Как проверить IGBT транзистор, принцип работы IGBT.
Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии — позволяют применять IGBT в цепях с высокими напряжениями и большими токами.
Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.
Названия выводов IGBT: затвор, эмиттер, коллектор.
Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.
Как проверить IGBT транзистор мультиметром
Проверяется IGBT FGh50N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.
Затем произвести следующие действия:
1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.
2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.
3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.
4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.
5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.
Для более надежной проверки IGBT транзистора можно собрать следующую схему:
При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.
В этом видео показано как проверить IGBT мультиметром:
Опубликовано 05.11.2016
Прибор для проверки мощных IGBT и MOSFET транзисторов (n-канал)
Необходимость в таком приборе возникает каждый раз при ремонте сварочного инвертора – необходимо проверить мощный IGBT или MOSFET транзистор на предмет исправности, либо подобрать к исправному транзистору пару, либо при покупке новых транзисторов, убедиться, что это не «перемаркер». Эта тема неоднократно поднималась на множестве форумов, но так и не найдя готового (испытанного) или кем то сконструированного прибора, решил изготовить его самостоятельно.Идея состоит в том, что необходимо иметь какую-то базу данных различных типов транзисторов, с которой сравнивать характеристики испытываемого транзистора, и если характеристики укладываются в определенные рамки, то его можно считать исправным. Все это делать по какой-то упрощенной методике и простым оборудованием. Необходимую базу данных придется собирать конечно же самому, но это все решаемо.
Прибор позволяет:
— определить исправность (неисправность) транзистора
— определить напряжение на затворе, необходимое для полного открытия транзистора
— определить относительное падение напряжения на К-Э выводах открытого транзистора
— определить относительную емкость затвора транзистора, даже в одной партии транзисторов есть разброс и его косвенно можно увидеть
Содержание / Contents
Принципиальная схема прибора представлена на рисунке.Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» — мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на LM317 — для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора.
Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.
Возможные варианты цифровых вольтметров 0-2 Вольта с доставкой.
1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…
2. Применение стабилизатора тока на LM317 позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.
4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора.
Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно… Далее был приобретен корпус и все эти комплектующие расположены внутри.
Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.
Ну и вот так это выглядит в работе:
2. Подключаем испытуемый транзистор (как на фото выше)
3. Устанавливаем ручку регулятора напряжения на затворе в крайнее левое положение (против часовой стрелки)
4. Нажимаем на кнопку «Откр» и одновременно потихоньку прибавляем регулятор напряжения по часовой стрелке до момента зажигания «показометра»
5. Останавливаемся, отпускаем кнопку «Откр», снимаем показания с регулятора и записываем. Это есть напряжение открытия.
6. Поворачиваем регулятор до упора по часовой стрелке
7. Нажимаем кнопку «Откр», зажжется «показометр», снимаем с него показания и записываем. Это есть напряжение К-Э на открытом транзисторе
9. Опять открываем транзистор кнопкой «Откр» (регулятор напряжения в максимуме) и, дождавшись ранее записанных показаний, отпускаем кнопку «Откр» одновременно начиная подсчитывать количество вспышек (морганий) светодиода
10. Дождавшись потухания «показометра» записываем количество вспышек светодиода. Это и есть относительное время разряда емкости затвора транзистора или время закрытия (до увеличения падения напряжения на закрывающемся транзисторе более чем 1В). Чем это время (количество) больше, тем соответственно емкость затвора больше.
Именно из этой таблицы и происходит сравнительный анализ транзисторов – фирменные они или «перемаркеры», соответствуют своим характеристикам или нет.
Ниже приведена таблица, которая получилась у меня. Желтым выделены транзисторы, которых не оказалось в наличии, но я ими точно когда то пользовался, поэтому оставил их на будущее. Безусловно, в ней представлены не все транзисторы, которые проходили через мои руки, кое что просто не записал, хотя пишу вроде всегда. Безусловно у кого то при повторении этого прибора может получиться таблица с несколько иными цифрами, это возможно, т.к цифры зависят от многих вещей: от имеющейся лампочки или трансформатора или АКБ, например.
Из таблицы видно, чем отличаются, транзисторы, например G30N60A4 от GP4068D. Отличаются временем закрытия. Оба транзистора применяются в одном и том же аппарате – Телвин, Техника 164, только первые применялись немного раньше (года 3, 4 назад), а вторые применяются сейчас. Да и остальные характеристики по ДАТАШИТ у них приблизительно одинаковы. А в данной ситуации все наглядно видно – все налицо.
Кроме того, если у Вас получилась табличка всего из 3-4 или 5 типов транзисторов, и остальных просто нет в наличии, то можно, наверное, посчитать коэффициент «согласованности» ваших цифр с моей таблицей и, используя его, продолжить свою таблицу, используя цифры из моей таблицы. Думаю, что зависимость «согласованности“ в этой ситуации будет линейной. Для первого времени, наверное хватит, а потом подкорректируете свою таблицу со временем.
На этот прибор я потратил около 3 дней, один из которых покупал некоторую мелочевку, корпус и еще один на настройку и отладку. Остальное работа.
Безусловно, в приборе возможны варианты исполнения: например применение более дешевого стрелочного милливольтметра (необходимо подумать об ограничении хода стрелки вправо при закрытом транзисторе), использовании вместо лампочки еще одного стабилизатора на LM317, применении АКБ, установить дополнительно переключатель для проверки транзисторов с p-каналом и т.д. Но принцип при этом в приборе не изменится.
Еще раз повторюсь, прибор не измеряет величин (цифр) указанных в ДАТАШИТАХ, он делает почти то же самое, но в относительных единицах, сравнивая один образец с другим. Прибор не измеряет характеристик в динамическом режиме, это только статика, как обычным тестером. Но и тестером не все транзисторы поддаются проверке, да и не все параметры можно увидеть. На таких я обычно ставлю маркером знак вопроса «?»
Можно соорудить и проверку в динамике, поставить маленький ШИМ на К176 серии, или что-то подобное.
Но прибор вообще простой и бюджетный, а главное, он привязывает всех испытуемых к одним рамкам.
Камрад, смотри полезняхи!
Сергей (s237)
Украина, Киев
Меня зовут Сергей, проживаю в Киеве, возраст 46 лет. Имею свой автомобиль, свой паяльник, и даже, свое рабочее место на кухне, где ваяю что либо интересное.Люблю качественную музыку на качественном оборудовании. У меня есть древненький Техникс, на нем все и звучит. Женат, есть взрослые дети.
Бывший военный. Работаю мастером по ремонту и регулировке сварочного, в том числе инверторного, оборудования, стабилизаторов напряжения и многого другого, где присутствует электроника.
Достижений особых не имею, кроме того, что стараюсь быть методичным, последовательным и, по возможности, доводить начатое до конца. Пришел к Вам нетолько взять, но и по возможности — дать, обсудить, поговорить. Вот кратко и все.
Проверка IGBT и MOSFET транзисторов — Меандр — занимательная электроника
Порядок проверки IGBT и MOSFET такой.
Шаг 1. Необходимо убедится в отсутствии коротких замыканий между затвором и эмиттером IGBT (затвором и истоком MOSFET), прозвонив сопротивления между соответствующими выводами в обоих направлениях.
Шаг 2. Необходимо убедится в отсутствии коротких замыканий между коллектором и эмиттером IGBT (истоком и стоком MOSFET), прозвонив сопротивления между соответствующими выводами в обоих направлениях. Перед этим необходимо перемычкой закоротить выводы затвора и эмиттера транзистора. Но лучше будет не закорачивать затвор и эмиттер транзистора, а просто зарядить входную емкость затвор-эмиттер отрицательным напряжением. Для этого кратковременно и одновременно прикасаемся щупом «СОМ» мультиметра к затвору, а щупом «V/Ω/f» к эмиттеру.
Некоторые IGBT транзисторы, как и MOSFET, имеют встроенный встречно-параллельный диод, подключенный катодом к коллектору транзистора, а анодом к эмиттеру (см. рисунок). Если транзистор имеет такой диод, то последний должен соответствующим образом прозвониться между эмиттером и коллектором транзистора.
Шаг 3. Теперь убедимся в функциональности транзистора. Для этого необходимо зарядить входную емкость затвор-эмиттер положительным напряжением. Для этого кратковременно и одновременно прикасаемся щупом «V/Ω/f» мультиметра к затвору, а щупом «СОМ» к эмиттеру. После этого проверяем состояние перехода коллектор-эмиттер транзистора, подключив щуп «V/Ω/f» мультиметра к коллектору, а щуп «СОМ» к эмиттеру. На переходе коллектор-эмиттер должно падать небольшое напряжение величиной 0,5—1,5 В.
Меньшее значение напряжения соответствует низковольтным транзисторам, а большее высоковольтным.
Величина падения напряжения должна быть стабильной, по крайней мере, в течение нескольких секунд, что говорит об отсутствии утечки входной емкости транзистора.
Иногда напряжения мультиметра может не хватить для того чтобы полностью открыть IGBT транзистор (характерно для высоковольтных IGBT). В этом случае входную емкость транзистора можно зарядить от источника постоянного напряжения величиной 9—15 В. Зарядку лучше производить через резистор величиной 1—2 кОм.
Возможно, вам это будет интересно:
Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Habr
Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.LED лампа выглядит вот так:
Рис 1. Внешний вид разобранной LED лампы
Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.
Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?
Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.
Вернемся к проблемам драйвера.
Вот так выглядит плата драйвера:
Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа
И с обратной стороны:
Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей
Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.
В МТ7930 встроены защиты:
• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла
Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂
Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:
Рис 4. LED Driver MT7930. Схема электрическая принципиальная
Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.
Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!
Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.
Рис 5. Фото разделительного трансформатора
Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.
Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.
Почему же срабатывает защита и по какому именно параметру?
Первое предположение
Срабатывание защиты по превышению выходного напряжения?
Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!
Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…
Дал схеме поработать часок – все ОК.
А если дать ей остыть? После 20 минут в выключенном состоянии не работает.
Очень хорошо, видимо дело в нагреве какого-то элемента?
Но какого? И какие же параметры элемента могут уплывать?
В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?
Второе предположение
Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.
Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?
Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.
К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.
Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.
К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.
Третье предположение
Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.
По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.
Прогрев микросхемы паяльником ничего не давал.
И очень смущало малое время нагрева… что там может за 15 секунд измениться?
В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.
Что же еще может мешать переходу от режима запуска в рабочий режим?!!!
От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.
И тут наступило счастье. Заработало!
Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.
Вот он, виновник проблемы:
Рис 6. Конденсатор с неправильной емкостью
Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.
Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.
Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.
Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.
Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:
• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.
Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?