Испытание сопротивления изоляции: Проверка сопротивления изоляции — Всё о электрике в доме – ГОСТ Р 50571.16-2007

Методика испытания повышенным напряжением | Элкомэлектро

Электролаборатория » Услуги электролаборатории » Методики измерений » Методика испытания повышенным напряжением

1. Общие положения.

К работе по проведению высоковольтных испытаний в электроустановках допускаются специалисты электролаборатории, лица не моложе 18 лет, прошедшие специальную подготовку и проверку знаний схем испытаний и правил испытаний в условиях действующих электроустановок.

Лица, допущенные к проведению испытаний, должны иметь отметку об этом в удостоверении в графе “Свидетельство на право проведения специальных работ” и ПУЭ.

2. Сущность процесса высоковольтных испытаний.

Испытание изоляции повышенным напряжением позволяет убедиться в наличии необходимого запаса прочности изоляции, отсутствии местных общих дефектов, не обнаруживаемых другими способами. Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами (измерение сопротивления изоляции, определение влажности изоляции и т.п.).

Величина испытательного напряжения для каждого вида оборудования определяется установленными нормами “Правил эксплуатации электроустановок потребителей”.

Электрооборудование и изоляторы электроустановок, в которых они эксплуатируются, испытываются повышенным напряжением по нормам, установленным для класса изоляции данной установки.

Изоляция считается выдержавшей электрическое испытание повышенным напряжением в том случае, если не было пробоя, перекрытия по поверхности, поверхностных разрядов, увеличения тока утечки выше нормированного значения, наличия местных нагревов от диэлектрических потерь. В случае несоблюдения одного из этих факторов — изоляции электрического испытания не выдержала.

3. Измерение сопротивления изоляции мегаомметром.

Для измерения сопротивления изоляции используются мегаомметры типа М4100/1-5 на напряжение от 100 до 2500В. Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “Л” (линия) должен быть подключен к токоведущей части испытываемой установки, а зажим “З” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

Мегаомметры дают правильные показания при вращении ручки генератора в пределах 90-150 об/мин и развивают номинальное напряжение при 120 об/мин и разомкнутой внешней цепи.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на шкале мегаомметра через 60 с, причем отсчет времени надо производить после достижения нормальной частоты вращения генератора.

При изменении сопротивления изоляции объектов с большой емкостью во избежание колебания стрелки прибора необходимо ручку генератора вращать с частотой, несколько выше номинальной, т.е. 130-140 об/мин (увеличивая скорость до успокоения стрелки) и отсчет показания производить только после того, стрелка займет устойчивое положение.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены.

При производстве измерений в сырую погоду необходимо учитывать возможное искажение показаний мегаомметра за счет увлажнения поверхности изолирующих частей установки. В этом случае необходимо пользоваться зажимом мегаомметра “Э”, который должен быть присоединен таким образом, чтобы исключить возможность замера поверхностных токов утечки.

4. Определение увлажненности изоляции методом абсорбции.

Метод основан на сравнении показаний мегаомметра, снятых через 15 и 60 сек. после приложения напряжения. Метод применяется для определения увлажненности гигроскопической изоляции электрических машин и трансформаторов.

Измерение сопротивления изоляции производится между каждой обмоткой и корпусом и между обмотками при изолированных свободных обмотках.

Коэффициент абсорбции равен:

Кабс = R60/R15

где R60 и R15 — сопротивления изоляции, измеренные соответственно через 60 и 15 сек после приложения напряжения мегаомметром.

Для неувлажненных обмоток при t = 10-30оС этот коэффициент равен 1,3-2, для увлажненных обмоток он близок к единице.

Измерения производятся мегаомметром на напряжение 1000-2500В.

Измерение коэффициента абсорбции производится при t не ниже 10оС.

5. Описание процесса испытания повышенным напряжением.

5.1. Перед началом работы производителю работ необходимо проверить исправность испытательного оборудования.

5.2. При сборке испытательной цепи прежде всего выполняются защитное и рабочее заземление испытательной установки, и если потребуется, защитное заземление корпуса испытываемого оборудования.

Перед присоединением испытательной установки к сети 380/220В на ввод высокого напряжения установки накладывается заземление. Сечение медного провода, с помощью которого заземляется вывод должно, быть не менее 4 кв мм.

Сборку цепи испытания оборудования производит персонал бригады, проводящей испытания.

5.3. Присоединение испытательной установки к сети напряжением 380/220В производится через коммутационный аппарат с видимым разрывом цепи или через штепсельную вилку, расположенную на месте управления установкой.

5.4. Присоединить провод к фазе, полюсу испытываемого оборудования или к жиле кабеля; отсоединить его разрешается по указанию лица, руководящего испытанием, и только после их заземления.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

-проверить, все ли члены бригады находятся на указанных местах, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

-предупредить бригаду о подаче напряжения и убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки, после чего подать на нее напряжение 380/220В;

-с момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода, считается находящейся под напряжением и производить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается;

-после окончания испытаний производитель работ должен снизить напряжение испытательной установки до 0, отключить ее от сети 380/220В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде. Только после этого можно пересоединять провода от испытательной установки или в случае полного окончания испытания, отсоединять их и снимать ограждения.

6. Порядок проведения испытаний установкой АИИ-70.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, автоматический выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа, а положение предохранителей соответствовало бы напряжению сети. При транспортировках высоковольтный трансформатор должен быть надежно закреплен внутри аппарата, рукоятка регулятора напряжения утоплена, дверцы закрыты, банка для испытания жидкого диэлектрика вынута из аппарата, а кенотронная приставка надежно закреплена.

При помощи щупа следует периодически проверять расстояние между электродами банки, которое должно быть равно 2,5 мм. Щуп должен входить между электродами без качки, но не очень туго.

6.1. Порядок проведения испытаний установкой УПУ-1М.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, сетевой выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа. Данная установка предназначена только для испытаний электрозащитных средств.

ПРАВИЛА БЕЗОПАСНОСТИ

1. Прежде чем приступить к испытаниям, необходимо заземлить медным проводом, сечение которого не менее 4 мм2, аппарат, ручной разрядник (в случаях, оговоренных ниже)., высоковольтный трансформатор и кенотронную приставку.

РАБОТА БЕЗ ЗАЗЕМЛЕНИЯ НЕДОПУСТИМА!

2. Необходимо установить защитное ограждение с предупреждающими надписями. Его крепят со стороны изоляционных трубок к кенотронной приставке (к скобам на кожухе микроамперметра), а со стороны металлических стержней — к поворотным ушкам каркаса пульта управления.

3. Любые переключения как на высоковольтной, так и на низковольтной стороне аппарата производить после отключения аппарата от сети при надежном заземлении высоковольтных частей.

4. Кабель либо другой объект со значительной емкостью после испытания необходимо заземлить, так как на испытуемом объекте в процессе испытания и даже после сохраняется заряд, предоставляющий большую опасность для жизни. Без заземления кабеля дверцу на крыше аппарата не открывать!

5. Все высоковольтные испытания производить в резиновых перчатках, стоя на резиновом коврике

ИСПЫТАНИЯ КАБЕЛЯ

1. Заземлить аппарат и ручной разрядник. В случае, если кенотронная приставка и высоковольтный трансформатор вынесены за пределы аппарата, они также подлежат заземлению.

2. Откинуть заднюю верхнюю дверцу аппарата, установив ее на кронштейне. Откинуть заднюю нижнюю дверцу и установить на нее кенотронную приставку, заведя ее лапы под скобу и выдавки дверцы.

Вставить в отверстие верхней дверцы рукоятку переключения пределов и

сочленить ее при помощи ключа с переключателем пределов блока

микроамперметра. Рукоятку заземлить.

3. Достать из запасных частей пружину и присоединить ее одним концом к высоковольтному повышающему трансформатору, а другим к высоковольтному выводу кенотронной приставки, расположенной посередине цилиндра.

Вставит вилку кенотронной приставки в розетку пульта управления (сзади слева).

Рукоятку «Защита» установить в положение «Чувствительная».

4. Подключить при помощи кабеля испытуемый объект к кенотронной приставке (муфту кабеля навернуть на вывод блока микроамперметра до упора) и установить защитное ограждение. Аппарат в рабочем положении показан на рис. 1.

5. Включить вилку шнура питания в сеть и, встав на резиновый коврик, включить аппарат.

При этом загорается зеленый сигнал, а после нажатия кнопки автомата «Вкл.» — красный.

6. Плавно вращая рукоятку регулятора напряжения по часовой стрелке, повысить напряжение до испытательного (отсчет вести по шкале киловольтметра, отградуированной в киловольтах максимальных)

7. Переключая рукоятку переключения пределов с большей кратности на меньшую и нажимая кнопку в центре рукоятки, измерять ток утечки.

Примечание: при измерении показание микроамперметра в делениях умножить на кратность предела.

8.После испытания снизить испытательное напряжение до нуля и нажать кнопку «Откл.»

9. Поднести стержень ручного разрядника к разрядному крючку блока микроамперметра и снять емкостный заряд через разрядное сопротивление, встроенное внутри разрядника, а затем заземлить блок микроамперметра наглухо, повесив разрядник на крючок блока микроамперметра или на ручку кенотронной приставки.

Примечание: при необходимости аппарат можно включить через стабилизатор напряжения, однако при этом вследствие искажения формы кривой напряжения пользоваться градуировочными данными, снятыми при работе с конкретным стабилизатором.

Порядок испытания твердых диэлектриков такой же, как и кабеля.

7. Испытания повышенным напряжением промышленной частоты распределительных устройств (вместе с коммутационными аппаратами).

1. Подготовить испытываемый объект к испытаниям, для чего отключить от РУ трансформаторы напряжения, вентильные разрядники, кабели, которые должны быть закорочены и заземлены. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2,5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

8. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением распределительное устройство; величины испытательного напряжения приведены в таблице № 1. Продолжительность приложения испытательного напряжения 1 мин для керамической изоляции, 5 мин — для изоляции из твердых органических материалов. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных цепей 1 мин.

Таблица № 1

Класс напряжения

Испытательное напряжение кВ, ячейки с изоляцией

(кВ)

керамической

из тв. орг. материалов

3

24

21.6

6

32

28.8

10

42

37.8

8.Испытание повышенным напряжением промышленной частоты измерительных трансформаторов.

1. Подготовить испытываемый объект к испытаниям, для чего отключить от испытываемого трансформатора первичные и вторичные цепи. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2.5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

4. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением первичную обмотку измерительного трансформатора повышенным напряжением промышленной частоты; величины испытательного напряжения приведены в таблице № 2. Продолжительности приложения испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет — 1 мин.

Таблица № 2

Исполнение изоляции измерительного трансформатора

Испытательное напряжение кВ, при номинальном напряжении кВ

 

3

6

10

Нормальная

21,6

28,8

37,8

Ослабленная

9

14

22

9. Испытание силовых кабелей номинальным напряжением выше 1кВ повышенным напряжением выпрямленного тока.

1. В соответствии с разделом 3 измерить сопротивление изоляции мегаомметром на напряжение 2,5кВ. Для силовых кабелей напряжение выше 1кВ сопротивление изоляции не нормируется. Измерение изоляции повторить после испытания кабеля повышенным напряжением выпрямленного тока.

2. В соответствии с разделом 6 испытать силовой кабель повышенным напряжением выпрямленного тока. Значения испытательного напряжения и

длительность приложения испытательного напряжения приведены в таблице № 3. В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

10. Оформление результатов испытаний.

Результаты испытаний по настоящей Методике оформляются протоколами установленного образца.

Испытательное напряжение выпрямленного тока для силовых кабелей.

Таблица № 3

Изоляция и марка кабеля

Испытательное напряжение для кабелей кВ

Продолжительность испытания (мин)

 

3

6

10

 

Бумажная

18

36

60

10

Резиновая

6

12

 

5

Пластмассовая

15

   

10

Измерение сопротивления изоляции в Москве по выгодным ценам — ООО «ПрофЭнергия»

Сопротивление изоляции проводов постоянному току – первостепенная характеристика, определяющая надежность и работоспособность электроснабжения объекта. Необходимость ее замеров регламентируется нормами эксплуатации электрооборудования и цепей.
Измерения осуществляются специальным прибором – мегаомметром. С его помощью проводятся замеры на электротехническом оборудовании всех типов, кроме частей устройств с рабочим напряжением менее 60 В. Номинальное напряжение мегаомметра выбирается с учетом напряжения обмотки.

 

 

Содержание:

Почему повреждается изоляционная оболочка

Изоляция кабеля подвержена воздействию таких факторов как:

-напряжение;
-температурно-влажностные условия;
-эксплуатационные факторы;
-солнечный свет;
-электрические взаимодействия жил внутри кабеля;
-механические повреждения.

Цель замеров сопротивления изоляции ↑

Проведение таких работ необходимо для обеспечения противопожарной безопасности объекта и электробезопасности его персонала. Часто такие замеры выполняются для определения частей электроустановок, вызывающих срабатывание УЗО. Нарушение целостности изоляции повышает риск поломки оборудования и способно спровоцировать возгорание.

Цель замеров сопротивления изоляции


Своевременные проверки изоляционного покрытия и периодические измерения его сопротивления направлены на -предотвращение:
-ускоренного износа оборудования и его поломки;
-внеплановых расходов на покупку нового оборудования или ремонт поврежденного;
-короткого замыкания проводов, возгорания, пожаров;
-поражения сотрудников электрическим током;
-аварий;
-простоев производства и связанных с ним убытков;
-штрафных санкций со стороны контролирующих органов.

Типы и принцип действия мегаомметров ↑

электрооборудование фото

Мегаомметры бывают разных конфигураций: с ручным приводом (со встроенным генератором) и электронные, получающие питание от аккумулятора. Для измерений используются исправные приборы, имеющие сертификат соответствия. Точность мегаомметров подтверждается ежегодными проверками в службах Госстандарта.
Принцип действия таких приборов состоит в определении силы тока, проходящего через проверяемую электроустановку под воздействием пульсирующего постоянного напряжения. В комплекте с мегаомметром обычно идут 2–3-метровые гибкие провода из меди с сопротивлением изоляции от 100 МОм. Они оснащены оконцевателями и зажимами-крокодилами с изолированной рукояткой.

По допустимому напряжению мегаомметры бывают: на 500, 1000, 2500 и 5000 В. Для исследования проводов сечением до 16 мм2 используются приборы на 1 кВ, а при большем сечении и при контроле бронированных проводов – на 2,5 кВ. Испытания эксплуатируемых установок 380/220 В, кроме ранее оговоренных ситуаций, выполняются 500-вольтовым мегаомметром.

Периодичность контроля сопротивления изоляции ↑

Сопротивление изоляции контролируется:


1. На заводе – после производства кабеля.
2. После поставки на объект – перед монтажом и перед вводом системы в эксплуатацию.
3. До и после ремонтных работ на линии электропитания.
4. В ходе эксплуатации сетей, в рамках плановых испытаний – с соблюдением сроков, обозначенных в нормативах:
-для сварочных аппаратов и устройств переносного типа – через 6 месяцев;
-для осветительных устройств, проводки лифтов и кранов – ежегодно;
-для остальных категорий электрооборудования – через 3 года.

Кто вправе выполнять замеры сопротивления изоляции ↑

Кто вправе выполнять замерыЗамеры сопротивления изоляции кабелей недопустимо выполнять без соответствующего допуска. Их проводят бригады обученных электротехников с группой безопасности III или выше. В установках до 1000 В такие замеры осуществляют 2 специалиста с группой безопасности одного из них III или выше. В установках от 1000 В работают бригады в составе минимум 2 электротехников с группой безопасности одного из них IV или выше.


В инженерном центре «ПрофЭнергия» работает слаженный коллектив опытных электротехников. Мы имеем необходимые лицензии, допуски и инструменты для профессионального оказания всевозможных электротехнических услуг. Обращайтесь, и мы обеспечим надежную работу вашего оборудования! Для заказа услуги или консультации звоните: 8 (495) 191-18-02.

Методика измерений ↑

Перед работами мегаомметр подвергается контролю – проверяются его показания при размыкании и замыкании проводов. Приборная стрелка при таких положениях должна показывать на значения бесконечности и нуля. Затем с использованием проверенного индикатора контролируется отсутствие напряжения на кабеле, и заземляются его токоведущие жилы.
При использовании мегаомметра недопустимо касаться соединенных с ним токоведущих элементов. В ходе испытаний важно использовать диэлектрические перчатки. Выполненное ранее заземление убирается строго после подсоединения прибора.


Методика измерения сопротивления изоляции такова:
1. С учетом категории исследуемого объекта устанавливается напряжение для последующих замеров. При неопределенном сопротивлении цепного участка на приборе вначале устанавливается его максимум.
2. Отключаются или замыкаются все составляющие цепи, имеющие малый предел сопротивления изоляции. Аналогичные действия выполняются по отношению к конденсаторам и полупроводниковым приборам.
3. Проверяемая цепь заземляется.
4. При проверке кабеля ˃1000 В – на изоляцию концевой воронки накладывается подсоединенный к зажиму электрод. Иначе возможно искажение показаний из-за токов утечки по изоляционной поверхности.
5. При проверке кабеля 6. Подключаются щупы. С проверяемого объекта снимается заземление.
7. Замер выполняется продолжительностью в 1 минуту, вращением рукоятки генератора индукторного мегаомметра или при помощи кнопки прибора с сетевым питанием. В упрощенном варианте проверяется каждая фаза кабеля по отношению к остальным заземленным фазам. При получении показаний, несоответствующих нормам, исследуемый параметр замеряется между каждой фазой и 2-мя фазами по отношению к земле.
8. Отключаются щупы. Нейтрализуется остаточное напряжение.

Методика измерения сопротивления изоляции

Методика измерения сопротивления изоляции Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения замера сопротивления изоляции кабеля, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать замер сопротивления изоляции кабеля или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Снятие показаний и измерение результатов ↑

Показания снимаются со шкалы прибора при условии устойчивости стрелки. Для достижения ее устойчивости и правильного снятия показаний ручку индукторного мегаомметра следует вращать с интенсивностью 120 об/мин. Результаты снимаются спустя 15 и 60 секунд после старта вращения. Такой метод используется для расчета коэффициента абсорбции (диэлектрического поглощения) кабеля: КА = R60/R15, отношение тока поляризации к току утечки.
Этот коэффициент характеризует уровень увлажненности диэлектрика изоляционной оболочки. При влажной изоляции КА≈1, а при сухой R60˃R15 на 30–50%. На основании этого параметра определяется потребность в просушке гигроскопической изоляции. Возникновение влаги провоцирует резкое снижение сопротивления и увеличение тока утечки. Это объясняется содержанием во влаге свободных ионов в виде растворенных примесей.


С уменьшением сопротивления:
-растут диэлектрические потери;
-уменьшается напряжение теплового пробоя;
-наблюдается усиленный нагрев изоляции;
-ускоряется тепловое старение.


Если определять коэффициент абсорбции не требуется, показания снимаются после стабилизации стрелки, но вращение ручки должно длиться минимум 1 минуту. По завершении испытаний, перед отсоединением мегаомметра накопившийся заряд отводится с цепи наложением заземления. Показания обрабатываются и вносятся в протоколы с внесением полученных значений и указанием приборов.

Оптимальные значения ↑

Допустимое сопротивление изоляции

Допустимое сопротивление изоляции зависит от назначения электрооборудования или линии. В таблице указаны минимальные границы этого параметра и рекомендуемые характеристики мегаомметра в зависимости от типа испытуемого оборудования.

Объект испытаний

Предельный минимум сопротивления изоляции, МОм

Напряжение мегаомметра, В

Установки напряжением ˃12 В переменного и ˃36 В постоянного тока

0,5

100–1000

Электроаппараты:

до 42 В

42–100 В

100–380 В

˃380 В

0,5

 

100

250

500–1000

1000–2500

Ручной электроинструмент, сварочные трансформаторы, мобильные светильники с дополнительным оборудованием

При эксплуатационных проверках – 0,5,

для устройств II класса – 2.

После капремонта: между элементами, пребывающими под напряжением,

·  для рабочей изоляции – 2,

·  для вспомогательной – 5,

·  для усиленной – 7.

500

Линии с устройствами, в состав которых входят микроэлектронные компоненты:

до 60 В, но более 24 В

˃60 В

 

 

 

0,5

1

 

 

 

100

500

Электропроводки, установки, лифты, краны, распределительные щиты, токопроводы

0,5

1000

Бытовые плиты

1

1000

Присоединенные к основным цепям линии автоматики, управления, возбуждения, защиты агрегатов постоянного тока до 1 кВ. Присоединения вторичных цепей, линий питания приводов разъединителей и выключателей.

1

500–1000

Вторичные цепи

1

1000–2500

Шины оперативного тока и цепей напряжения на щите управления

10

500–1000

Действия по итогам испытаний ↑

Измеренное сопротивление сопоставляется с нормами ПУЭ для всех сезонов (при возрастании внешней температуры сопротивление изоляционного покрытия падает). Если измеренные показания противоречат нормативам ПУЭ и ПТЭЭП, испытуемый кабель подлежит выводу из эксплуатации и демонтируется. Эксплуатируемая проводка с сопротивлением изоляционной оболочки до 1 МОм подвергается дополнительным испытаниям переменным током при 1 кВ. Разветвленную цепь можно разделить на участки и проверить их по-отдельности. Влажную изоляцию можно просушить.

 

Электроизмерения — измерение сопротивления изоляции мегомметром

Если при протяжке кабелей монтажники не повредили изоляцию, то значение сопротивления будет измеряться сотнями мегаомов или гигаомов. Однако со временем сопротивление изоляции естественным образом снижается, и у старых кабелей счет идёт на единицы мегаомов.

Заводы-изготовители устанавливают срок эксплуатации кабеля 30-40 лет в условиях, близких к номинальным. На практике срок службы кабеля уменьшается из-за ряда факторов, ускоряющих старение изоляции.

Постепенно, старея и разрушаясь, изоляция кабеля теряет диэлектрические свойства. Появляются микроскопические трещины, заполняемые воздухом или, что хуже, жидкостью. Образуются проводящие «мостики» по которым движутся электроны, создавая ток утечки. Со временем ток утечки усиливается, перерастая в ток короткого замыкания. Этот процесс растягивается на годы и протекает медленно, поэтому изменения не заметны, до тех пор, пока не произойдет пробой изоляции.

Вот факторы, влияющие на состояние изоляции и снижающих её сопротивление:
1) Повышенная температура. Для любого кабеля производитель указывает, при какой температуре гарантирована нормальная эксплуатация в течение заявленного срока службы изделия. Как правило, это диапазон от -50 °С до +50 °С, однако некоторые исследования показывают, что при температуре в помещении свыше 35 °С срок службы изоляции кабеля начинает сокращаться.
2) Повышенная влажность. Влажность ускоряет возникновение проводящих «мостиков» внутри изоляции, снижает диэлектрические свойства и повышает риск возникновения короткого замыкания. Помещения с влажностью близкой к 100% считаются особо опасными, и сопротивление изоляции в таких помещениях измеряют не реже 1 раза в год.
3) Химически активные или органические среды. Агрессивные пары, газы, жидкости, отложения или плесень также приводят к преждевременному старению изоляционных материалов.
4) Перегрузка линии. Если по жилам кабеля постоянно идет ток, превышающий номинальное значение, то нагрев жилы будет пагубно сказываться и на изоляции, вплоть до её оплавления и растрескивания.
5) Вибрация. Постоянное воздействие механических колебаний будет дополнительным фактором разрушения изоляции.
6) Токопроводящая пыль. Скапливаясь в местах разделки кабеля и зачистки жил, она способствует появлению токов утечки и, в связке с повышенной влажностью, увеличивает вероятность возникновению замыкания.

Проверка сопротивления изоляции в квартире

Электролаборатория » Услуги электролаборатории » Виды измерений » Проверка сопротивления изоляции в квартире

Квартиры и частные дома относятся к объектам электроснабжения, где проверка сопротивления изоляции должна производиться не чаще, чем раз в три года.

Наша электролаборатория выполнит проверку сопротивления изоляции в вашей квартире, звоните или закажите обратный звонок и мы сами свяжемся с вами.

Нарушение целостности оболочек проводов – проблема серьезная, и таит в себе немалые риски. Короткое замыкание, удар током, возгорание – вот только самые серьезные из них. Предотвратить возникновение чрезвычайных ситуаций поможет регулярная проверка сопротивления изоляции в квартире. Заказать ее вы можете в нашей электролаборатории, мы выезжаем по вашему звонку в любую точку Москвы и области. Есть несколько причин, по которым стоит обратиться именно к нам:

  • Сжатые сроки и точное их соблюдение. Обычно на подготовку документов требуется определенное время, и мы, назначив его, не допускаем отступлений. Вы можете быть уверены – все будет сделано точно в срок;
  • Использование современных технологий и приборов. Для производства замеров используется мегаомметр, он периодически проходит госповерку и абсолютно надежен;
  • Привлекательные цены. Мы ориентируемся на широкий круг заказчиков и предоставляем им самые выгодные условия, открывая доступ к качеству и оперативности.

Достаточно нам позвонить – и проблема замеров сопротивления изоляции в квартире решена.

Особенности проверки сопротивления изоляции в квартире

Многие считают, что проверка сопротивления изоляции в квартире – мероприятие, без которого вполне можно обойтись. Однако, практика показывает, что пренебрегать данной процедурой нельзя – помимо того, что этого требует законодательство, замеры необходимы для обеспечения безопасности людей и сохранности имущества. Казалось бы, целостности изоляции проводки в квартире ничего не угрожает, но на деле все оказывается иначе. Проведение ремонта, перемещение мебели, контакты с влагой – все это может стать причиной разрушения полимерной оболочки. При этом, определить визуально, нарушена целостность изоляции или нет, в большинстве случаев не представляется возможным. Регулярное проведение замеров сопротивления изоляции даёт возможность заметить неисправности и устранить имеющиеся дефекты раньше, чем они причинят вред. Звоните нам, назначайте время и получайте оперативную и качественную услугу по проверке сопротивления изоляции в квартире – с нами это легко и доступно!

Добавить комментарий

Ваш адрес email не будет опубликован.