Из 5 вольт 220 вольт: Преобразователь напряжения с 3.7 на 220 вольт – Как получить напряжение 12 Вольт: описание 8 простых способов

Преобразователь напряжения с 3.7 на 220 вольт

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:
  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

[ads1]

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.

Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.
1. Первая 0,7 Ом.

2. Вторая 1,3 Ом.

3. Третья 6,2 Ом.

Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства

Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.

Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.

Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).

Для удобства провода на 220 вольт берем с «крокодилами».

Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.

Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.

Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.

Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.

Наше устройство готово.
Совет.Увеличить мощность преобразователя можно установив транзистор на радиатор.
Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

Смотрите видео

 

Как получить 12 Вольт из 5, 24, 220 Вольт, как сделать самому, Ремонт и Строительство

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

Схема с гасящим конденсатором

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Преобразование 220 В в 12 В

Или усиленный вариант первой схемы:

Усиленная схема

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

Или:

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Пленочный конденсатор

Или такие:

Гасящие конденсаторы

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

Схема с диодным мостом

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Схема понижения напряжения

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

Схема блока питания

 

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

Схема повышения напряжения

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

AMS-1117-12v

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Аналоги

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

Импульсный преобразователь напряжения

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Повышающий преобразователь

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Обозначения на плате

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Получение 12 Вольт с помощью батареек

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Батарейка 12 В

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Использование блока питания

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео по теме:


Источник


Бестрансформаторное электропитание.Конденсатор вместо резистора

В данной статье поговорим про бестрансформаторное электропитание.

В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

 

Схемы трансформаторного питания строятся по двум вариантам

 

1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;

2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.

Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль». Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания. Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе. Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах.

картинка-схема делителя напряжения на резисторах

Делитель напряжения состоит из двух резисторов R1 и R2. Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.

Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2. Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1.

картинка-схема получения 12Вт

Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом. Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер. Указанный ток должен течь и через резистор R1. Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт, по закону Ома определяем его сопротивление:

R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом.

Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт.

Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт. Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!

 

Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:

Формула реактивного сопротивления

где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).

Заменив резистор R1 на бумажный конденсатор С, мы «забудем» что такое резистор внушительных размеров.

Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом.

Преобразовав формулу заменив местами величины С и Хс, мы определим значение ёмкости конденсатора:

Формула ёмкости конденсатора
С1 = 1 / (2*3,14*50*1387) = 2,3*10-6 Ф = 2,3 мкФ

Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.

Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

картинка-схема бестрансформаторного питания

Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.

Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

картинка окончательной схемы бестрансформаторного питания

Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1, в схему введен резистор R1, который шунтирует конденсатор своим сопротивлением. При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора. Время разряда определяется обыкновенной формулой:

Формула времени разряда

Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания. При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения«:

Формула расчёта ёмкости конденсатора схемы бестрансформаторного питания

Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:

Конечная формула расчёта ёмкости конденсатора схемы бестрансформаторного питания

где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1.

Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт.

По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки. Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи. Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

картинка-транзисторная схема, ограничивающая выходное напряжение

Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1. В качестве выключателя может быть и полупроводниковый прибор, например транзистор. Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад. Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.

Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального. Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность. Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.

С1 = 1 / ( 2 * 3,14 * 50 * ( (220 * 80) / 8 – 80 ) ) = 1,5 мкФ
В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения. Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов. Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.
Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт, Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1. Этот ток легко найти:Iдел. = Uвх.дел. / (20*Rн) = 12 / (20 * 80) = 0,0075 ампер,
где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1, равное 80 Ом.

Номиналы резисторов R1 и R2 определяются по формулам, ранее опубликованным в статье «Делитель напряжения«:

Формула определения номинала резистора R1, Формула определения номинала резистора R2

где Rобщ – общее сопротивление резисторов делителя смещения транзистора VT1, которое находится по закону Ома:

Закон Ома

Итак: Rобщ = 12 / 0,0075 = 1600 Ом ;

R3 = 0,65 * 1600 / 12 = 86,6 Ом , по номинальному ряду, ближайший номинал – 82 Ом;

R2 = 1600 – 86,6 = 1513,4 Ом , по номинальному ряду, ближайший номинал – 1,5 кОм.

Зная падение напряжения на резисторах и ток делителя, не забудьте рассчитать их габаритную мощность. С запасом, габаритную мощность R2 выбираем в 0,25 Вт, а R3 – в 0,125 Вт. Вообще, вместо резистора R2 лучше поставить стабилитрон, в данном случае это может быть Д814Г, КС211(с любым индексом), Д815Д, или КС212(с любым индексом). Я научил вас рассчитывать резистор намеренно.

Транзистор выбирается также с запасом падающей на его переходе мощности. Как выбирать транзистор в подобных стабилизирующих каскадах, хорошо описано в статье «Компенсационный стабилизатор напряжения«. Для лучшей стабилизации, возможно использование схемы «составного транзистора».

Думаю, что статья своей цели достигла, «разжёвано» всё до каждой мелочи.

💡 Как зажечь лампочку на 220 вольт от пальчиковой батарейки на 1,5 в. (По | Электрик

Текст из видео:

  • 00:00: всем привет я заранее извиняюсь перед моими постоянными подписчиками которых я наверное уже заколебал вот этими опытами с маленькой батарейкой и лампочкой на 220 вольт но наука требует жертв меня просили и я собрал схему которая вместо своего излюбленного коллиматора использован транзистор и с помощью вот этой нехитрой схемы который всего трансформатор транзистор и вот такое сопротивление я потом объясню почему их 2 можно зажечь лампочку
  • 00:32: светодиодную мало мощную на 220 вольт даже от самой маленькой батарейки вот у меня есть батарейка стандартная так мы их называем пальчиковая а из батареи то мизинчиковая тонюсенькая вот давайте я сейчас сделаю небольшой и используя вот эту махонькую батареечку мы попытаемся зажечь начали схемой лампочку на 220 вольт и светятся давайте еще раз светится ну а теперь подробнее
  • 01:06: тут нет никакого подвоха это не фейк лампа чтобы вести действительно на 220 вольт демонстрировать то что и воткнул в розетку она засветится я уже не буду я уже это столько раз продемонстрировал что наверное всем надоел хочет в чем суть нашего эксперимента ранее я использовал калибратор для запуска с помощью трансформатора маленькой батарейки вот такой маленькой полутора вольтовый запуска генератора который питает лампочки на 220 вольт что из себя
  • 01:38: представляет калибратор собран он был из гвоздя к кошечке и магнита это было размыкающий реле то есть когда тот проходил по катушечки она отпрыгивала над магнитом и размотала контакты в результате получались импульсы которые трансформатор преобразовывал в переменное напряжение каким образом мы преобразовывали постоянное напряжение вот этой батарейки прыгающий татушкой в переменные импульсы которые в соответствии с законами индукции проис
  • 02:10: водили нам напряжение 110 иногда 220 иногда в спешке были и больше лампочка у нас загоралась проверял я это чтобы не было кусты на вот таких вот неоновых лампочках если подключить генератор у они горят горят от батарейки полтора вольта при этом я добился свечение и генерации с помощью семенных коллиматора вот такого вот от напряжения батарейки но целых девять десятых вольта то есть менее вольта что очень даже неплохо это сравнимо с так называемыми
  • 02:40: похитителями джоулей хвост меня попросили проверить версию такого же устройства на моторчик и это сделал и внизу есть описание ссылочка на этот ролик от с помощью моторчика можно сделать 220 вольт ну а теперь стандартная и кажется банальная схема которая никого не удивит как видите она проста и надежна так и и считаю использован транзистор всего лишь один
  • 03:10: транзистор та же самая батарейка так вот перерисовать полярности не удосуживается на потому что транзистор у меня именно такого типа как видите калибратор заменен вот такой ключ у меня был гравитационно магнит электрический размыкатель а это просто кремниевый транзистор то есть это у нас электронный компонент полупроводниковый полупроводниковый размыкатель организован банальный колебательный контур с помощью которого производят либо звуки либо генерацию частоты в
  • 03:43: передающих устройствах а также делают инверторы автомобильные на 220 вольт я использовал большой транзистор он нагляднее kg800 3d а и сопротивление можно ставить сопротивление от 100 до одного килоома можно больше эта генерация будет слабее можно меньше тогда транзистор быстрее выйдет из строя это сопротивление ограничивает ток база эмиттер и о надо смотреть по справочникам или же экспериментально просто не особо мучить транзистор я выбрал бронебойный
  • 04:14: транзистор counter а ты с чем он фар его железный корпус даже без радиатора может рассеивать мощности до 10 ватт и не перегорать тонким и хорошие конструкторах удобно им пользоваться его распиновка если кто не знает выглядит вот так это транзистор структуры npn то есть они вот так и прессуются вот эти транзисторы и эмиттер-база-коллектор как видите вот они на корпусе у нас вот
  • 04:44: таким вот образом расположен если кто-то будет повторять схему вот потом возьмете в кадре и при рисуете и так вот она вся схема давайте я ее буду держать у вас перед глазами так чтобы было все ясненько и понятненько трансформатор вот он у нас трансформатор вот трансформатор значит мне зрители задавали вопросы что где по проводам вот эти синие провода это обычно идут
  • 05:16: провода в розетку и там трансформатор от маленького в магнитофона китайского сопротивление обмотки вот по этим черным проводом 1300 помпы скорее всего там примерно 2000 2 200 витков тонкого провода размер трансформатора дает нам понять что это не мощный трансформатор в десять от силы он выдержит а дальше может выдержать может нет то есть не стоит его нагружать нам кило ватными лампочками три повода у некоторых даже возникли смутные сомнения может вот этот черный провод я сую в
  • 05:47: розетку таким образом или касается там шокером до него нет это отвод от средней точки то есть у нас есть намотана такую что подряд от желтого до жёлтого провода причем эта катушка имеет свое начало и свой конец можно обозначить его точкой вот этот подушечка намотана вот она где то посередине у неё есть контакт которому при по им вот такой вот черный провод примерно пополам делится вот это вот обмотка и средняя точка у нас используется как у нас используется для работы у нас используется кто-то всего
  • 06:19: лишь вот одна колба обмотка она как раз у нас является рабочей именно через нее пекут импульсы тока чаем и и транзистором 2 полу обмотка служит для того чтобы организовывать импульсы на базе самого транзистора чтобы у нас периодически открывался закрывался для ограничения тока мы поставили вот такой резистор резистор у меня сейчас в тех стоят два тела умника примерно килоом ника причем один из них претензионный то из вот этот крылом ник
  • 06:49: он имеют погрешность сегодня процент а это обычное сопротивление я использовал их большими метода для наглядности перов хорошо видно вкладывать резисторы а во-вторых чем больше вот этот вот резистор тем большую мощность он может рассеивать тем больший ток он так будь спок гасит проходящий на базу дело в том что эта схема будет работать даже без вот этого резистора мы можем коротнуть вот эту
  • 07:19: обмотку на базу и генератор будет работать правда транзистор может проработать не очень долго особенно если вы будете использовать какой-нибудь небольшой транзистор смотрите здесь даже подписал выводу о доме коллектор на коллектор мы не идет одно . вот она . обозначена сверху меня и meter буковка i meter у меня идет на батареечку вот и meter на батарейку здесь на провод для батарейки ну и здесь вот база на эту базу через два резистора идет вот это
  • 07:52: вот капуста то есть ясно просто и понятно то что горит лампочка вы уже убедились давайте еще раз и и зажмём он же от больше некой батарейки разницы особой нет а зачем рабочего начал из маленькой значит из маленькой вот высасывая из крохотной батареечки напряжение то есть начинает работать колебательный контур транзистор периодически открывается закрывается частоту можно померить умение таких приборов чтобы измерить
  • 08:23: частоту ребят с удовольствием вам сказал на какой частоте работает эта лампочка но в отличие от коллиматора свечение в этот раз постоянная то есть мы примерно можем предположить что транзистор работает как минимум ноте таких больше чем 50 герц а может быть даже еще больше теперь что касается транзисторов резисторов как и обещал пояснить почему 2 а не один а вот почему смотреть я щас одним уберу лампочка горит на горит у школы смотрите вот оно
  • 08:53: что произошло чем меньше вот это сопротивление тем больше и только более сильные импульсы поступают на базу тем сильнее срабатывает этот транзистор но ток через и meter базу надо ограничивать этапа справочника можно выяснить транзистор конечно работает в хорошем ключевом режиме мой транзистор даже не греется но лучше этим не рисковать особенно если вы возьмете какие-нибудь новые маленькие транзистор
  • 09:23: они тоже хорошо в этой схемы войдут их можно использовать и кт315 ты сюда пойдет и 361 разницы нет любой транзистор для такой генерации пригоден а то как мы включаем сопротивление параллельно если кто помнит закон ома параллельно и сопротивления теряют свою сопротивляемость в пропорции можно сказать если у меня было по одному килограмму здесь и сейчас если их сложить и разделить на четыре
  • 09:53: получится примерно сколько пол килограмма 500 м 500 он для моей схемы для такой батарейки как раз сама то если вы будете использовать скажем 9-вольтовая батарейка вы легко засветите лампочку на 220 вольт более мощного чем у меня вот но при этом вам надо будет подобрать сопротивление все-таки побольше иначе транзистор слишком быстро выйдет из строя и так я вам продемонстрировал еще одну схему так вы
  • 10:23: и просили выполнена она по самому простому методу ключ в обмотке трансформатора все вроде если мы все были понятно лампочка на 220 вольт мы крутим ее вот так я думаю хорошо видно горит от батареечки полтора вольта надеюсь вам было интересно кем скептикам которым я попытался развеять их сомнения
  • 10:55: должно быть стыдно ну а на этом все пока до следующих встреч ребята

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *