Источники напряжения и тока – Идеальные реальные источники напряжения и тока. Территория электротехнической информации WEBSOR

Идеальный источник тока

  1. Источники напряжения и тока, их свойства, характеристики и схемы замещения. Законы Ома и Кирхгофа.

Источник ЭДС (идеальный источник напряжения) — двухполюсникнапряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 2

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то электрический ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением 

r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е (идеального источника напряжения) и внутреннего сопротивления — r.

где

 — падение напряжения на внутреннем сопротивлении;

 — падение напряжения на нагрузке.

При коротком замыкании (), то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток

будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.

Свойства:

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока 

, напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления..

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, чем ближе к идеальному, тем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением 

эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Схемы замещения источников энергии Простейшая электрическая цепь и ее схема замещения, как указывалось, состоят из одного источника энергии с ЭДС Е и внутренним сопротивлением rвт и одного приемника с сопротивлением r. Ток во внешней по отношению к источнику энергии части цепи, т. е. в приемнике с сопротивлением r, принимается направленным от точки а с большим потенциалом 

к точке b с меньшим потенциалом . Направление тока будем обозначать на схеме стрелкой с просветом или указывать двумя индексами у буквы I, такими же, как и у соответствующих точек схемы. Так, для схемы рис. 1.3 ток в приемнике I = Iаb, где индексы а и b обозначают направление тока от точки а к точке b. Покажем, что источник энергии с известными ЭДС E и внутренним сопротивлением rвт, может быть представлен двумя основными схемами замещения (эквивалентными схемами). Как уже указывалось, с одной стороны, напряжение на выводах источника энергии меньше ЭДС на падение напряжения внутри источника:
  с другой стороны, напряжение на сопротивлении r    Ввиду равенства из (1.5а) и (1.56) получается или    В частности, при холостом ходе (разомкнутых выводах а и b) получается E=Uх, т. е. ЭДС равна напряжению холостого хода. При коротком замыкании (выводов а и b) ток 
 

Из (1.7 6) следует, что rвт источника энергии, так же как и сопротивление приемника, ограничивает ток. На схеме замещения можно показать элемент схемы с rвт, соединенным последовательно с элементом, обозначающим ЭДС E (рис. 1.7, а). Напряжение U зависит от тока приемника и равно разности между ЭДС E источника энергии и падением напряжения rвтI (1.6а). Схема источника энергии, показанная на рис. 1.7, а, называется первой схемой замещения или схемой с источником ЭДС. Если

 rвт<<r и напряжение Uвт<<U, т. е. источник электрической энергии находится в режиме, близком к холостому ходу, то можно практически пренебречь внутренним падением напряжения и принять Uвт = rвт = 0. В этом случае для источника энергии получается более простая эквивалентная схема только с источником ЭДС, у которого в отличие от реального источника исключается режим короткого замыкания (U =0). Такой источник энергии без внутреннего сопротивления (rвт = 0), обозначенный кружком со стрелкой внутри и буквой E (рис. 1.7,6), называют идеальным источником ЭДС или источником напряжения
 (источником с заданным напряжением). Напряжение на выводах такого источника не зависит от сопротивления приемника и всегда равно ЭДС E. Его внешняя характеристика — прямая, параллельная оси абсцисс (штриховая прямая ab на рис. 1.4).

Источник Э.Д.С. и источник тока

Источник ЭДС

Рисунок 1 — Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа)

Источник ЭДС (идеальный источник напряжения) — двухполюсникнапряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 2

Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то электрический ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки,сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е(идеального источника напряжения) и внутреннего сопротивления — r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

где

 — падение напряжения на внутреннем сопротивлении;

 — падение напряжения на нагрузке.

При коротком замыкании (, то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток  будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

Рисунок 1 — схема с условным обозначением источника тока[1]

Рисунок 2.1 — Обозначение на схемах источника тока

Рисунок 3 — Генератор тока типа токовое зеркало, собранный на биполярных транзисторах

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе кисточнику ЭДС, чем к источнику тока.

На рисунке 1 представлена схема замещения биполярного транзистора, содержащая источник тока (с указанием S·Uбэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·Uбэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Идеальный источник тока

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока , напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления..

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, чем ближе к идеальному, тем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением  эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление  и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени () после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) ведёт кпробою зазора .

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник тока, только не постоянного, а переменного. Поэтому размыкание вторичной цепи трансформатора тока недопустимо; вместо этого при необходимости перекоммутации в цепи вторичной обмотки без отключения линии эту обмотку предварительно шунтируют.

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частностиоперационных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)

  • Источник тока, управляемый током (сокращенно ИТУТ)

Идеальные реальные источники напряжения и тока. Территория электротехнической информации WEBSOR

Источник ЭДС – электротехническое устройство, преобразующее любой вид энергии в электрическую.

Проводник – вещество, обладающее большим количеством свободных носителей зарядов.

Сопротивление проводника – физическая величина, характеризующая свойство вещества препятствовать через него электрического тока.

Ветвь – заключённый между двумя узлами участок электрической цепи, по которому течёт один и тот же ток.

Узел – точка соединения трёх и более ветвей.

Контур – замкнутый участок электрической цепи, при обходе которого ни один узел и ни одна ветвь не повторяется.

    Электрическая схема – любое графическое отображение реальной электрической цепи с помощью условных обозначений.


Смешанное сопротивление

U=U 3 +U equiv U equiv =U 1 +U 2

    Ток в цепи можно определить по закону Ома (здесь и во всех последующих формулах сопротивлением соединительных проводов будем пренебрегать):

где Е – ЭДС источника – постоянная величина , независящая от режима работы источника; R ВН — внутреннее сопротивление источника – так же постоянная величина ;

R ПР – сопротивление приемника (нагрузки).

Перепишем уравнение (1) в следующем виде:

Е = R ВН I + R ПР I = U ВН + U , (2)

где U ВН = R ВН ∙I – падение напряжения на внутреннем сопротивлении источника; а U = U ПР = R ПР ∙I – напряжение на зажимах источника ЭДС равное напряжению на приемнике.

Учитывая выражение (2) найдем напряжение на зажимах источника ЭДС:

U = Е – R ВН ∙I = Е – U ВН ,

ВАХ реального источника ЭДС

Зависимость между напряжением U и током I , протекающим через источник ЭДС, представленная выражением (3), называется внешней характеристикой источника (вольт-амперной характеристикой ). Внешняя характеристика источника U(I) полностью определяет свойства этого источника и для большинства реальных источников эта характеристика может быть представлена прямой линией.

0 I н I c =I к.з. /2 I к.з. I, [A]

Из всех возможных режимов работы источника ЭДС отметим четыре наиболее важные (рис.12):

Точка 1 – холостой ход,

Точка 2 – номинальный режим,

Точка 3 – согласованный режим,

Точка 4 – короткое замыкание.

Проанализируем каждый из перечисленных выше режимов работы источника ЭДС.

Режим холостого хода (т.1 ) – это режим, при котором сопротивление приемника стремится к бесконечности (R ПР = ∞) — на практике это соответствует разрыву электрической цепи, следовательно, ток холостого хода равен нулю (I Х =0 ).

Из опыта холостого хода можно определить ЭДС Е показаниям вольтметра, подключив его непосредственно к разомкнутым зажимам источника ЭДС.

Номинальный режим (т.2 ) источника характеризуется тем, что напряжение, ток и мощность его соответствуют тем значениям, на которые он рассчитан заводами-изготовителями. При этом гарантируются наилучшие условия работы источника ЭДС (экономичность, долговечность и др.). Величины, определяющие номинальный режим, обычно указывают в паспорте, каталоге или на щитке, прикрепленном к устройству.

Согласованный режим (т.3 ) — это режим, при котором источник отдает в приемник (во внешнюю цепь) максимальную мощность Р MAX . Для достижения данного режима работы источника необходимо подобрать величину сопротивления приемника R ПР равным внутреннему сопротивлению источника R ВН , то есть R ПР = R ВН .

Режим короткого замыкания (т.4 ) характеризуется тем, что сопротивление приемника становится равным нулю R ПР = 0 . Как правило, на практике это связано с перемыканием приемника электрической энергии проводником с очень малым сопротивлением (R ПРОВОД = 0 ) – так называемое промышленное короткое замыкание, зачастую вызванное неправильной эксплуатацией электротехнических устройств, как например, электрические двигатели, трансформаторы, бытовая техника и т.д.

Поменяем оси координат:

tgα пропорционален R вн

ВАХ идеального источника ЭДС.

Если у некоторого источника R вн =0, то tgα=0. Получаем идеализированный источник ЭДС, который характеризуется постоянным напряжением на зажимах, не зависящим от силы тока и равным Е и внутреннее сопротивление которого равно 0.

ВАХ идеального источника тока

Если увеличивать до бесконечности ЭДС и внутреннее сопротивление, то угол α стремится к 90 о. Такой источник питания называется источником тока. Это идеализированный источник питания, который создаёт то J=I, не зависящий от сопротивления нагрузки, к которой он присоединён, а его ЭДС и внутреннее сопротивление равны бесконечности.

Расчётные эквиваленты :

Источник ЭДС . Стрелка указывает направление возрастания потенциала внутри источника. R вн =R реального источника.

Источник тока. Создаёт ток J и параллельно с ним включено внутреннее сопротивление R в (стрелка указывает положительное направление тока источника).

Замечания:

    Источники ЭДС и тока – идеализированные источники, физически осуществить которые, строго говоря, невозможно;

    Схемы подключения источников эквивалентны в отношении энергии, выделяющейся на нагрузке R, и не эквивалентны в отношении энергии, выделяющейся на внутреннем сопротивлении;

    Идеальный источник ЭДС без последовательно соединенного с ним R н нельзя заменить идеальным источником тока.

Закон Ома для участка цепи : сила тока, протекающего по участку цепи, прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению на нём.

Пример .

Решение: I 1 =9/(6+7)=0,69 А

I 2 =9/8=1,125 A

I=I 1 +I 2 +I 3 =2,815 A

    Закон Ома для участка цепи, содержащего источник ЭДС.

На участке цепи, содержащем источники ЭДС сила тока прямо пропорциональна сумме напряжения на данном участке с суммой ЭДС источников данного участка и обратно пропорциональна сопротивлению на данном участке.

«+E» — при совпадении направлений тока на участке и стрелки ЭДС

«-E» — при несовпадении направлений тока на участке и стрелки источника

Пример:


I 1 =(9+7)/6=2,67 А

I 2 =9/8=1,125 A

I=I 1 +I 2 +I 3 =4,795А

    Первый и второй законы Кирхгофа (трактовка законов).

1) алгебраическая сумма токов в любом узле равна 0.

2) в замкнутом контуре алгебраическая сумма падений напряжений на каждом участве равна алгебраической сумме ЭДС, действующих в этом контуре.

Метод решения задач.

Общее число уравнений системы N равно числу ветвей N в минус число ветвей, содержащих источники тока:

    Количество уравнений по первому закону Кирхгофа N 1 равно числу узлов N у минус 1:

Количество уравнений по второму закону Кирхгофа:

N 2 =N-N 1 =N в -N J -N 1

    Перед тем, как составить уравнение нужно произвольно выбрать положительные направления токов в ветвях и обозначить их на схеме, выбрать положительное направление обхода контура для составления уравнения по II закону Кирхгофа.

    При записи линейно независимых уравнений по второму закону стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону(достаточное, но не необходимое условие).

    Алгоритм составления системы уравнений по законам К

Разница между источником тока и источником напряжения

Трудно представить современный мир без электричества, телефон останется без подзарядки, а просмотр фильма попросту станет невозможен. Да, без этого явления жизнь покажется тяжелой. Но для того чтобы получить его, нужен поток энергии, физическая составляющая которого, может иметь различный характер. В электротехнике принято подразделять элементы питания на две группы: по постоянному току или напряжению. Они бывают идеальными, но существующие лишь в теории и реальные, которые возможно увидеть на практике.

Идеальный источник тока (генератор)

Для начала рассмотрим абстрактный вариант: сила тока, созданная в этом устройстве, всегда одинаковая. Опираясь на закон Ома, можно легко сделать заключение, что напряжение находится в зависимости лишь от сопротивления подключенной нагрузки. Внутреннее сопротивление такого элемента питания имеет бесконечную величину, поэтому не воздействует на основной параметр. Вследствие того, что сила тока значение постоянное, то на значение мощности теоретического агрегата влияет только сопротивление подключенной нагрузки. В устройстве, при возникновении короткого замыкания, также сохраняется основное свойство источника.

Такой идеальный элемент можно создать лишь в теории, его применяют при моделировании электромагнитных процессов. На практике такой системы достичь невозможно, поэтому рассмотрим материальную вариацию.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Реальный генератор

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Идеальный источник напряжения (ЭДС)

У идеального устройства, напряжение является неизменным параметром и не зависит от значения нагрузочного тока, вместе с тем, его внутреннее сопротивление равно 0. Если создание данного прибора было бы возможным, то он представлял источник бесконечной мощности. Величина тока и мощности при подключенной нагрузке стремилась к бесконечному числу. Но, как мы знаем мощность, имеет конечное значение.

Описанный элемент питания, является теоретическим понятием, на практике таких условий достичь невозможно, поэтому применяется лишь в моделировании процессов.

Реальный источник напряжения

В реальности имеем устройство ЭДС, которое характеризуется наличием внутреннего сопротивления, по этой причине ток будет иметь граничное значение. В большинстве устройств внутреннее сопротивление незначительная величина, если сравнивать с внешними показателями, и чем меньше это параметр, тем ближе к идеальному варианту. При увеличении тока будет происходить падение напряжения. В расчетах обозначается как идеальный источник ЭДС с подключенным последовательно сопротивлением. Ток через источник равен 0, если создан режим холостого хода. При возникновении короткого замыкания, примет максимальное значение, а разность потенциалов на выходе станет равной 0.

В качестве примера можно рассмотреть аккумуляторную батарею, принцип работы которой, основан на химической реакции.

Аккумуляторная батарея

Вывод

  • Реальные приборы в отличие от идеальных устройств содержат внутреннее сопротивление.
  • Что касается отличия идеального устройства тока от напряжения, то оно заключается в том, какой параметр является постоянным и не зависит от присоединяемой нагрузки. Это соответствует их названиям, для приборов ЭДС– напряжение, для генератора – ток.
  • При составлении схемы замещения, внутреннее сопротивление источника тока подключается параллельно, напряжения – последовательно.
  • Для реальных устройств, существует разница во внутреннем сопротивлении: для генераторов лучше иметь большое сопротивление, для источника ЭДС – малое.

Источники тока на полевых и биполярных транзисторах

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.


На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
- Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
- Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока…» — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.

Источники тока на полевых и биполярных транзисторах
Рис.1

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.
Источники тока на полевых и биполярных транзисторах
Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб.
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1.
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.

Источники тока на полевых и биполярных транзисторах
Рис.3


Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток   Ik1, задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1),
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.4


Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.5


Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.6


Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

И опять — всё то же самое:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока — одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.


При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.
Источники тока на полевых и биполярных транзисторах
Рис.6

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.
Источники тока на полевых и биполярных транзисторах
Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Источники тока на полевых и биполярных транзисторах

 

Источник напряжения — это… Что такое Источник напряжения?


Источник напряжения

Рисунок 1 — Обозначение источника ЭДС схемах

Источник ЭДС (точнее, идеальный источник ЭДС) — источник питания, напряжение на зажимах которого постоянно (не зависит от тока). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники ЭДС

Рисунок 2

Рисунок 3 — Нагрузочная характеристика

Идеальный источник ЭДС является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как P = EI. Но это не возможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник ЭДС обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление. И наоборот. Наличие внутренненого сопротивления отличает реальный источник ЭДС от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника ЭДС представляет собой последовательное подключение идеального источника ЭДС Е и внутреннего сопротивления r.

На рисунке 3 приведены нагрузочные характеристики идеального (синяя линия) и реального (красная линия) источников ЭДС.

E=\mathcal {4}U+U

где

\mathcal {4}U=Ir — падение напряжения на внутреннем сопротивлении;
U = IRH — падение напряжения на нагрузке.

При коротком замыкании (RH = 0) E=\mathcal {4}U, т.е. вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток IКЗ будет максимальным для данного источника ЭДС. Зная ток короткого замыкания, можно вычислить внутреннее сопротивление:

r=\frac{E}{I_{K3}}

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Wikimedia Foundation. 2010.

  • Источник Харьковская-1
  • Источник минеральной воды Харьковская-1

Смотреть что такое «Источник напряжения» в других словарях:

  • источник напряжения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN voltage sourcevoltage supplyvoltage power supply …   Справочник технического переводчика

  • источник напряжения — įtampos šaltinis statusas T sritis automatika atitikmenys: angl. voltage source vok. Spannungsquelle, f rus. источник напряжения, m pranc. source de tension, f; source de voltage, f …   Automatikos terminų žodynas

  • источник напряжения — įtampos šaltinis statusas T sritis Standartizacija ir metrologija apibrėžtis Šaltinis, teikiantis įtampą įvairios paskirties įtaisams, įrenginiams, aparatams ir sistemoms. atitikmenys: angl. voltage source vok. Spannungsquelle, f rus. источник… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • источник напряжения — įtampos šaltinis statusas T sritis fizika atitikmenys: angl. potential source; voltage source vok. Spannungsquelle, f rus. источник напряжения, m pranc. source de tension, f …   Fizikos terminų žodynas

  • источник напряжения — Источник электрической энергии, характеризующийся величиной э.д.с. и внутренним сопротивлением …   Политехнический терминологический толковый словарь

  • источник напряжения с 90°-м сдвигом фаз — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN quarter phase sourcequarter phase voltage source …   Справочник технического переводчика

  • источник напряжения, регулируемый током — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN current controlled voltage source …   Справочник технического переводчика

  • источник напряжения, управляемый напряжением — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN voltage controlled voltage sourceVCVS …   Справочник технического переводчика

  • зависимый источник напряжения — Источник электрического напряжения, электрическое напряжение на зажимах которого зависит от электрического тока или электрического напряжения в некотором участке цепи. [ГОСТ Р 52002 2003] Тематики источники и системы электропитанияэлектротехника …   Справочник технического переводчика

  • образцовый источник напряжения (тока, частоты) — Источник напряжения (тока, частоты), значение которого нормировано с определенной погрешностью, предназначенный для получения известной величины напряжения (тока, частоты). Примечание Значение известной величины непосредственно сравнивается со… …   Справочник технического переводчика

Источник тока — это… Что такое Источник тока?

Рисунок 1 — схема с условным обозначением источника тока[1] Рисунок 2.1 — Обозначение на схемах источника тока

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.

На рисунке 1 представлена схема замещения триполярного транзистора, содержащая источник тока (с указанием S·Uбэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·Uбэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Свойства

Идеальный источник тока

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока , напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления.

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, тем ближе к идеальному, чем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени () после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) ведёт к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник тока, только не постоянного, а переменного. Поэтому размыкание вторичной цепи трансформатора тока недопустимо; вместо этого при необходимости перекоммутации в цепи вторичной обмотки без отключения линии эту обмотку предварительно шунтируют.

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)
  • Источник тока, управляемый током (сокращенно ИТУТ)

Примечания

См. также

Литература

  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *