Источники эл энергии – Альтернативные источники энергии в быту для загородных домов: дополнительное электроснабжение, популярные источники | Блог о строительстве и ремонте

Содержание

Источники электрической энергии их виды и способы соединения

Электрическая энергия, вырабатываемая источниками электрической энергии — самый распространенный вид энергии в наше время. Процессы, связанные с данным видом электрической энергии, включают в себя под процессы, такие как — выработка (генерация), передача и потребление. Из этого можно выделить три группы устройств, которые принимают участие в этом процессе — источники электрической энергии, передаточные устройства и потребители.


Давайте подробно рассмотрим первую группы.

Источники электрической энергии.

Из самого названия можно догадаться, какую роль играют в электроэнергетике эти устройства, но все же я объясню.
Источник электрической энергии — устройство, механизм от которого потребители получают электрическую энергию по средству передаточных устройств. Не имеет значения какого рода тока является этот источник, а также электрическая энергия является генерируемой или запасенной.
Источниками электрической энергии могут быть: все виды и типы генераторов, вторичные обмотки трансформаторов и автотрансформаторов, различные гальванические элементы, аккумуляторные батареи, солнечные батареи, различные пьезо элементы и даже грозовой разряд (молния) является источником электрической энергии. 

Как видите существует множество видов источников электрической энергии, что способствует широкому распространению электрической энергии.

Соединение источников электрической энергии.

В электроэнергетике встречаются такие случаи, когда источников электрической энергии несколько, которые включены и питают одну электрическую цепь.
В зависимости от способа соединения источников, электрическая энергия ведет себя по-разному. Перед тем как углубляться в подробности следует сказать, что источники электрической энергии соединяют двумя способами — последовательно и параллельно.

Эти виды соединений я уже рассматривал при соединении конденсаторов и резисторов.

Давайте рассмотрим эти способы соединения на примере.
В качестве источника электрической энергии возьмем три обычных батарейки напряжением в 1.5 вольт каждая. Также нам понадобится вольтметр и соединительные провода.

soedinenie istochnikov posledovatelno

последовательное соединение источников электрической энергии

Соединив батарейка последовательно, как показано на схеме, можно будит увидеть, что вольтметр покажет напряжение гораздо большее чем у одной батарейки, а именно 4.5 вольт. Так при последовательном соединении источников электрической энергии, напряжение всех источников, входящих в цепь складывается. Стоит отметить, что суммарная емкость и мощность батареек равняется показателям одной батарейки.

parallelnoe soedinenie istochnikov

параллельное соединение источников электрической энергии

Если же соединять эти же батарейки параллельно, как на схеме выше, мы увидим, что напряжение цепи с тремя параллельно соединенными батарейками равняется напряжению одной батарейки. Но мощность и емкость этой цепи источников увеличилось в несколько раз, а именно в количество соединенных источников, в данном случаи в три раза, при условии, что мощность и ёмкости батареек одинаковы.

В электроэнергетике кроме батареек последовательно или параллельно могут соединять все источники электроэнергии. Но для каждого вида источника существуют определенные условия, такие как: напряжение всех соединяемых источников должно быть одинаково, как и мощность, во избежание возникновения уравнительных токов, для соединения трансформаторов необходимо также, чтобы коэффициенты трансформации были также равны.

 

Цели соединения источников электрической энергии.

Стоит отметить, что последовательное соединение источников электроэнергии нашло широкое применение лишь для источников постоянного тока, а именно гальванические элементов.
В современной электроэнергетике широко распространено параллельное соединение источников электрической энергии. Это объясняется тем, что в современной системе электроснабжения отпадает необходимость в увеличении напряжения таким способом, эту функцию отлично выполняют повышающие трансформаторы. Тем более, что при последовательном соединении, при выходе из строя одного из источников, вся цепь обрывается и потребители обесточиваются.


А вот параллельное соединение может похвастаться своими плюсами. Оно позволяет повысить мощность всей сети. Является очень удобным, так как при выходе из строя или необходимости в ремонте одного из источников электрической энергии нет необходимость лишать потребителей электрической энергии.

Параллельное соединение источников электрической энергии на столько удобно, что во времена советского союза, да и сейчас, но не так масштабно соединяли все электрические станции в одну энергосистему, что повышало качество снабжения электрической энергией, так как не было дефицита мощности, а также позволяли выводить целые станции и подстанции в ремонт без перебоев в электроснабжении и конечно же все они соединялись параллельно.

Виды источников энергии и их использование

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

виды энергиивиды энергииНапример пища, которую человек ест содержит химическую и тело человека хранит её  пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое  путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы:

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время  из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Электроэнергетическая система

Электроэнергетическая системаСырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.

Ядерная  энергетика работает  больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.

Основным видом энергии, потребляемой во многих странах являются нефтепродукты, природный газ, уголь, ядерное и возобновляемое топливо.

Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но  обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии  и её использование дает представление о многих важных вопросах энергетики.

Первичная энергия

Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.

Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.

Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.

1 Гкал/час = 1,163 МВт

1 Вт = 859.8 кал/час

1 Вт = 3.412 BTU/час

BTU – британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.

В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.

На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и  возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).

Как распределяются виды энергии в каждой системе

Различные виды энергии  используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.

Почти все ядерное топливо используется в электроэнергетической системе для выработки электроэнергии. Её доля в России составляет 18% от первичной энергии. Во Франции – 75%, Венгрии – 52% , Украине – 56%. В среднем в мире порядка 10%.

Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на  окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет  92% от общего объема первичного энергопотребления.

Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие  альтернативных видов топлива.

Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.

Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).

Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

1.5. Источники электрической энергии постоянного тока

Рассмотрим основные процессы, происходящие в гальваническом элементе, одном из распространенных источников электрической энергии постоянного тока. В простейшем случае гальванический элемент (рис. 1.7, а) представляет собой две пластины — из меди Си н кз цинка 2п, помещенные в раствор серной кислоты Н2ЗО4-»-**• 2Н* +. 5О4-.

Вследствие химических процессов положительные ионы цинка 2п^ переходят в раствор серной кислоты, оставляя на цинковой пластине избыток отрицательных. свободных зарядов. Одновременно в растворе серной кислоты тяжелые и малоподвижные положитель­ные ионы цинка 2пм оттесняют легкие и подвижные положительные ионы водорода ЬГ к медной пластине, на поверхности которой происходит восстановление нейтральных атомов водорода. При этом медная пластина» теряет свободные отрицательные заряды, т, е. за­ряжается положительно. Между разноименно заряженными пласти­нами возникает однородное электрическое поле, которое препятствует направленному движению ионов в растворе. Напряжение или разность потенциалов между пластинами аккумуляторной батареи, при которой накопление зарядов прекращается, служит, количественной мерой сторонней силы (в данном случае химической природы), стре­мящейся к накоплению зарядов.

Количественную меру сторонней силы принято называть элек­тродвижущей силой или сокращенно ЭДС.

Е-в вольтах, если расстояние между пластинами d в метрах; (Qай, = фаа напряжение, равное разности по­тенциалов между выводами плас­тин в режиме холостого хода.

Рис. 1.7

Еслн к выводам гальванического элемента подключить приемник, например резистор, то в зам­кнутой электрической цепи возникнет ток. Заряд каждой из плас­тин уменьшится и появится направленное движение ионов в растворе кислоты. Направленное движение ионов сопровождается их взаим­ными столкновениями, что создает внутреннее сопротив­ление ‘гальванического элемента постоянному току.

Таким образом, гальванический элемент, эскизное изображение ко­торого дано на рис. 1.7, а, а изображение на принципиальных схемах— на рис. 1.7, б, можно представить в виде схемы замещения (рис. 1.7, и), состоящей из последовательно включенных источника ЭДС Е и резистивпого элемента с сопротивлением г„т, равным внутреннему со­противлению гальванического элемента. Стрелка ЭДС указывает направление движения положительных зарядов внутри источника под действием сторонних сил.

1.6. Источник эдс и источник тока

Рассмотрим процессы в простейшей электрической цепи, состоя­щей из источника электрической энергии, подключенного к резистору. Заменим источник электрической энергии схемой замещения по рис. 1.7, в, а резистор — резистивным элементом с постоянным со­противлением гя. Схема замещения рассматриваемой электрической цепи представлена на рис. 1.8, а, где буквами аи Ь обозначены выводы источника»электрической энергии.

Свойства источника электрической энергии как элемента схемы замещения можно задать его внешней характеристикой — зави­симостью напряжения между его выводами ум = 0 от тока / источ­ника.

Если ЭДС и внутреннее сопротивление источника электрической энергии являются постоянными величинами (линейный источник), то его внешняя характеристика определяется выражением

UаЬ = Фа — Фb = Е — ГвтI, .(1.2)

которому соответствует прямая а-яа рис, 1.9. Уменьшение напряже­ния между выводами а к Ь источника электрической энергии (рис. 1.8, а) при увеличении тока объясняется увеличением падения на­пряжения на внутреннем сопротивлении гег источника (увеличением напряжения на резистивном элементе с сопротивлением гвт).

Рис. 1.8 рис. 1.9

Во многих случаях внутреннее сопротивление источника электри­ческой энергии мало по сравнению с сопротивлением гв и справедливо неравенство гвт/ <^ Е. В этих случаях напряжение между выводами источника электрической энергии практически не зависит от тока.

Такои идеализированный источник электрической энергии на­зывается идеальным источником ЭДС с одним параметром Е.

Внешняя характеристика идеального источника ЭДС определяется выражением

Уа» = Фа — Фй = Е = СОП5Т, (1.3)

которому соответствует прямая б на рис. 1.9. На этом же рисунке показано изображение идеального источника ЭДС на схемах электри­ческих цепей.

В ряде специальных случаев, в частности во многих цепях с элек­тронными лампами и полупроводниковыми приборами, внутреннее сопротивление источника электрической энергии во много раз больше сопротивления нагрузки ги

При выполнении условия гвт >• ги в таких цепях ток источ­ника электрической энергии

I=El(rвт+rи)~ElrВт=Ik=J

т. е. равен току короткого замыкания источника. Источник электри­ческой энергии с большим внутренним сопротивлением можно заме­нить идеализированной моделью, у которой г„ •*»• с» и Е *> со и для которой справедливо равенство Е1г„ = ^. Такой идеализирован­ный источник электрической энергии называется идеальным источни­ком тока с одним параметром ^ = 1Х, Ток источника тока не зависит от сопротивления гя внешней цепи. При изменении сопротивления внешней цепи изменяется напряжение между выводами источника Uа!> = г_J

На рис. 1.9 построена прямая в — внешняя характеристика источника тока и дано его изображение на схемах электрических цепей.

От схемы замещения реального источника энергии, представленной в виде последовательного соединения источника ЭДС Е и резистивного элемента о сопротивлением гвт (рис. 1.8, а), можно перейти к схеме замещения с идеальным источником тока. Для этого разделим все слагаемые выражения (1.2) на внутреннее сопротивление источ­ника энергии г„ и получим:

Uablrвт=Elrвт-I

Или

ElrВт=J=UablrВт+I=Iвт+I

Последнее выражение можно истолковать следующим образом: ток источника тока ^ складывается из тока / в резистивном элементе г„ (во внешнем унастке цепи) и тока /вт в резистивном элементе с со­противлением гвт, включенном между выводами а и Ь источника энер­гии. Соответствующая эквивалентная схема замещения электриче­ской цепи показана на рис. 1.8, б.

Отметим, что представление реальных источников электрической энергии в виде двух схем замещения является эквивалентным пред­ставлением относительно внешнего участка цепи: в обоих случаях одинаковы напряжения между вывода-источника и токи во внешнем участке цепи.

Однако энергетические соотношения в двух схемах замещения ре­альных источников энергии не одинаковы. Не равны между собой мощности, развиваемые источником ЭДС (рис. 1.8, а) Е1 и источ­ником тока (рис. 1.8, б) 1М, а также мощности потерь, определяемые по закону Джоуля—Ленца:

rВтI2= rВтI2вт

Работа, совершаемая при перемещении положительного ^заряда У вдоль некоторого неразветвленного участка электрической цепи, не содержащего источников электрической энергии, от точки а до точки Ь, равна произведению этого заряда на напряжение иаь = между концами участка: А =QU. При равномерном движении за­ряда в течение времени /,’т. ег постоянном токе 1аЬ = I, заряд (ко­личество электричества)

Q=It

Следовательно, произведенная за время t работа

A=UIt

Основной единицей работы в системе СИ служит джоуль (Дж), 1 Дж = 1 В-А-с.

Для оценки энергетических условий важно знать, сколь быстро совершается работа. Отношением работы А к соответствующему про­межутку времени t определяют мощность

P=Alt=Ul (1.5)

Основной единицей мощности в системе СИ является ватт (Вт), 1 Вт = 1 Дж/с =1 В -А. Это мощность, при которой за одну се­кунду совершается работа в 1 Дж. Кратные единицы измерения мощ­ности: милливатт (мВт), 1 мВт = 1 • 1(Н Вт; киловатт (кВт), 1 кВт = = ЫО* Вт, и мегаватт (МВт), 1 МВт = ЫО8 Вт=Ы08 кВт.. Основная единица работы и энергии джоуль часто слишком мала для оценки энергетических установок. Практической единицей измерения электрической энергии служит кило­ватт-час (кВт-ч), т. е. работа, совершаемая при неизменной мощности 1 кВт в течение 1 ч .Так как1Вт-с=1Дж,то1Вт-ч = 3600Вт-с= 3600 Дж и 1 кВт-ч = 3 600 000 Дж.

Для резистивных элементов получается три выражения мощности резиегивного элемента с сопротивлением г в электрический цепи постоянного тока:

Pr=UI=rI2=qU2 (1.6)

В любой электрической цепи должен соблюдаться энергетический баланс — баланс мощностей: алгебраическая сумма мощностей всех источников энергии (в частности источников тока и источников ЭДС или напряжения) равна арифметической сумме мощнос­тей всех приемников энергии (в частности резистивных элементов):

∑UистIист=∑rIr2 или ∑Pист=∑Pr (1.7)

При учете внутренних сопротивлений гвт источников мощность каждого источника Uи„Iн„ меньше развиваемой источником мощности Е1ИСТ на мощность потерь гВТI2ист

Мощность источника следует считать положительной и записывать в уравнении баланса мощностей (1.11) со знаком плюс, если положи­тельное направление тока /„„ совпадает с направлением действия ЭДС. В противном случае эту мощность следует считать отрицательной и записывать со знаком минус (например, для заряжаемого аккуму­лятора).

Источники электрической энергии

Процесс получения электрической энергии из других видов энергии называется генерированием электроэнергии.

Источниками электрической энергии на воздушных судах являются:

-генераторы постоянного тока;

-генераторы переменного тока;

-химические источники электрического тока.

На воздушных судах, где основной системой электроснабжения служит система постоянного тока, для получения переменного тока стабильной частоты применяются электромашинные однофазные и трехфазные преобразователи, а также статические преобразователи.

Для питания переменным током повышенного или пониженного напряжения используются трансформаторы.

Генераторы представляют собой электрическую машину, которая преобразует механическую энергию в электрическую.

В основу принципа действия генератора положено явление электромагнитной индукции. Его сущность заключается в возникновении ЭДС в об­мотках якоря при пересечении ими магнитного поля индуктора. Это поле создается в полюсах генератора при прохождении постоянного тока по обмоткам катушек возбуждения. В зависимости от способа питания обмоток возбуждения генераторы подразде­ляются на генераторы:

-c независимым возбуждением;

-с самовоз­буждением;

-со смешанным возбуждением.

В генераторах с независимым возбуждением обмотки возбуж­дения питаются от постороннего источника постоянного тока.

В генераторах с самовозбуждением эти обмотки питаются то­ком, вырабатываемым самим генератором.

Стартеры-генераторы помимо своего основного назначения — снабжать бортовую сеть высококачественной энергией — запускают также турбореактивные и турбовинтовые авиадвигатели.

Авиационные генераторы постоянного тока

Генераторы постоянного тока относятся к классу генераторов с самовозбуждением, а по схеме подсоединения обмотки возбуждения к якорю — в большинстве случаев к генераторам с параллельным возбуждением.

Генератор схематично можно представить состоящим из двух агрегатов: неподвижного статора с индуктором, на сердечниках которого смонтированы обмотки возбуждения ОВ, и вращающегося якоря Я, служащего для преобразования меха­нической энергии в электрическую.

При вращении якоря индуцируется переменная ЭДС, а для питания обмоток возбуждения требуется постоянный ток, его выпрямление осуществляется специальным щеточно-коллекторным устройством. В начальный период работы генератор самовозбуждается вследствие остаточного магнетизма в металле полюсов. Поэтому генераторы в процессе эксплуатации не должны перегреваться и подвергаться резким ударам, иначе остаточный магнетизм в полюсах может исчезнуть.

При работе генератора в режиме холостого хода, т. е. с отклю­ченной внешней сетью, ЭДС генератора зависит от частоты враще­ния якоря n его якоря и магнитного потока Ф в индукторе, который в свою очередь зависит от тока возбуждения iB:

— постоянный коэффициент

Е — ЭДС генератора; р — число пар полюсов; N — число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря;

Ф — магнитный поток возбуждения.

При работе генератора на бортовую сеть напряжение на его зажимах зависит от ЭДС, тока IН нагрузки и сопротивления RЯ якоря: U = Е — IНRЯ

При увеличении нагрузки напряжение на зажимах генератора постепенно снижается и может достигнуть критического значения, после чего напряжение резко падает до нуля наступает режим короткого замыкания.

Типовыми представителями генераторов постоянного тока являются генераторы серии ГСР (с расширенным диапазоном ча­стот вращения). Конструкция и электрическая схема одного из мощных гене­раторов серии ГСР представлена на рисунке.

Корпус 9 генератора состоит из двух частей: магнитопровода и щита. Магнитопровод, являющийся средней частью корпуса, выполнен из электротехнической стали и соединен со щитом спо­собом сварки. В нем смонтированы основные 3 и дополнительные 7 полюсы с катушками обмоток возбуждения 4 и 6, а также щеткодержатели 10. Дополнительные полюсы необходимы для устранения вредного влияния реакции якоря, которая приводит к искрению и уменьшению индуцируемой ЭДС.

Реакция якоря – действие магнитного поля якоря на поле основных полюсов машины. Реакция якоря вызывает уменьшение магнитного потока генератора и смещение физической нейтрали — линии, перпендикулярной к оси магнитного поля.

Устройство и электрическая схема генератора серии ГСР:

1 — патрубок; 2 — коллектор; 3 — основной полюс; 4 — катушка обмотки возбуждения основного полюса; 5 — упругий валик; 6 — катушка обмотки возбуждения дополнитель­ного полюса; 7 — дополнительный полюс; 8 — якорь; 9 — корпус; 10 — щеткодер­жатели; 7 полюсы с катушками обмоток возбуждения 4 и 6, а также щетко­держатели 10.

Якорь 8, коллектор 2 и вентилятор смонтированы на общем валу, опорами которого являются два подшипника.

Генерируемый ток с коллектора отводится меднографитовыми щетками. Они устанавливаются в щеткодержа­телях и прижимаются к коллектору пружинами. Генератор в полете охлаждаемся продувом воз­духа через его внутренние полости. Воздух нагнетается вентиля­тором через патрубок 1 и, омывая щеточно-коллекторный узел, якорь, полюсы и обмотки, выходит через окна в щите корпуса.

На воздушных судах применяются генераторы постоянного тока следующих типов: ГС, ГСК, ГСН, ГСР и ВГ.

Основным недостатком генераторов постоянного тока является недостаточно надежный контакт между токосъемными щетками и коллектором якоря, что особенно ярко проявляется при полетах на больших высотах и вызывает интенсивное искрение и сопутст­вующие помехи работе установленного на самолете электронного оборудования.

Комплекс аппаратуры генератора постоянного тока имеет регулятор напряжения, дифференциально-минимальное реле, автомат защиты от перенапряжения типа АЗП и регулировочные резисторы.

Основные источники электроэнергии в России. Виды и характеристики | ENARGYS.RU

В России действуют около 600 электростанций общей мощностью 218145,8 МВт.

По типу используемой энергии их можно разделить на три группы:

  1. Тепловые – 68,4%;
  2. Гидравлические – 20,3%;
  3. Атомные – около 11.1%;
  4. Альтернативные виды электроэнергии.

Чтобы выявить преимущества того или иного вида энергии рассматриваются четыре основных параметра:

  1. Эффективность использования;
  2. Применение природных ресурсов;
  3. Влияние на окружающую среду;
  4. Потенциальная опасность.

Теплоэлектростанции

ТЭС работают на преобразовании тепловой энергии топлива таких как, нефть, уголь, природный газ,в механическую, а затем в электрическую энергию.

К недостаткам теплоэлектростанций относится использование невозобновляемых ресурсов. Недостатком будет и влияние на окружающую среду так, как в химический состав топлива входит углерод, пагубно действующий на атмосферу, создавая так называемый «парниковый эффект». Также отрицательным будет и выброс в гидросферу теплоты с водой. Теплоэлектростанции являются взрывопожарными и химически опасными объектами.

Гидроэлектростанции

Преобразования энергии происходит за счет использования потока воды. ГЭС обладают значительным КПД до высокого 95%.

Основным преимуществом этого вида энергии является, экологически чистая кинетическая энергия воды.

Недостатком такого вида энергии является изменение водных биоценозов, и подтопление населенных пунктов вблизи ГЭС. Удерживаемые плотиной массы воды таят в себе огромную разрушительную силу.

Атомные электростанции

АЭС работают на использовании атомной (ядерной) энергии. КПД АЭС примерно равен ТЭС – 35%. В качестве топлива применяется ядерное горючее – уран, плутоний. При сжигании 1 кг урана можно извлечь столько же теплоты сколько из 3000 т каменного угля.

К недостаткам относится проблема захоронения атомных отходов, а также выброс в окружающую средурадионуклидов, оказывающих на человека и все живые существа мутагенное действие, и вызывающих лучевую болезнь. Потенциальная опасность радиационного загрязнения при авариях, представляет угрозу для жизни в течение многих лет.

Исходя из всего вышесказанного можно сделать следующие выводы, а именно:

  1. Негативное влияние большинства электростанций на окружающую среду.
  2. Неэффективное использование невозобновляемых природных ресурсов.
  3. Потенциальная опасность для окружающего мира.

Исходя из всего этого, можно заключить, что необходима модернизация существующих электростанций или введение и поиск новых альтернативных видов источников энергии. Это требует значительных денежных затрат.

Что такое – природные источники энергии? Виды возобновляемых источников энергии

Альтернативная энергия

Под выражением «возобновляемая энергия» либо регенеративная, то есть «зеленая энергия», подразумевается энергия источников, неисчерпаемая по человеческим меркам. В окружающей среде она представлена в широком спектре – солнечная, ветровая, водная, включая морские волны и течения, силы приливов и отливов океана, биомассы, геотермального тепла.

Альтернативная энергия

Возобновляемые природные ресурсы в жизни человека

В последние годы широкое развитие получила альтернативная энергетика. Она представлена самыми разнообразными видами ВИЭ, которые постоянно возобновляются.

Под формулировкой «возобновляемые источники энергии» подразумеваются определенные формы энергии, вырабатываемые в естественных условиях, за счет происходящих на поверхности Земли природных процессов.

Условно они делятся на классы – возобновляемые и невозобновляемые:

  • к первому классу относятся источники, которые имеют неисчерпаемые источники энергии по человеческим меркам. Они постоянно пополняются естественным путем в ходе прохождения планетой определенного цикла;
  • второй класс представлен невозобновимыми природными ресурсами, в число которых входит газ, нефть, уголь, уран. Они относятся к энергоресурсам, сокращающимся с истечением времени без возобновления до прежних размеров.

Источники энергии

Возобновляемый источник энергии предоставляют ресурсы, в число которых входит солнечный свет, водный поток, приливы и геотермальная теплота. Их возобновлению способствует круговорот воды в природе, цикличность его определяется временем года. Явление способствует постоянному восполнению энергии естественным путем.

ВИЭ подразделяется на группы – традиционные и нетрадиционные источники

В первую группу входит:

  • гидравлическая энергия воды, которая преобразуется в электрическую энергию. Каждая энергетическая станция вырабатывает ее посредством действия гидросилового оборудования, устанавливаемого на ней;
  • энергия биомассы, получаемая в ходе сжигания древесного угля, дров, торфа. Она применяется в основном для выработки тепла, подаваемого в отопительную систему жилых и нежилых зданий;
  • геотермальная энергия, являющаяся результатом естественного гниения и поглощения минералами, находящимися в недрах земли, солнечной энергии. В сущности, солнце есть неисчерпаемый источник энергии. Его тепловое излучение преобразовывается в электрическую энергию с применением фотоэлементов, тепловых машин.

Вторая группа состоит из энергии, которая существует в природе, окружающей человека:

  • солнечной;
  • ветровой;
  • морских волн и течений;
  • приливов и отливов океана;
  • биотоплива;
  • низкопотенциальной тепловой.

Принцип использования возобновимой энергии заключается в ее извлечении из постоянно происходящих в окружающей среде геологических процессов. Она предоставляется потребителю, который использует ее для решения технических задач и удовлетворения своих нужд.

Характеристики отдельных ВИЭ

Многие нетрадиционные и возобновляемые источники энергии без затруднений устанавливаются в жилых зданиях. Отдельные его виды можно применять в тяжелой и легкой промышленности, установив в производственных зданиях. В их число входят возобновляемые ресурсы, предоставляемые человеку самой природой.

Наибольшую популярность обрела энергия биомассы, являющаяся одним из видов «зеленой энергии». Она позволяет рационально использовать природные ресурсы планеты. Ресурсами являются отходы деревообрабатывающей и бумажной промышленности, отраслей сельского хозяйства, включая бытовой и строительный мусор, из которого вырабатывается естественным путем метан.

Энергия ветра

Воздушные массы атмосферы есть своего рода вечный неиссякаемый источник, потому что обладают огромной кинетической энергией. Они перемещаются под воздействием геологической деятельности ветра. Его сила преобразуется в электрическую энергию с помощью ветровых установок. Несмотря на довольно высокую стоимость, они успешно используются в районах со спокойным ландшафтом.

Еще один вечный источник энергии – Солнце. Солнечная энергетика является одним из направлений НВИЭ, основанной на непосредственном применении солнечного излучения для получения энергии. Она является бесплатным источником, который возобновляется. Помимо того, ее относят к категории «чистая энергетика», не производящей вредных отходов. Но солнечные установки применимы только в тех широтах планеты, где достаточно солнечного света для выработки электрической энергии.

Солнечная энергия

Водный поток есть неиссякаемый источник, обладающий потенциальной и кинетической энергией. Она в ходе работы преобразуется в электрический ток. Ярким примером использования гидравлической энергии рек, воды является строительство малых и микро ГЭС, а также крупных ГЭС с большими мощностями.

Малые и микро ГЭС обрели популярность во многих странах, использующих энергию возобновляемых источников малых водотоков с целью выработки электрического тока. Нужно заметить, что в последние годы строительство крупных гидроэлектростанций сократилось до минимума.

«Зеленая энергетика» представлена энергией приливов и отливов океанов, морских волн и течений. Для их использования на берегу морей и океанов строятся приливные станции. Они преобразуют кинетическую энергию вращения Земли, возникающую за счет гравитационных сил Луны и Солнца, которые два раза в сутки изменяют уровень воды.

Достоинства и недостатки ВИЭ

Основное преимущество заключается в том, что возобновляемые ресурсы являются дешевым источником энергии. Это неиссякаемый источник энергии, который предоставлен в неограниченном количестве в окружающей среде, не являясь следствием целенаправленной деятельности человека.

Нужно заметить, что возобновляемые источники энергии имеют один недостаток. Он заключается в низкой степени концентрации, поэтому нельзя получаемую энергию передать на большие расстояния. Как правило, ВИЭ подлежит использованию вблизи потребителя.

Возобновляемая энергетика будущего

Учеными планеты ведутся дальнейшие разработки технологии водородного топлива, которая выделяет энергию при помощи синтеза атомов водорода в атом гелия. В будущем они намерены получать возобновляемые ресурсы не только с применением наземных конструкций, но и спутников Земли, чтобы использовать находящуюся в черных дырах космическую энергию.

Основные предпосылки для развития ВИЭ в Российской Федерации:

  • обеспечение энергетической безопасности страны;
  • сохранение окружающей среды, что позволит обеспечить экологическую безопасность;
  • достижение нового уровня на мировом рынке возобновляемой энергии, что обозначено в общем стратегическом плане развития государства;
  • претворение в жизнь мер, способствующих сохранить собственные возобновляемые ресурсы для будущих поколений;
  • увеличение размеров потребления сырья, которое используется в качестве топлива.

В перспективе использование возобновляемых источников энергии позволит человечеству восполнить топливный дефицит, удешевить добычу топлива, тепла и моторного масла. Кроме того, их использование очищает атмосферу, что, несомненно, поможет улучшить экологическую обстановку планеты.

Источники энергии

И в заключение необходимо отметить, что возобновляемые источники электроэнергии обладают несомненным преимуществом. Оно заключается в их неисчерпаемости и экологической чистоте. Человек может использовать их без каких-либо опасений, потому что они не нарушают энергетический баланс планеты. К тому же возобновляемые ресурсы находятся вокруг него всюду.

‘; blockSettingArray[0][«setting_type»] = 6; blockSettingArray[0][«elementPlace»] = 2; blockSettingArray[1] = []; blockSettingArray[1][«minSymbols»] = 0; blockSettingArray[1][«minHeaders»] = 0; blockSettingArray[1][«text»] = ‘

‘; blockSettingArray[1][«setting_type»] = 6; blockSettingArray[1][«elementPlace»] = 0; blockSettingArray[3] = []; blockSettingArray[3][«minSymbols»] = 1000; blockSettingArray[3][«minHeaders»] = 0; blockSettingArray[3][«text»] = ‘

Параметры источника электроэнергии

Прежде чем мы приступим к рассмотрению новой темы, давайте вспомним, что вообще называют источником электрической энергии.

Все электромагнитные процессы, которые протекают в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные параметры можно описать с помощью таких понятий, как: ток, напряжение, сопротивление, мощность и электродвижущая сила.

Вообще совокупность электротехнических устройств, состоящая из соответствующим образом соединённых источников и приёмников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии принято рассматривать, как электрическую цепь.

Электрическая цепь состоит из отдельных частей (устройств), которые выполняют определённые функции и называются элементами цепи.

Понятно, что основные элементы цепи – это источники и приёмники электрической энергии.

Электротехнические устройства, которые производят электрическую энергию, называют источниками или генераторами электрической энергии, а устройства, которые потребляют её – потребителями или приёмниками электрической энергии.

Итак, вспомним определение: устройство, которое преобразует какую-либо энергию (механическую, химическую, тепловую или световую) в электрическую, называют источником.

Примерами источников электроэнергии служат гальванические элементы, аккумуляторы, генераторы и многие другие устройства.

Можно даже сказать, что в быту (то есть дома) источниками электрической энергии являются обыкновенные розетки, куда мы подключаем чайники, компьютеры, стиральные машинки и так далее.

Понятно, что основное назначение источников – это питание потребителей электроэнергией.

Все источники энергии называют активными элементами. Они бывают постоянного и переменного тока. Однако их параметры аналогичны.

Как мы уже знаем, источник вырабатывает электрическую энергию за счёт действия каких-либо внешних сил.

При этом в результате действия внешней силы каждый единичный электрический заряд при движении внутри источника получает некоторое количество энергии.

Величина энергии, которую приобретает единичный электрический заряд внутри источника от внешних сил, называется электродвижущей силой источника (или коротко ЭДС). Единица измерения электродвижущей силы источника – вольт.

Рабочее напряжение и мощность электрогенераторов, как правило, указывают на их корпусе. Так, например, на корпусе гальванических элементов обозначают их начальную электродвижущую силу.

Если получается так, что для питания нагрузки необходимо напряжение или ток, которые превышают соответствующие величины одного гальванического элемента, то из них собирают батарею. Причём, элементы, соединённые в батарею, должны иметь одинаковые типы, электродвижущую силу и внутреннее сопротивление.

Наверняка вы слышали такое словосочетание, как короткое замыкание. Все, конечно, представляют себе, что это за явление, но не каждый может объяснить.

Давайте попробуем разобраться.

Итак, если соединить проводом электроды источника тока, получим как раз-таки то, что и называется режимом короткого замыкания.

При большой мощности источника сила тока в режиме короткого замыкания достигает очень большой величины, что приводит к выделению большого количества тепла внутри электромеханического генератора и разрушению в нём обмоток. Причём сила тока может стать настолько велика, что провод, который замыкает электроды источника, начнёт раскаляться и даже плавиться.

Ток короткого замыкания очень опасен, так как может повредить всё: и источник электрической энергии, и потребитель, и даже соединительные провода.

В свою очередь, перегрев соединительных проводов может привести к их возгоранию и пожару.

Поэтому при питании устройств от мощных источников в потребителе почти всегда вводят защиту от короткого замыкания. Которое, кстати, может произойти внезапно, например, из-за аварий устройств, ошибок людей и ударов молний.

Самая простая защита от разрушительных последствий короткого замыкания — это плавкий предохранитель. Как правило, такое устройство устанавливают для защиты квартирной электропроводки и бытовых электроприборов.

Плавкий предохранитель представляет собой тонкую проволоку из легкоплавкого металла, которая вставлена в стеклянную либо керамическую трубку. При малейших отклонениях в работе электрической цепи, например, увеличение силы тока выше допустимого значения, проволока нагревается и расплавляется. При этом происходит размыкание электрической цепи.

Более сложной защитой от разрушительных последствий короткого замыкания является использование различных автоматов защиты сети. Примером таких автоматов служит автоматический выключатель.

Главная функция автоматического выключателя – защита проводов и кабелей от перегрузки и короткого замыкания.

Данный прибор представляет собой устройство, которое регулирует подачу тока в цепи. Действует автоматический выключатель при помощи встроенного прибора, фиксирующего изменение напряжения, частоты и силы тока. Так, например, если сеть перегружается, срабатывает тепловое реле, и автомат выключается. Скорость, с которой это происходит – минимальна. Поэтому применение автоматического выключателя гарантирует безопасное использование нескольких бытовых электроприборов одновременно и сложного оборудования на производстве.

В отличие от плавкого предохранителя, который можно использовать только однократно, автоматические выключатели предназначены для многоразовой защиты электрических установок от перегрузок и коротких замыканий.

Параметром устройств защиты является максимально допустимая мощность, которая в этом случае задаётся в виде допустимой силы рабочего тока. Величину силы тока, как правило, указывают на корпусе или контактах предохранителей.

В случае перегорания плавкой вставки в предохранителе, её следует заменить на аналогичную с точно такой же величиной допустимого тока.

Заменять плавкую вставку на вставку с большей силой тока очень опасно, так как это может привести к перегрузке электрической сети и возгоранию проводов и других элементов.

Мы с вами уже выяснили, что источник электроэнергии предоставляет потребителю энергию с определёнными параметрами. Эти параметры обязательно должны соответствовать параметрам потребителя, иначе потребитель не будет работать и в скором времени выйдет из строя.

Это говорит о том, что рабочее напряжение потребителя должно соответствовать рабочему напряжению источника, а мощность, потребляемая потребителем, не должна превышать его допустимой мощности.

Например, если подключить электроприбор, который рассчитан на напряжение 220 В, в электрическую сеть с напряжением 127 В, то он не сможет работать из-за недостатка энергии.

И наоборот, если в электрическую сеть с напряжением 220 В подключить электроприбор, который рассчитан на 127 В, то он также не сможет работать. Но уже по другой причине: электроприбор будет получать от источника слишком большую энергию, что может привести к его поломке.

В лучшем случае сработают предохранители, защищающие его от возникшей перегрузки, однако электроприбор при этом всё равно не сможет работать.

Итоги урока

На этом уроке мы с вами обсудили некоторые из параметров источников электроэнергии. Узнали, что называют электродвижущей силой источника. Поговорили о таком опасном явлении, как короткое замыкание. Узнали, в результате чего оно возникает, и какие устройства помогают с ним бороться. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *