Источник тока на транзисторе: Простейшие схемы источников питания для различной аппаратуры – Транзисторный источник тока. Недостатки. Улучшения.| Elektrolife

2.06. Транзисторный источник тока

ГЛАВА 2. ТРАНЗИСТОРЫ

НЕКОТОРЫЕ ОСНОВНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ



Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

эмиттерный повторитель

Рис. 2.20.

Подключение резистора к источнику напряжения.

Схема простейшего источника тока показана на рис. 2.20. При условии что Rн » R (иными словами, Uн » U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uконд » U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Упражнение 2.6. Допустим, нам нужен источник тока который бы обеспечивал точность 1% в диапазоне изменения напряжения на нагрузке от 0 до +10 В. Какой источник напряжения нужно подключить последовательно к резистору?

Упражнение 2.7. Допустим, что в предыдущем упражнении требуется получить от источника ток 10 мА. Какая мощность будет рассеиваться на резисторе? Какая мощность передается нагрузке?

эмиттерный повторитель

Рис. 2.21. Транзисторный источник тока: основная идея.

Какая мощность передается нагрузке? Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе U

б > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб — 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ — 0,6/Rэ. Так как для больших значений коэффициента h21эIэ ≈ Iк, то Iк ≅ (Uб — 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).

Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h

21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,6) транзистор p-n-p — типа питает током заземленную нагрузку (он — источник тока). Остальные примеры (в которых используются транзисторы n-р-n — типа.) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим ≅100кОм (для h
21э
= 100). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер, — этого достаточно, чтобы диоды были открыты.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно + 5,2 В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем. чтобы не возник пробой транзистора (напряжение U

кэ не должно превышать значение Uкэпроб — напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально.

Упражнение 2.8. В схеме имеются два стабилизированных источника напряжения: +5 и 15 В. Разработайте схему источника тока на основе транзистора n-р-n — типа, которая бы обеспечивала ток +5 мА. В качестве источника напряжения для базы используйте источник +5 В. Чему равен рабочий диапазон в такой схеме?

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения U

б, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (R

экв

1. При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ — Iб

; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, a, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора — на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора Т

2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.

эмиттерный повторитель

Рис. 2.23. Один из методов температурной компенсации источника тока.

Улучшение характеристик источника тока. Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).


эмиттерный повторитель

Рис. 2.24. Каскодный источник тока, обладающий повышенной устойчивостью к изменениям напряжения на нагрузке.

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока. Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой (из-за большого значения h21э). В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых также решена задача устранения влияния изменений Uбэ на выходной ток.

Влияние коэффициента h21э можно ослабить, если выбрать транзистор с большим значением h21э, тогда ток базы будет вносить незначительный вклад в ток эмиттера.

эмиттерный повторитель

Рис. 2.25. Транзисторный источник тока с использованием напряжения Uбэ в качестве опорного.

На рис 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение Uбэ транзистора Т1, падая на резисторе R1, определяет выходной ток независимо от напряжения Uкк

Uвых = Uбэ/R2U2.

С помощью резистора R1 устанавливается смещение транзистора Т2 и потенциал коллектора Т1, причем этот потенциал меньше, чем напряжение Uкк, на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на R2 уменьшается приблизительно на 2,1 мВ/°С и вызывает соответствующее изменение выходного тока 0,3%/°С).


Модель Эберса-Молла для основных транзисторных схем


Источник тока на биполярном транзисторе

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.

На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
— Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
— Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока. » — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.


Рис.1

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.


Рис.3

Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток Ik1 , задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1) ,
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.4

Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.5

Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.6

Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока — одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.
При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Выбор схемы источника тока&nbsp Сопротивление резистора R1 (кОм) Сопротивление резистора Rэ1 (кОм) Сопротивление резистора Rэ2 (кОм) Напряжение питания (В) Выходной ток Iн Задающий ток Ik1

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Улучшение характеристик ИТ……………………………………. …. 8

Источник тока на биполярных транзисторах (расчет)…………..…. ….11

Источник тока (стабилизатор тока) – этоустройство,автоматическиобеспечивающееподдержание тока нагрузочногоустройства с заданной степенью точности.

Ток нагрузочного устройства может сильно изменятьсяпривоздействиивнешнихдестабилизирующихфакторов,каковымиявляются: изменение напряжения в сети, изменение температуры, колебаниечастотытокаит.д. Чтобыэтифакторынеоказываливлияниянаработуэлектрических устройств, применяют стабилизаторы или по другому источники тока.

Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. Источники тока используются в интегральных схемах для смещения рабочих точек транзисторов.И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

Назначение источника тока – поддерживать неизменный ток при изменении сопротивления нагрузки. Как известно, внутреннее сопротивление идеального источника тока бесконечно велико. В реальной цепи этого достичь невозможно: такой источник должен иметь бесконечную мощность. Кроме того, реальные схемы способны поддерживать неизменный ток только в определенном диапазоне изменения сопротивления нагрузки. Качество реального источника тока тем выше, чем больше его внутреннее сопротивление.

Схема простейшего источника тока показана на рис. 2.20. При условии что (иными словами, ), ток сохраняет почти постоянное значение и равен приблизительно . Если нагрузкой является конденсатор, то, при условии что , он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RС-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Транзисторный источник тока

Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе поддерживает эмиттерный переход в открытом состоянии: .

. Так как для больших значений коэффициента , то

независимо от напряжения до тех пор, пока транзистор не перейдет в режим насыщения .

Смещение в источнике тока.

Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания , а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,б) транзистор р-п-р -типа питает током заземленную нагрузку (он-источник тока). Остальные примеры (в которых используются транзисторы п-р-п -типа) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим кОм (для ). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер,-этого достаточно, чтобы диоды были открыты.

Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно +5,2В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем, чтобы не возник пробой транзистора (напряжение не должно превышать значение напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально. В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения , то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока.

Наблюдаются эффекты двух видов:

1. При заданном токе коллектора и напряжение , и коэффициент (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения , связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как ; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смещения, обусловленного изменениями коэффициента (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, а, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение и коэффициент зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора компенсируется падением напряжения на эмиттерном переходе который имеет такие же температурные характеристики. Резистор играет роль нагрузки для , необходимой для задания втекающего тока базы транзистора .

Улучшение характеристик источника тока.

Вообще говоря, изменение напряжения , вызванное как влиянием температуры (относительное изменение составляет приблизительно – ), так и зависимостью от напряжения (эффект Эрли оценивается величиной ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если (т.е. к базе приложено напряжение 0,7 В), то изменение напряжения на 10 мВ вызывает изменение выходного тока на 10%, если же , то такое же изменение вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10В, напряжение на эмиттере сделать равным +5В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от до , т. е. от 5,2 до 10 В).

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока.

Источник тока работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера . Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для ) и эмиттерный токи приблизительно равны между собой (из-за большого значения ). В этой схеме напряжение (для) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения , обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых

также решена задача устранения влияния изменений на выходной ток.

Влияние коэффициента можно ослабить, если выбрать транзистор с большим значением тогда ток базы будет вносить незначительный вклад в ток эмиттера.

На рис. 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение транзистора падая на резисторе , определяет выходной ток независимо от напряжения

С помощью резистора устанавливается смещение транзистора и потенциал коллектора , причем этот потенциал меньше, чем напряжение , на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на уменьшается приблизительно на 2,1 мВ/ и вызывает соответствующее изменение выходного тока (0,3%/).

На рис. 2.5, а приведена схема простейшего ГСТ на биполярном транзисторе и его эквивалентная схема (рис. 2.5, б ). В качестве стабилизирующего элемента используется выходная цепь транзистора (промежуток эмиттер-коллектор), имеющая вольтамперную характеристику требуемого вида (рис. 2.6).

Рабочая точка (ток I н ) определяется пересечением характеристики и нагрузочной линии (точка А). При изменении R н рабочая точка перемещается по характеристике. Например, при уменьшении сопротивления нагрузки на величину ΔR н , рабочая точка переместится в точку В, что приведет к увеличению тока нагрузки на (рис. 2.6). Чем больше выходное дифференциальное сопротивление транзистора R i = Δ u / Δ i (чем более горизонтально идет характеристика), тем меньше изменение тока нагрузки I н .

Так как на участке стабилизации (пологая область) характеристика транзистора аппроксимируется выражением

i к = I 0 + u кэ / R i , (2.3)

Δ I н / I н = ΔR н / R i . (2.4)

Таким образом, в транзисторном стабилизаторе стабилизация тока определяется величиной R i (эквивалент R на рис. 2.4), которая может достигать десятков и сотен килоом.

Величину тока нагрузки I н можно задавать, изменяя режим работы транзистора по постоянному току с помощью резисторов R б1 иR б2 . Часто в цепь эмиттера транзистора включают резистор R э , улучшающий стабильность и увеличивающий сопротивление R i .

Источник тока на биполярных транзисторах (на основе схемы с общим эмиттером)

Т. к. в цепи не будут протекать большие токи я выбрал источник тока на биполярном транзисторах из-за его простоты, в схеме всего лишь один транзистор и три резистора .

В роли генератора тока здесь выступает транзистор VT. Его рабочий режим задаётся источником опорного напряжения на R1 и подстроечным резистором R2. С помощью этого резистора можно установить необходимый ток Iк.
Диапазон сопротивлений нагрузки и генерируемого тока определяется напряжением источника питания транзистора. R 3 режимное сопротивление.

Простейшим источником тока является схема с общим эмиттером и отрицательной обратной связью по току (рис. 2.3.1). Нагрузка в цепи коллектора.

.

, .

Рассчитать источник тока (рис. 2.3.1), обеспечивающий ток коллектора . Напряжение источника питания , коэффициент усиления тока базы

Выберем напряжения коллектора и эмиттера равными приблизительно одной третьей напряжения источника (правило одной трети). Напряжение базы . Напряжение эмиттера .
Полагая, находим сопротивление эмиттерного резистора

Ток делителя напряжения – . Входное сопротивление делителя

.

Поскольку напряжение базы

,

сопротивления резисторов должны быть равны: . Максимальное значение сопротивления резистора , при котором транзистор остается в активном режиме.

Напряжение на сопротивлении нагрузки .

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si)
Структура полупроводникового перехода: npn

Здесь много схем на недорогой элементной базе. Блоки питания, преобразователи и т.п.

1. Схема зарядного устройства от аккумуляторного фонаря (опасно для аккумуляторов)

2. Стабилизатор напряжения на ПТ

3. Источники стабильного тока

4. Источник тока

5. Стабилизатор напряжения

6. Источник тока

7. Двухполюсный источник тока

8. Источники стабильного тока

9. Зарядное устройство

10. Преобразователь напряжения

11. Очень хорошее зарядное устройство

12. Вариант замены высоковольтного стабилитрона

13. Простой индикатор радиационной опасности

14. Зарядное устройство

15. Преобразователь напряжения

16. Источник стабильного тока

17. Аналог стабилитрона

18. Стабилизатор напряжения с ограничением тока — источник тока

19. Стабилизатор напряжения для зарядного устройства на солнечной батарее

20. Компенсация пульсаций в блоке питания

21. Зарядное устройство с питанием от свободной энергии

22. Стабилизатор напряжения на логическом элементе

23. Простой источник стабильного тока

24. Импульсный стабилизатор конденсаторного БП

25. Бестрансформаторный источник питания часов на оптронах

26. Структурная схема конденсаторного преобразователя напряжения с умножением тока

27. Ёмкостный преобразователь напряжения

28. Источник тока на интегральном стабилитроне

Базовая схема источника стабилизированного тока на MOSFET транзисторах

Добавлено 4 января 2020 в 22:18

Сохранить или поделиться

Рассмотрим простую версию схемы, которая имеет важное значение в разработке аналоговых интегральных микросхем.

Вспомогательная информация

Что за источник тока?

Источники стабилизированного тока занимают видное место в заданиях по анализу цепей и теориях цепей, а затем, кажется, они более или менее исчезают… если вы не разработчик микросхем. Хотя источники тока редко встречаются в типовых проектах печатных плат, они широко распространены в мире аналоговых микросхем. Это потому, что они используются 1) для смещения и 2) в качестве активных нагрузок.

  1. Смещение: транзисторы, работающие как усилители в линейном режиме, должны быть смещены так, чтобы они работали в нужной части своей передаточной характеристики. Лучший способ реализовать это в контексте разработки микросхем – это заставить заданный ток течь через сток транзистора (для MOSFET) или коллектора (для биполярного транзистора). Этот заранее определенный ток должен быть стабильным и независимым от напряжения на компоненте источника тока. Конечно, ни одна реальная схема никогда не будет абсолютно стабильной или абсолютно невосприимчивой к изменениям напряжения, но, как это обычно бывает в инженерном деле, совершенство не совсем необходимо.
  2. Активные нагрузки: В схемах усилителей вместо коллекторных/стоковых резисторов могут использоваться источники тока. Эти «активные нагрузки» обеспечивают более высокий коэффициент усиления по напряжению и позволяют цепи работать должным образом при более низком напряжении питания. Кроме того, технология изготовления микросхем отдает предпочтение транзисторам по сравнению с резисторами.

В данной статье я буду ссылаться на выход источника тока как на «ток смещения» или Iсмещ, потому что я считаю, что использование в качестве смещения является более простым средством для изучения основных функций этой схемы.

Схема источника стабилизированного тока на MOSFET транзисторах

Ниже показана базовая схема источника стабилизированного тока на MOSFET транзисторах:

Рисунок 1 Базовая схема источника стабилизированного тока на MOSFET транзисторахРисунок 1 – Базовая схема источника стабилизированного тока на MOSFET транзисторах

На мой взгляд, она удивительно проста – два NMOS-транзистора и один резистор. Давайте посмотрим, как она работает.

Как видите, сток Q1 накоротко замкнут с затвором. Это означает, что Vзатвор = Vсток (VG = VD), и, следовательно, Vзатвор-сток = 0 В (VGD = 0 В). Итак, Q1 находится в области отсечки, области триода или области насыщения? Он не может быть заперт, потому что, если ток не протекает через канал, напряжение на затворе будет равно напряжению питания (VDD), и, следовательно, Vзатвор-исток (VGS) будет больше, чем пороговое напряжение Vпорог (можно смело предположить, что VDD выше, чем Vпорог). Это означает, что Q1 всегда будет в режиме насыщения (также называемом «активным» режимом), потому что Vзатвор-сток = 0 В, и одним из способов выражения условия насыщения MOSFET транзистора является то, что Vзатвор-сток должно быть меньше, чем Vпорог.

Если вспомнить, что через затвор полевого MOSFET транзистора не течет устойчивый ток, мы можем увидеть, что опорный ток Iопор будет равен току стока Q1. Мы можем настроить значение этого опорного тока, выбрав соответствующее значение для резистора настройки Rнастр. Так какое отношение всё это имеет к Q2? Итак, на ток утечки полевого MOSFET транзистора при насыщении влияет отношение ширины канала к его длине и напряжение затвор-исток:

\[I_{сток}=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{зи}-V_{порог})^2\]

На данный момент мы игнорируем модуляцию длины канала; следовательно, как показывает формула, ток стока не зависит от напряжения сток-исток. Теперь обратите внимание, что истоки у обоих полевых транзисторов подключены к земле, и что их затворы замкнуты вместе – иными словами, оба имеют одинаковое напряжение затвор-исток. Таким образом, если предположить, что оба устройства имеют одинаковые размеры канала, их токи стока будут одинаковыми, независимо от напряжения на стоке Q2. Это напряжение обозначено как Vит, что означает напряжение на компоненте источника тока; это помогает напомнить нам, что Q2, как и любой хорошо работающий источник тока, генерирует ток смещения, который не зависит от напряжения на его клеммах. Еще один способ сказать это – Q2 имеет бесконечное выходное сопротивление:

Рисунок 2 Q2 имеет бесконечное выходное сопротивлениеРисунок 2 – Q2 имеет бесконечное выходное сопротивление

В этих условиях ток никогда не протекает через выходное сопротивление Rвых, даже если Vит очень велико. Это означает, что ток смещения всегда в точности равен опорному току.

Распространенным названием для этой схемы является «токовое зеркало». Вы, вероятно, можете понять, почему – ток, генерируемый правым транзистором является зеркальным отражением (т.е. равным) опорному току, протекающему через левый транзистор. Это название особенно подходит, когда вы принимаете во внимание визуальную симметрию, демонстрируемую представлением типовой схемы.

Кстати, для старых микросхем часто требовался внешний резистор для Rнастр. Однако в настоящее время производители используют встроенные резисторы, которые обрезаются при производстве для достижения достаточной точности.

Важность пребывания транзистора в режиме насыщения

Первым серьезным вызовом этому идеализированному анализу данной схемы является тот факт, что всё разваливается, когда транзистор не находится в режиме насыщения. Если Q2 находится в области триода (т.е. в линейной), ток стока будет сильно зависеть от Vсток-исток (VDS). Другими словами, у нас больше нет источника тока, потому что на ток смещения влияет Vит. Мы знаем, что напряжение затвор-сток Q2, чтобы поддерживать насыщение, должно быть меньше порогового напряжения.

Другой способ сказать это: Q2 покинет область насыщения, когда напряжение стока станет на Vпорог вольт ниже, чем напряжение затвора. Мы не можем указать точное число, потому что и напряжение на затворе, и пороговое напряжение будут варьироваться от одной реализации к другой.

Пример: напряжение затвора, необходимое для генерации требуемого тока смещения, составляет около 0,9 В, а пороговое напряжение составляет 0,6 В; это означает, что мы можем поддерживать насыщение до тех пор, пока Vит остается выше ~ 0,3 В.

Модуляция длины канала

К сожалению, даже когда проект нашей итоговой схемы гарантирует, что Q2 всегда будет в насыщении, наш источник тока на MOSFET транзисторах будет не совсем идеален. Виновником является модуляция длины канала.

Суть области насыщения заключается в «отсечке» канала, который существует, когда напряжение затвор-сток не превышает пороговое напряжение.

Рисунок 3 Защемление каналаРисунок 3 – Отсечка канала

Идея состоит в том, что ток стока становится независимым от Vит после того, как канал отсекается, потому что дальнейшее увеличение напряжения стока не влияет на форму канала. Однако в действительности увеличение Vит заставляет «точку отсечки» перемещаться к истоку, и это позволяет напряжению стока оказывать небольшое влияние на ток стока, даже когда полевой транзистор находится в насыщении. Результат можно представить следующим образом:

 

Рисунок 4 Влияние перемещения точки защемленияРисунок 4 – Влияние перемещения «точки отсечки»

Iсмещ теперь является суммой Iопор (определяется Rнастр) и Iошибки (ток, протекающий через выходное сопротивление). Iошибки подчиняется закону Ома: более высокое Vит означает больший Iошибки и, следовательно, больший Iсмещ, и, таким образом, источник тока больше не независим от напряжения на его клеммах.

Настройка и управление

Эта удобная схема источника тока становится еще лучше, когда вы понимаете, насколько она гибкая. Сначала давайте посмотрим на настройку тока, генерируемого Q2. До сих пор мы предполагали, что генерируемый ток равен опорному току, но это верно только в том случае, если транзисторы имеют одинаковое отношение ширины канала к длине канала. Вспомните формулу для тока стока в режиме насыщения:

\[I_{сток}=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{зи}-V_{порог})^2\]

Ток стока прямо пропорционален отношению ширины к длине, и, таким образом, мы можем увеличить или уменьшить Iсмещ, просто сделав отношение W/L в Q2 выше или ниже, чем в Q1. Например, если мы хотим, чтобы ток смещения был в два раза больше опорного тока, все, что нам нужно сделать, это сохранить длины каналов одинаковыми и увеличить ширину канала в Q2 в два раза. (Это может показаться не таким простым, если вы привыкли работать с дискретными полевыми транзисторами, но указание размеров канала является стандартной практикой при проектировании микросхем).

Также очень просто использовать эту схему для «токового управления». Следующая схема иллюстрирует концепцию токового управления:

Рисунок 5 Токовое управлениеРисунок 5 – Токовое управление

Это включение MOSFET транзисторов позволяет генерировать множество токов смещения от одного опорного тока. Более того, каждый из этих токов может быть разным – их можно индивидуально изменять, просто регулируя соотношения ширины канала к его длине.

Заключение

Мы рассмотрели работу и возможности базовой схемы источника стабилизированного тока на MOSFET транзисторах, а также обсудили ее ограничения. Как следует из прилагательного «базовый», существуют лучшие схемы. Но базовая схема – хорошая отправная точка, потому что двухтранзисторное токовое зеркало остается основным ядром схем с более высокой производительностью.

Оригинал статьи:

Теги

MOSFET / МОП транзисторИсточник токаМодуляция длины каналаСтабилизатор токаТоковое зеркало

Сохранить или поделиться

Генератор тока на полевом транзисторе.

Генератор тока на полевом транзисторе.

     Простой генератор тока на полевом транзисторе. Применение генератора тока на полевом транзисторе на практике. Дополнительный материал к статье «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения»

     ***

     Часто на мою предыдущую статью о генераторах тока посетители приходят по запросу «генератор тока на полевом транзисторе». Так как там ничего об этом не говорится я решил восполнить этот пробел данной статьёй.

     Здесь расскажу об одной, но очень привлекательной схеме генератора тока на полевом транзисторе КП303. Но сначала рассмотрим, что из себя представляет этот транзистор.

     Полевые транзисторы серии КП303(А-И) это кремниевые эпитаксиально-планарные полевые транзисторы с затвором на основе p-n перехода и каналом n-типа. Или их ещё называют полевыми транзисторами со встроенным n-каналом.

     Буква n означает что управление током через канал, то есть током протекающем от стока к истоку, осуществляется подачей отрицательного напряжения на затвор относительно истока, Рис. 1(а).

 generator-toka-na-polevom-tranzistore_01.jpg
Рис. 1

     В этом смысле принцип работы эпитаксиально-планарных полевых транзисторов, т.е. полевых транзисторов со встроенным каналом аналогично работе электронной (радио) лампе, Рис. 1(б)

     Приблизительная зависимость тока стока () от Uзи для транзистора КП303И показана на графике, Рис. 2.

 generator-toka-na-polevom-tranzistore_02.jpg
Рис. 2

     Для простоты ток Iси буду обозначать как ток стока , так как это одно и тоже.

     Из графика видно, что при Uзи = 0, Iс = max.

     Минимума ток стока достигает при Uзи равном приблизительно минус 1,4В. На самом деле из-за большого разброса характеристик график лишь приблизительно отображает зависимость Ic от Uзи.

     Подавать положительный потенциал на затвор бессмысленно так как при Uзи = 0 транзистор, итак, открыт полностью.

     Вообще эквивалентную схему транзистора КП303 можно представить так как это показано на Рис. 3. Сопротивление переменного резистора R1 — десятки МОм, резистора R2 около 1кОм,.

 generator-toka-na-polevom-tranzistore_03.jpg
Рис. 3

     Тогда, когда напряжение Uзи = 0 ползунок резистора R1 находится в нижнем положении, ток Iс будет определяться по формуле:

     Ic = Uси / R2.

     То есть ток будет максимальным, но не бесконечным.

     Тогда, когда отрицательное напряжение на затворе достигнет некоторого максимума, ползунок резистора R1 окажется в верхнем положении и ток стока будет определяться по формуле:

     Ic = Uси / (R1 + R2).

     То есть ток будет минимальным, но не нулевым.

     Такая зависимость тока стока от напряжения на затворе позволяет сделать очень простой генератор тока на полевом транзисторе КП303. Соберём такую схему, Рис. 4.

 generator-toka-na-polevom-tranzistore_04.jpg
Рис. 4

     Подключим к клеммам 1-2 регулируемый источник напряжения. Начнём увеличивать напряжение от нуля. Изначально ток стока и ток через резистор равны нулю. Падение напряжения на резисторе также равно нулю, Uзи = 0. Транзистор полностью открыт.

     Повышение напряжения на клеммах приведёт к протеканию тока через транзистор и резистор. Появится некоторое падение напряжения на резисторе, при этом минус этого напряжения приложен к затвору, а плюс к истоку. Чем больше ток будет протекать через резистор, тем больший запирающий потенциал будет на затворе.

     В конце концов схема войдёт в режим стабилизации тока так как попытка увеличения тока приводит к увеличению запирающего потенциала на затворе, а следовательно, к уменьшению тока. А попытка уменьшения тока к уменьшению запирающего потенциала на затворе, а следовательно, к увеличению тока. Изменяя величину резистора, можно изменять величину стабилизируемого тока.

     Схема собранная на транзисторе КП303И имеет максимальное рабочее напряжение 30В. Ток стабилизации единицы миллиампер. Недостаток схемы в том, что из-за большого разброса характеристик транзисторов невозможен какой-либо осмысленный расчёт.

     Но в этом нет большой беды. Зачастую расчёт и не нужен. Там, где нужен просто простой и стабильный источник тока, генератор тока. К тому же такой генератор тока не требует дополнительного источника питания. Такая схема очень хороша в генераторах пилообразного напряжения для получения высокой линейности пилы.

     Дело в том, что в обычных, не лабораторных генераторах пилообразного или треугольного напряжения используется принцип заряда-разряда конденсатора. Если этот самый заряд-разряд производить через резистор, то напряжение на конденсаторе будет изменяться по экспоненте. Если вместо резистора включить источник (генератор) тока, то напряжение будет изменяться строго по прямой линии.

     Есть у этой схемы ещё одно достоинство. Её можно использовать для стабилизации тока в цепи переменного напряжения, для этого схему изображённую на Рис. 4 нужно включить в диагональ диодного моста, Рис 5.

 generator-toka-na-polevom-tranzistore_05.jpg
Рис. 5

     В этой схеме полярность приложенного напряжения не важна. Именно такую схему генератора тока я применил в двухканальном прецизионном генераторе треугольного напряжения ШИМ-модулятора электронной нагрузки, описанной в статье «Импульсная электронная нагрузка».

 generator-toka-na-polevom-tranzistore_05.jpg

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *