-за действия на поверхность клетки сил, называемых максвелловскими напряжениями. Величина и направление силы, действующей на клеточные мембраны в электрическом поле, определяется соотношением

,

где T― сила, E ― напряжённость поля, n ― вектор нормали к поверхности, ε ― относительная диэлектрическая проницаемость диэлектрика, ε0 ― абсолютная диэлектрическая проницаемость вакуума.

В случае действия на клетку низкочастотного поля силовые линии обходят клетку, т. е. поле направлено вдоль поверхности. Следовательно векторное произведение E[En] равно нулю. Поэтому

Эта сила действует на клетку, заставляя её вытягиваться вдоль силовых линий поля.

Когда на клетку действует высокочастотное поле, то сила, действующая на мембрану, растягивает концы клеток в направлении электродов.

В качестве примера электроактивации мембранных ферментов можно назвать активацию Na, К-АТФазы в эритроцитах человека при действии переменного поля с амплитудой 20 В/см и частотой 1 кГц. Существенно, что электрические поля такой слабой напряжённости не оказывают повреждающего действия на функции клеток и их морфологию. Слабые поля низкой частоты (60 В/см, 10 Гц) оказывают также стимулирующее влияние на синтез АТФ митохондриальной АТФазой. Предполагают, что электроактивация обусловлена влиянием поля на конформацию белков. Теоретический анализ модели облегчённого мембранного транспорта с участием переносчика (модель с четырьмя состояниями транспортной системы) указывет на взаимодействие транспортной системы с переменным полем. В результате такого взаимодействия энергия поля может использоваться транспортной системой и преобразовываться в энергию химической связи АТФ.

Влияние слабых НЧ ЭМП на биоритмы.

Характер и выраженность биологических эффектов ЭМП своеобразно зависят от параметров последних. В одних случаях эффекты максимальны при некоторых «оптимальных» интенсивностях ЭМП, в других ― возрастают при уменьшении интенсивности, в третьих ― противоположно направлены при малых и больших интенсивностях. Что касается зависимости от частот и модуляционно-временных характеристик ЭМП, то она имеет место для специфических реакций (условные рефлексы, изменения ориентации, ощущения).

Анализ этих закономерностей приводит к заключению, что биологические эффекты слабых низкочастотных полей, необъяснимые их энергетическим взаимодействием с веществом живых тканей, могут быть обусловлены информационными взаимодействиями ЭМП с кибернетическими системами организма, воспринимающими информацию из окружающей среды и соответственно регулирующими процессы жизнедеятельности организмов.

НЧ ЭМП антропогенного происхождения близки по параметрам к естественным электрическим и магнитным полям Земли. Поэтому в биологической системе, находящейся под влиянием искусственных НЧ ЭМП, может произойти нарушение биоритмов, свойственной этой системе.

Например, в организме здорового человека наиболее характерными короткопериодными ритмами центральной нервной системы (ЦНС) в состоянии покоя следует считать колебательную активность электрических и магнитных полей головного мозга (2―30 Гц), частоту сердечных сокращений (1.0―1.2 Гц), частоту дыхательных движений (0.3 Гц), периодичность колебаний артериального давления (0.1 Гц) и температуры (0.05 Гц). Если длительное время воздействовать на человека НЧ ЭМП, амплитуда которых достаточно велика то может произойти нарушение естественных ритмов (дизритмия), что повлечёт физиологические нарушения.

Все биологические объекты находятся под влиянием электрического и магнитного полей Земли. Поэтому большинство изменений, происходящих в биосфере, в той или иной степени связаны с изменением этого поля. Очевидно, что изменения геомагнитного поля носят периодический характер. Если происходят какие-то отклонения от установившегося периода изменений, то могут произойти нарушение физиологических параметров биологических систем.

Эти отклонения могут произойти по двум причинам. Первая причина ― естественная (например, влияние солнечной активности на геополя). Причём большинство отклонений также периодичны. Вторая причина носит антропогенный характер, следствием которой является нарушение частотного спектра параметров внешней среды. В общем случае вредным следует считать любое заметное отклонение частотного спектра искусственных полей от оптимального, определяемого спектром геомагнитного поля Земли.

Можно сказать, что в процессе эволюции живая природа использовала естественные ЭМП внешней среды как источники информации, обеспечивавшей непрерывное приспособление организмов к изменениям различных факторов внешней среды: согласование процессов жизнедеятельности с регулярными изменениями, защиту от спонтанных изменений .А это привело к использованию ЭМП как носителей информации, обеспечивающей взаимосвязи на всех уровнях иерархической организации живой природы, от клетки до биосферы. Формирование в живой природе информационных связей посредством ЭМП в дополнение к известным видам передачи информации посредством органов чувств, нервной и эндокринной систем было обусловлено надёжностью и экономичностью «биологической радиосвязи».

Источники низкочастотных излучений (0 — 3 кГц).

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека. Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт — постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения — около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод — рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля — в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее — 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

      1. Источники высокочастотных излучений (от 3 кГц до 300 гГц).

К этой группе относятся функциональные передатчики — источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц — 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.) . Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Таблица 2.1

Классификация опасных и вредных излучений

Род излучения, название диапазона длин волн

Диапазон

Название диапазона частот

длин волн

частот, Гц

Радиоволны:

 

Радиочастоты:

Мириаметровые

100 000 -10 км

3-3·104

Очень низкие частоты (ОНЧ)

Километровые

10-1км

3·104— 3·105

Низкие частоты (НЧ)

Гектометровые

1000-100м

3·105— 3·106

Средние частоты (СЧ)

Декаметровые

100-10м

3·106— 3·107

Высокие частоты (ВЧ)

Метровые

10-1м

3·107— 3·108

Очень высокие частоты (ОВЧ)

Дециметровые

100 -10 см

3·108— 3·109

Ультравысокие частоты (УВЧ)

Сантиметровые

10-1 см

3·109— 3·1010

Сверхвысокие частоты (СВЧ)

Миллиметровые

10-1 мм

3·1010— 3·1011

Крайне высокие частоты (КВЧ)

Децимиллиметровые

1 — 0,1 мм

3·1011— 3·1012

Сверхкрайне высокие частоты (СКВЧ)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *