Излучение рисунок физика: Теплопередача — урок. Физика, 8 класс.

Содержание

Физики увидели хокинговское излучение от искусственной черной дыры: Наука и техника: Lenta.ru

В потоке воды, служащем моделью черной дыры, были обнаружены случаи изменения частоты волн с положительной на отрицательную. Это, возможно, является классическим аналогом механизма, лежащего в основе хокинговского излучения, сообщает международный коллектив авторов в статье, опубликованной в журнале New Journal of Physics.

Черная дыра – область пространства c настолько сильным гравитационным притяжением, что даже свет не может ее покинуть. Черные дыры возникают, например, при коллапсе массивной звезды. Граница черной дыры называется горизонтом событий.

В 1970-х годах британский астрофизик Стивен Хокинг выдвинул гипотезу, что черные дыры, несмотря на свое непреодолимое притяжение, медленно испаряются, теряя энергию и массу. Этот квантовый эффект становится возможен благодаря рождению пар частица-античастица вблизи горизонта событий. Возможен вариант событий, когда античастица, имеющая отрицательную полную энергию, падает в черную дыру, уменьшая тем самым ее энергию покоя и массу, а частица – улетает. Для стороннего наблюдателя это выглядит как излучение черной дыры.

Непосредственно наблюдать испарение черных дыр практически невозможно: дыры за счет него имеют температуру, но она настолько мала, что зафиксировать ее астрофизики не могут. Поэтому для исследования хокинговского излучения (испарения) используются теоретические расчеты и аналоговое моделирование в лаборатории.

Жермен Руссо (Germain Rousseaux), Ульф Леонхардт (Ulf Leonhardt) и их коллеги использовали оборудование французской лаборатории GENIMAR, обычно применяющееся для исследования воздействия волн и течений на берега и на корпуса подводных лодок. В 30-метровом узком бассейне генерировались волны, направленные против сильного течения. Это, по мнению исследователей, может считаться адекватной моделью процессов, предшествующих зарождению волн хокинговского излучения.

Согласно теории Хокинга, появлению таких волн предшествует наличие волн двух типов: с положительной частотой и с отрицательной. Группа Леонхардта искала с помощью нескольких видеокамер именно случаи изменения частоты водяных волн с положительной на отрицательную, чего ранее никто не делал.

Исследователям удалось зафиксировать такие случаи, причем гораздо больше, чем предсказывали теоретические вычисления. Чем объясняется расхождение с теорией, пока непонятно.

Недавно Леонхардт (известный также своими работами по другой модной теме – квантовой левитации) в составе другой группы занимался моделированием черных (и белых) дыр с помощью электромагнитных волн.

От микромира до космоса: российские ученые готовят прорыв в физике частиц

https://ria.ru/20201116/mifi-1584441051.html

От микромира до космоса: российские ученые готовят прорыв в физике частиц

От микромира до космоса: российские ученые готовят прорыв в физике частиц — РИА Новости, 16.11.2020

От микромира до космоса: российские ученые готовят прорыв в физике частиц

Уникальный детектор для Большого адронного коллайдера (БАК) разрабатывают ученые Национального исследовательского ядерного университета «МИФИ» (НИЯУ МИФИ). По… РИА Новости, 16.11.2020

2020-11-16T09:00

2020-11-16T09:00

2020-11-16T09:00

наука

дубна

национальный исследовательский ядерный университет «мифи»

космос — риа наука

навигатор абитуриента

университетская наука

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21. img.ria.ru/images/07e4/0b/0d/1584440850_0:0:3640:2048_1920x0_80_0_0_0bfab122164835785389fc781b3205e4.jpg

МОСКВА, 16 ноя — РИА Новости. Уникальный детектор для Большого адронного коллайдера (БАК) разрабатывают ученые Национального исследовательского ядерного университета «МИФИ» (НИЯУ МИФИ). По словам авторов работы, новое устройство впервые позволит исследовать частицы, образование которых до сих пор является «слепым пятном» экспериментальной физики. Об этом сообщили в пресс-службе вуза.Одна из главных задач экспериментальной физики сегодня – изучение сильновзаимодействующих частиц, адронов, получаемых на ускорителях путем столкновения протонов. После столкновения адроны движутся под малыми углами к направлению протонов, что, по словам ученых, затрудняет их изучение. Пока что отсутствуют детекторы, которые позволяли бы различать разные типы частиц с такими траекториями.Для того, чтобы получить информацию о сорте этих частиц, ученые ставят на их пути специальные устройства – радиаторы. В области радиатора возникает так называемое переходное излучение – электромагнитный эффект, вызванный переходом заряженной частицы из одной среды в другую. Его анализ, как объяснили ученые, имеет ключевое значение при выделении и изучении различных типов адронов.Ученым НИЯУ МИФИ впервые в мире удалось найти ряд теоретических и инженерных решений, позволяющих создать детектор переходного излучения (ДПИ) на основе высокогранулярных полупроводников. Экспериментальная часть исследования выполнялась на детекторе SPS Большого адронного коллайдера.»Область в несколько градусов к направлению сталкивающихся протонов, в которой можно было бы проследить образование разных типов адронов, до сих пор в значительной степени остается «слепым пятном» для исследований на БАК. Работы в этой области позволят глубже проникнуть в структуру протона и изучить частицы внутри него и их взаимодействия. Кроме того, только разобравшись с этой проблемой, можно решить парадокс физики космических частиц, пока не имеющий адекватного объяснения – изменение спектра частиц при высоких энергиях вплоть до 10^17 эВ», – рассказал старший научный сотрудник кафедры физики элементарных частиц НИЯУ МИФИ Петр Тетерин. Специалисты НИЯУ МИФИ впервые изучили спектрально-угловые распределения переходного излучения, а также аналитические выражения для его угловых распределений. Что позволяет создать детекторы нового типа для идентификации частиц.По словам ученых, оказалось, что интерференционные эффекты в многослойных радиаторах меняют основной угол, под которым генерируется переходное излучение, а его зависимость от массы частиц может сильно отличаться от общепринятого закона.Кроме того, в рамках исследования ученые НИЯУ МИФИ разработали новые радиаторы и прототипы детекторов различного типа, включая полупроводниковые детекторы с высоким разрешением.В дальнейшем ученые планируют создать совместно с Объединенным институтом ядерных исследований в Дубне и одной из коллабораций ЦЕРН, MediPix, высококлассный детектор переходного излучения с возможностью прецизионного трекинга частиц для экспериментов в области физики высоких энергий и космических лучей.Работа проводится при поддержке Российского научного фонда, проект №16-12-10277.

https://ria.ru/20191028/1560166492.html

https://ria.ru/20191213/1562322026.html

дубна

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/07e4/0b/0d/1584440850_909:0:3640:2048_1920x0_80_0_0_057d42b2d342fc8cb33a8c22aaa5ec41.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

дубна, национальный исследовательский ядерный университет «мифи», космос — риа наука, навигатор абитуриента, университетская наука

МОСКВА, 16 ноя — РИА Новости. Уникальный детектор для Большого адронного коллайдера (БАК) разрабатывают ученые Национального исследовательского ядерного университета «МИФИ» (НИЯУ МИФИ). По словам авторов работы, новое устройство впервые позволит исследовать частицы, образование которых до сих пор является «слепым пятном» экспериментальной физики. Об этом сообщили в пресс-службе вуза.

Одна из главных задач экспериментальной физики сегодня – изучение сильновзаимодействующих частиц, адронов, получаемых на ускорителях путем столкновения протонов. После столкновения адроны движутся под малыми углами к направлению протонов, что, по словам ученых, затрудняет их изучение. Пока что отсутствуют детекторы, которые позволяли бы различать разные типы частиц с такими траекториями.

Для того, чтобы получить информацию о сорте этих частиц, ученые ставят на их пути специальные устройства – радиаторы. В области радиатора возникает так называемое переходное излучение – электромагнитный эффект, вызванный переходом заряженной частицы из одной среды в другую. Его анализ, как объяснили ученые, имеет ключевое значение при выделении и изучении различных типов адронов.

28 октября 2019, 09:00НаукаПочему искусственная черная дыра не поглотит мир: правда и мифы о ЦЕРН

Ученым НИЯУ МИФИ впервые в мире удалось найти ряд теоретических и инженерных решений, позволяющих создать детектор переходного излучения (ДПИ) на основе высокогранулярных полупроводников. Экспериментальная часть исследования выполнялась на детекторе SPS Большого адронного коллайдера.

«Область в несколько градусов к направлению сталкивающихся протонов, в которой можно было бы проследить образование разных типов адронов, до сих пор в значительной степени остается «слепым пятном» для исследований на БАК. 17 эВ», – рассказал старший научный сотрудник кафедры физики элементарных частиц НИЯУ МИФИ Петр Тетерин.

Специалисты НИЯУ МИФИ впервые изучили спектрально-угловые распределения переходного излучения, а также аналитические выражения для его угловых распределений. Что позволяет создать детекторы нового типа для идентификации частиц.

«Нами была проделана большая экспериментальная и теоретическая работа по поиску новых эффектов и методик. На основе расчетов реалистических моделей ДПИ мы показали возможность определения спектров адронов с процентной точностью – это прорыв, который должен сыграть центральную роль в экспериментах, планируемых на БАК», – сообщил Тетерин.

По словам ученых, оказалось, что интерференционные эффекты в многослойных радиаторах меняют основной угол, под которым генерируется переходное излучение, а его зависимость от массы частиц может сильно отличаться от общепринятого закона.

Кроме того, в рамках исследования ученые НИЯУ МИФИ разработали новые радиаторы и прототипы детекторов различного типа, включая полупроводниковые детекторы с высоким разрешением.

В дальнейшем ученые планируют создать совместно с Объединенным институтом ядерных исследований в Дубне и одной из коллабораций ЦЕРН, MediPix, высококлассный детектор переходного излучения с возможностью прецизионного трекинга частиц для экспериментов в области физики высоких энергий и космических лучей.

Работа проводится при поддержке Российского научного фонда, проект №16-12-10277.

13 декабря 2019, 08:49НаукаФизики предложили сценарий эволюции дополнительных измерений

Электромагнитные волны, свойства. Электромагнитное поле. Тесты, курсы по физике

Тестирование онлайн

  • Колебательный контур. Электромагнитные волны

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с

, то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют

ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром —

антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Нобелевская премия по физике за 2019 год присуждена за революционные открытия в астрономии

Подпись к фото,

Джеймс Пиблз, Дидье Кело и Мишель Майор разделят приз в 900 тысяч долларов

Шведская королевская академия наук объявила во вторник, что Нобелевская премия по физике в 2019 году будет вручена Джеймсу Пиблсу — за теоретические открытия в области физической космологии, а также Мишелю Майору и Дидье Кело — за открытие экзопланеты, вращающейся вокруг звезды солнечного типа.

Шведская королевская академия назвала открытия ученых революционными для астрономии. Так был оценен их вклад в изучение эволюции Вселенной и места Земли в ней.

Космическое излучение и тысячи экзопланет

Половину денежного приза, за теоретические открытия в физической космологии, получил канадский и американский ученый Джеймс Пиблс, профессор Принстонского университета.

Он был одним из тех, кто предсказал существование реликтового излучения, заполнившего вселенную после Большого взрыва.

Вторую часть, за открытие экзопланеты, вращающейся вокруг звезды солнечного типа, разделили швейцарские астрофизики Мишель Майор и Дидье Кело.

Они открыли экзопланету 51 Пегаса b в 1995 году. С тех пор больше четырех тысяч экзопланет были обнаружены в Млечном Пути.

Общая сумма денежной премии — девять миллионов шведских крон (909 тысяч долларов США).

Во время пресс-конференции в Стокгольме Пиблс подчеркнул, что открытия были сделаны усилиями многих ученых. Он также дал совет молодым людям, которые думают о научной карьере: делать этот шаг из любви к науке.

«Имеет смысл заниматься наукой, если она вас восхищает», — сказал Джеймс Пибс.

Автор фото, ESO / M Kornmesser

Подпись к фото,

Открытие экзопланеты 51 Пегаса b стало прорывом в астрономии (рисунок художника)

Три женщины за всю историю

Год назад Нобелевской премии в этой дисциплине были удостоены трое ученых: Артур Эшкин из США, Жерар Мору (Франция) и Донна Стрикленд (Канада).

Донна Стрикленд — одна из трех женщин в истории, получивших Нобеля по физике.

Одним из самых заметных лауреатов этого века стал британец Питер Хиггс (вместе с бельгийцем Франсуа Энглером он еще в 1964 году теоретически обосновал существование бозона — частицы, благодаря которой остальные элементарные частицы обретают массу, но премию за это получил лишь в 2013-м). С тех пор эта частица известна в мире науки как бозон Хиггса.

Графен состоит из одинарного слоя атомов углерода, невидим невооруженным глазом и обладает уникальной механической прочностью, тепло- и электропроводностью.

Нобелевская премия по физике вручается с 1901 года. С этого времени ее обладателями стали 207 ученых. Несколько раз — в 1916, 1931 и 1934-м годах, а также в начале Второй мировой войны — награда по физике не присуждалась.

Сумма награды составляет 9 млн шведских крон — 900 тыс. долларов США.

Автор фото, Hilton Archive

Подпись к фото,

Альберт Эйнштейн в год присуждения ему Нобелевской премии — 1921

Самая советская из Нобелевских премий

В Советском Союзе больше всего лауреатов Нобелевской премии было именно по физике — 11 человек, в их числе Лев Ландау и Петр Капица. В 2003 году Нобеля получили Алексей Абрикосов и Виталий Гинзбург в коллективе с англичанином Энтони Леггеттом.

В марте 2019-го на 89-м году жизни в Петербурге скончался единственный из живших в России нобелевских лауреатов по физике — академик, депутат Госдумы, коммунист Жорес Алферов.

Высшую награду научного мира он получил в 2000 году вместе с немцем Гербертом Кремером и американцем Джеком Килби за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов.

Урок-интервью. Физика. 8 класс. Теплопередача в природе и технике

 Презентацию подготовил Александр Кавтрев.

Тема урока: «Виды теплопередачи. Теплопередача в природе и технике».

При проведении данного урока используется технология «Перевернутый урок». То есть учитель предлагает ученикам в качестве подготовки к данному уроку самостоятельно познакомиться с темой «способы теплопередачи». Для этого учитель предоставляет учащимся ссылки на соответствующие электронные ресурсы (видео уроки или видео лекции) и/или на соответствующие параграфы учебника. Учитель также может записать и предоставить учащимся свой видеоурок на данную тему.

Полезные ссылки:

В результате самостоятельной домашней работы дети должны узнать, что существуют три вида теплопередачи (теплопроводность, конвекция, излучение) и понимать, чем они отличаются друг от друга.

Вы можете скачать презентацию и скачать пояснения к уроку.

Слайд 1

1.
Введение: открытая задача 

Цель данного этапа урока – заинтриговать учеников темой урока, настроить на активную, творческую деятельность. Для этого учитель предлагает учащимся решить открытую задачу. 

Слайд 2

Ответ к открытой задаче. Ни в коем случае нельзя отрывать примерзший язык, так как при этом с его поверхности оторвется участок кожи, что может привести к сильному кровотечению. При возможности нужно поливать место контакта языка с металлом жидкостью (желательно теплой). Можно также попытаться растопить лед дыханием и теплом рук.

Примечание. Важно обсудить с детьми следующий вопрос: «Почему на морозе язык к металлическим предметам прилипает, а к деревянным – нет?». 

Это объясняется тем, что у металлов теплопроводность значительно выше, чем у дерева. При объяснении можно показать учащимся видеофрагмент (слайд 3), который демонстрирует теплопроводность металлов: медь, латунь, железо.