Инвертор частотник: Частотный преобразователь или преобразователь частоты – назначение, принцип работы, схемы подключения

Содержание

Преобразователи частоты. 12 важных вопросов при выборе и установке

Преобразователи частоты (ПЧ) — один из основных элементов комплексных решений для энергетических и промышленных проектов. Современные частотные преобразователи — это продукт высоких технологий, они выпускаются с применением новейших разработок и способны не только управлять скоростью вращения электродвигателя, но и защищать электропривод от преждевременного выхода из строя, обеспечивать контроль множества параметров во время его работы. Грамотно выбрать преобразователь частоты, сориентировавшись в многообразии предложений — задача сложная и ответственная, ведь от принятого решения зависит стабильность производственных процессов. Разобраться со всеми тонкостями выбора поможет эта статья.

Часть 1. Зачем нужен преобразователь частоты?

Частотный преобразователь — незаменимое оборудование в любой сфере, где используются электродвигатели

Частотный преобразователь — незаменимое оборудование в любой сфере, где используются электродвигатели. Он обеспечивает плавный пуск, непрерывное автоматическое регулирование скорости и момента во время работы, а также множество других параметров работы электродвигателя. В ряде применений преобразователи обеспечивают снижение потребления электроэнергии до 50 %. Современные ПЧ с широтно-импульсной модуляцией (ШИМ) способны снижать пусковые токи в среднем в 4-5 раз и выдерживать перегрузки до 200 %.

На сегодняшний день в интернете можно найти большое количество рекомендаций и советов по подбору ПЧ, однако в большинстве случаев они являются общими, неконкретными и никак не применимыми на практике. Как же сориентироваться в огромном количестве критериев и выбрать подходящее оборудование? Рекомендации дают специалисты IEK GROUP, одного из ведущих российских производителей и поставщиков электротехнического оборудования: Артем Мошечков (ведущий инженер) и Петр Ивлев (специалист по техническому обучению Академии IEK GROUP).

— Зачем устанавливать и использовать преобразователь частоты?

Артем Мошечков: «Данное оборудование решает сразу несколько задач: управляет скоростью вращения электродвигателя, защищает его и в определенных режимах обеспечивает энергосбережение. ПЧ снижает слишком большой пусковой ток и момент, исключая удары, рывки и повышенные механические нагрузки на привод. Также преобразователь частоты позволяет защищать электродвигатель при коротком замыкании, страхует при отклонениях от номинального напряжения сети, контролирует температуру механизма, не допускает перегрева. Таким образом ПЧ обеспечивает более длительную и надежную работу привода, минимизирует затраты на обслуживание и ремонт. Кроме того, в определенных сферах применения и режимах работы преобразователь частоты снижает потребление электроэнергии на 30-50 %».

— Есть задача: выбрать и купить преобразователь частоты. С чего начать?

Петр Ивлев: «Модельный и функциональный ряд современного оборудования предлагает множество вариантов для решения широкого спектра задач. От самых простых до обеспечивающих управление сложнейшими автоматизированными электроприводами. Существует несколько основных критериев, основываясь на которых следует принимать решение о выборе той или иной модели частотного преобразователя».

Чтобы подобрать нужный вариант ПЧ, необходимо прежде всего определиться: для каких именно целей выбирается оборудование, какие конкретные задачи оно должно выполнять. Разумеется, необходимо знать условия эксплуатации и основные характеристики электродвигателя, для управления которым необходим ПЧ.

Современные серии преобразователей частоты включают до нескольких десятков моделей. Например, в линейке CONTROL-L620 IEK®, выведенной на рынок нашей компанией в 2017 году, представлено оборудование от 0,75 до 560 киловатт. В семействе CONTROL-А310 IEK® диапазон мощностей — до 22 киловатт, при этом уже с 11 киловатт есть возможность изготовить преобразователь со встроенным дросселем постоянного тока, что продлевает срок службы преобразователя. Номинальные напряжения — 220 и 380 В.

ПЧ CONTROL-L620 IEK®ПЧ CONTROL-A310 IEK®

Такой бренд, как ONI®, предлагает сразу четыре марки частотных преобразователей: ONI-А400, ONI-М680, ONI-A650 и ONI-К800 — в диапазоне мощностей от 0,4 до 132 кВт.


— Мощность, номинальный ток, напряжение питающей сети: как сориентироваться в этих параметрах?

Петр Ивлев: «Указанные критерии очень важны для оптимальной работы оборудования».
  • Мощность ПЧ должна быть равна мощности двигателя либо превышать ее. В случаях «тяжелого» применения, с высокими пусковыми нагрузками, допускается, чтобы мощность преобразователя была выше на одну, реже — на две ступени. Современные преобразователи частоты имеют большой диапазон мощности. Опять же обратимся к конкретным примерам оборудования: в линейке серии CONTROL-A310 представлены модели с мощностью от 0,4 до 22 кВт в режиме HD и от 0,75 до 22 кВт в режиме ND. Преобразователи частоты CONTROL-L620 поддерживают мощность в режиме HD от 0,75 до 500 кВт, в режиме ND — от 1,5 до 560 кВт. Есть и более узкий разбег: например, ПЧ линейки ONI-А400 работают в пределах мощности от 0,2 до 3,7 кВт.
  • Следующий критерий — номинальный ток
    . Электропривод не работает в идеальном режиме — всегда есть вероятность изменений динамических нагрузок на валу или превышения значений номинального тока. Поэтому наряду с мощностью при выборе ПЧ обращают внимание на номинальный ток электродвигателя и преобразователя частоты. Рабочее значение данного параметра у ПЧ берется либо с запасом относительно номинального тока двигателя, либо номинал в номинал. Это делается для того, чтобы обезопасить электропривод от возможных перегрузок.
  • Если говорить о напряжении питающей сети, то самыми распространенными моделями, которые используются на производстве, в ЖКХ и прочих сферах народного хозяйства, являются преобразователи напряжения 220 и 380 В. Напомню: значение данного параметра питающей сети и электродвигателя должно быть одинаковым.

— Какой преобразователь частоты лучше — однофазный или трехфазный?

Артем Мошечков: «В интернете можно прочитать, что однофазный преобразователь частоты обладает менее широким спектром возможностей, но это не так. Он способен решать все поставленные задачи».

На вход инвертора такого ПЧ подается однофазное напряжение соответствующей сети, которое на выходе формируется в трехфазное с частотой от 0 до 400 и выше Гц. Таким образом, при помощи однофазного ПЧ можно подключить обычный асинхронный трехфазный двигатель к однофазной сети. Для этого требуется подключить двигатель к преобразователю, правильно скоммутировав обмотки двигателя (на напряжение 220 В). Такие преобразователи частоты есть в семействе ONI — это серия А400, которая предназначена для управления асинхронными двигателями в системах небольшой мощности, но с большими перегрузками.

Трехфазные преобразователи частоты более распространены. Они преобразуют напряжение трехфазной промышленной сети и регулируют большое количество параметров электродвигателя. Примеры оборудования:

  • CONTROL-A310 IEK®,
  • CONTROL-L620 IEK®,
  • ONI-А400,
  • ONI-М680,
  • ONI-A650,
  • ONI-К800.

Часть 2. Нюансы

Использование ПЧ позволяет регулировать скорость электродвигателя от нуля до номинального значения и выше

— Как правильно подобрать диапазон регулирования частоты и какой способ управления выбрать?

Петр Ивлев: «Использование ПЧ позволяет регулировать скорость электродвигателя от нуля до номинального значения и выше. При этом важно помнить, что преобразователь может обеспечить на выходе напряжение, равное напряжению питающей сети. Образно говоря, если двигателю нужно 690 В, а ПЧ рассчитан на 380 В — это в корне неправильный подбор оборудования».

О способах управления

В интернете много теоретической информации о том, какой вариант лучше. На самом деле основывать свой выбор надо не на оценках метода управления, а на области применения преобразователя частоты. В оборудовании, которое работает с кранами, подъемными механизмами или протяжными станками используется векторный способ. В насосах и вентиляторах, то есть в тех механизмах, где скорость практически не меняется, обычно используется скалярный. Оба этих метода решают одну задачу: регулировки скорости и изменения момента.

— Что такое ПИД-регулятор, управляющие входы/выходы, и насколько это важно?

Петр Ивлев: «Пропорционально-интегрально-дифференцирующий регулятор (ПИД-регулятор) управляет внешними процессами, анализируя сигналы обратной связи, поступающие на преобразователь частоты. Этот регулятор есть в 95 % современных преобразователей частоты».

Самый простой пример его использования: требуется поддерживать постоянное давление в трубе 5 Бар. ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим работы ПЧ.

Простой примерПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим его работыГрафик интервалов

Что касается входов и выходов

Сегодня большинство преобразователей частоты имеют в базовой комплектации аналоговые и цифровые входы/выходы, последовательный интерфейс и т.д. Такой набор функций позволяет интегрировать ПЧ в большинство автоматических систем, без ограничений в выборе способов управления преобразователем.

  • Дискретное (цифровое) управление считается самым простым, данные входы используются для передачи основных команд: пуск или остановка электропривода, регулирование скорости, переключение между режимами работы ПЧ. Такие выходы сообщают о неисправностях, достижениях заданных пределов по частоте и току, дают команды на включение ведомых электроприводов и т.д. На один дискретный вход можно задать необходимую функцию, выбрав из более чем нескольких десятков.
  • Аналоговое управление решает другие задачи. Например, обеспечивает плавное регулирование. Также данный способ управления позволяет проводить постоянный мониторинг и контролировать состояние необходимых параметров системы. Сигналы поступают на вход ПЧ с соответствующих датчиков.
  • Управление по последовательному интерфейсу используется для построения сложной автоматизированной системы. Данный способ позволяет управлять сразу несколькими преобразователями частоты, причем они могут находиться далеко друг от друга. Такой способ значительно сокращает число проводов, одновременно увеличивая возможности передачи информации. Наиболее универсальным и, соответственно, популярным и надежным интерфейсом (протоколом) для подключения к ПЧ на сегодняшний день считается Modbus (RS485).
Modbus (RS485)

— На что еще стоит обратить внимание, выбирая преобразователь частоты?

Артем Мошечков: «Разумеется, на функциональность, эргономичность оборудования, наличие дополнительных возможностей, понятный интерфейс. Важный для многих вопрос — условия работы и монтажа ПЧ. Например, преобразователи частоты серии CONTROL-А310 и L620 IEK
®
требуют достаточного свободного пространства для охлаждения, а ONI-А400 можно монтировать по принципу «стенка к стенке». Но все эти серии отличаются малыми габаритами и неприхотливостью в монтаже».

В некоторых линейках есть возможность использования стандартной витой пары UTP кат. 5e для выносного монтажа идущей в комплекте панели управления, что позволяет максимально упростить и до 10 раз удешевить монтаж панели управления по сравнению с преобразователями, использующими специальные коммутационные шлейфы.

Обращайте внимание на условия эксплуатации: например, если необходимо, чтобы преобразователь частоты безотказно работал при высокой влажности, стоит рассмотреть серию CONTROL-L620 IEK® — данное оборудование без дополнительного охлаждения можно эксплуатировать при относительной влажности до 95 % и температуре от -10 до +40 °C. А специальное покрытие плат, в соответствии с промышленными стандартами, позволяет применять эти преобразователи в тяжелых условиях.

Обязательно поинтересуйтесь, какие силовые ключи используются при сборе ПЧ — одними из самых надежных являются IGBT производства компании Infineon. Они позволяют существенно повысить надёжность и отказоустойчивость оборудования.

Система управления частотным преобразователем должна быть интуитивно понятной, функциональной, вариативной. В передовых моделях, например, таких как серия ONI-M680, источником управляющего сигнала может быть кнопочная панель, промышленная сеть, цифровые входы и импульсный вход. Имеется возможность подключения исполнительных устройств, датчиков, программируемых логических контроллеров. Некоторые входы и выходы способны функционировать в различных режимах.

И, разумеется, важны сертификация, гарантия производителя. Если говорить о тех сериях, на основе которых мы разбирали принципы работы ПЧ, то у линейки CONTROL IEK® расчетный срок службы составляет 7 лет, гарантия — два года. Все преобразователи, выпускающиеся под этой маркой, имеют сертификаты соответствия ГОСТ. Аналогичные показатели у частотных преобразователей семейства ONI®.

Часть 3. Особенности применения ПЧ для различного оборудования

— Преобразователь частоты для насосного оборудования: что он дает?

Артем Мошечков: «В случае с насосным оборудованием чаще всего требуется защитить трубопровод от гидроударов во время запуска насоса, а сам электропривод — от преждевременного выхода из строя и работы в аварийном режиме. Немаловажное значение имеет оптимизация расхода электроэнергии и поддержание постоянного давления в системе водоснабжения».
Немаловажное значение имеет оптимизация расхода электроэнергии и поддержание постоянного давления в системе водоснабжения

Для решения этих задач требуется обеспечить плавный пуск насосов и плавное же изменение частоты вращения электродвигателя. Причем диапазон значений должен быть достаточно широк: во время пиковой нагрузки электропривод работает на номинальных оборотах, обеспечивая необходимый расход воды. При малом разборе поддерживается в рабочем состоянии, потребляя тот минимум электроэнергии, который необходим в данный момент. Также в сфере ЖКХ с помощью ПЧ возможно создание автоматизированной каскадной системы насосов, когда, в зависимости от разбора воды в жилых домах, работает один насос или, например, три. С помощью специальных функций преобразователь частоты позволяет экономить электроэнергию — это происходит за счет автоматической остановки работающего насоса при отсутствии расхода воды в системе.

С этой задачей справятся ПЧ следующих серий: CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-А400, ONI-M680. Однако наиболее удачным выбором станет преобразователь частоты ONI-A650, разработанный специально для применения в системах вентиляции и насосных установках. Уже в базовой конфигурации он содержит специальную плату каскадного управления насосами, что позволяет объединить до 5 насосов в единый каскад.

Мнение: Преобразователь частоты ONI-К800 был применен в приводе насоса системы водоснабжения и в приводе конвейера. Зарекомендовал себя с положительной стороны. При настройке и в ходе эксплуатации легко монтировались силовые и контрольные кабели, преобразователь просто настраивался с лицевой панели. Обладает большим функционалом защит, большим количеством входов-выходов.
Начальник отдела ЭМП АО «Уралгипромез» Д.Н. Томашевский.

— Какие преобразователи частоты подойдут для грузоподъемных механизмов (крановое оборудование, лебёдки)?

Петр Ивлев: «Современный крановый механизм — очень сложная система. Поэтому преобразователь частоты для электропривода такого механизма должен соответствовать высоким требованиям: обладать высокой перегрузочной способностью (до 200 %), уметь управлять механическим тормозом электродвигателя, иметь возможность подключения тормозного резистора (встроенный тормозной модуль) и организации обратной связи для регуляции скорости вращения электродвигателя. Последняя необходима для обеспечения быстрого обмена информацией между звеньями системы, непрерывного мониторинга всех процессов и точного управления параметрами во время работы сложнейшего кранового механизма».

Преобразователи частоты для электродвигателей грузоподъемных механизмов позволяют организовать надежное управление электроприводом при подъеме и опускании груза, поворотах стрелки, обеспечивая вертикальное и горизонтальное перемещение без раскачивания, с различными скоростями, таким образом гарантируя максимальную производительность.

В зависимости от модели крана, это могут быть следующие виды частотных преобразователей:

  • для обеспечения плавного перемещения крана можно порекомендовать серии CONTROL-L620 IEK®, ONI-M680 и ONI-K800;
  • для надежной работы лебёдки подъёма, в зависимости от задачи, подойдут М680 и К800.

— Как преобразователь частоты работает в случае с транспортерным и конвейерным оборудованием?

Артем Мошечков: «При запуске таких механизмов возникает пусковой ток, превышающий номинальный в 6-7 раз, а также — большая нагрузка на детали механизма и, как следствие, повышенный износ узлов или перегрев электродвигателя. Это самая частая причина отказов подобного оборудования. Далее, в процессе работы привод обычно вращается с одинаковой скоростью. Поэтому для механизмов непрерывного транспорта очень важны плавный разгон и торможение без рывков, пробуксовок, остановок, а также постоянная заданная скорость движения. Следовательно, преобразователь частоты для такого оборудования решает задачи по обеспечению постоянной скорости транспортера или конвейера, повышению уровня надежности (так как значительно снижает количество отказов как механического, так и электрического происхождения), устранению перегрузок во время запуска».
Режим работы преобразователя — круглосуточный «старт-стоп»

Использование преобразователей частоты с электродвигателями конвейеров и транспортеров позволяет не просто автоматизировать запуск, регулирование скорости и остановки ленты, но и создавать более сложные алгоритмы работы оборудования (зависит от выбранной модели ПЧ и подключенных датчиков).

Мнение: Преобразователь частоты CONTROL-L620 IEK® номинальной мощностью 5.5 был установлен на подающем конвейере в установке № 2 для сушки травяной муки. Режим работы преобразователя — круглосуточный «старт-стоп». Оборудование зарекомендовало себя с положительной стороны. Во время тестирования все функции работали в заявленном штатном режиме, замечаний во время эксплуатации выявлено не было.
Заместитель генерального директора по IT ПАО «Птицефабрика Боровская» С.М. Солкин.

— Есть ли смысл использовать преобразователи частоты для вентиляторного оборудования?

Петр Ивлев: «Есть. ПЧ для вентиляторного оборудования регулирует скорость вращения вала электропривода, позволяя экономить на электричестве. В случае установки дополнительного датчика, который передает оперативные данные о текущей потребности в воздухе на преобразователь, последний изменяет скорость вращения электродвигателя. Это позволяет экономить электроэнергию на 20-40 %. Кроме того, ПЧ надежно защищает электропривод вентилятора от бросков тока и перегрузок за счет плавного пуска и такой же плавной остановки вала».

Можно порекомендовать к установке на вентиляторное оборудование преобразователи частоты следующих серий: ONI-A650, CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-A400.

— «Тяжелый» или «нормальный» режим работы преобразователя частоты — какой выбрать?

Артем Мошечков: «Современные ПЧ обеспечивают пуск и работу двигателей в нормальном или тяжелом режиме. Для их обозначения используются аббревиатуры ND — нормальный и HD — тяжелый».
Режимы работы двигателя

В режиме ND величина вращающего момента постоянна, независимо от скорости вращения двигателя. В частности, таким образом работают насосы.

Тяжелый режим (НD) характеризуется нагрузкой с переменным вращающим моментом — как в случае с экструдерами, конвейерами или компрессорами. При этом существуют частотные преобразователи, которые поддерживают сразу два указанных режима, что позволяет экономить бюджет при проектировании различных систем. Например, преобразователи частоты IEK® серий CONTROL-A310 и L-620 могут работать как в ND-режиме, так и в режиме HD. Также оба режима поддерживают ПЧ ONI-М680.

Правда о пяти мифах частотно регулируемого привода.

Знание принципов работы частотно регулируемого привода (ЧРП) может упростить процесс выбора преобразователя частоты.

Автор: Пол Эйвери, Yaskawa America Inc.

Независимо от того, насколько давно и каким образом, уже обыденные частотные преобразователи пришли в Вашу жизнь, где-то есть тот, кто впервые стукнулся с ЧРП или только рассматривает возможность их применения. Вспомните, когда вы впервые задумались о применении одного из современных частотных преобразователей с широтно-импульсной модуляцией для двигателя переменного тока. Скорее всего, у вас, на тот момент, было не совсем верное представление об их возможностях и назначении. В этой статье мы рассмотрим и постараемся развеять пять распространенных мифов о частотно регулируемом приводе.

Рис. 1. Частотный преобразователь

Миф № 1: Выходной сигнал частотного преобразователя является синусоидальным

Людям, так или иначе связанные с эксплуатацией электродвигателей в, как правило, знакома работа асинхронных двигателей переменного тока с использованием пускателей. При пуске электродвигателя, пускатель замыкает контакты обмоток электродвигателя с фазами 3-х фазной питающей сети. Напряжение каждой фаза представляет собой синусоидальную волну. Приложенное напряжение создает на клеммах электродвигателя тоже синусоидальной формы с той же частотой (можно убедится проверкой напряжения на клеммах электродвигателя). Пока вроде всё просто и понятно.

А вот что происходит на выходе преобразователя частоты, это совсем другая история. Частотный преобразователь обычно выпрямляет входное трехфазное переменное в постоянное напряжение, которое фильтруется и аккумулируется при помощи больших конденсаторов звена постоянного тока. Напряжение звена постоянного тока затем инвертируется, для получения переменного напряжения, переменной частоты на выходе. Процесс инверсии осуществляется посредством трех изолированных биполярных транзисторов (IGBT) с двумя изолированными затворами — по одной паре на выходную фазу (см. Рис 2). Поскольку выпрямленное напряжение инвертируется в переменное, выходное звено называют «инвертором». Включение, выключение, а также длительность нахождения IGBT-транзисторов в положении ВКЛ или ВЫКЛ может управляться, что и определяет значение частоты выходного напряжения. Отношение выходного среднеквадратического напряжения к выходной частоте определяет магнитный поток, развиваемый в электродвигателе переменного тока. Когда выходная частота увеличивается, выходное напряжение также должно увеличиваться с той же скоростью, чтобы поддерживать постоянство отношения и, следовательно, постоянную скорость вращения двигателя. Обычно соотношение между напряжением и частотой поддерживается по линейному закону, что обеспечивает возможность поддержания постоянного крутящего момента.

Рис. 2. Схема инвертора с IGBT транзисторами.

Результирующий сигнал напряжения, прикладываемый к обмотке двигателя, не является синусоидальным (см. Рис. 3). Обратите внимание, что иногда отношение напряжения по частоте (V / f) может быть отличным от линейного, что характерно для вентиляторов, насосов или центробежных нагрузок, которые не требуют постоянного крутящего момента, но обеспечивают тем самым возможность экономии электроэнергии.

Рис. 3. Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Как же отразится пилообразная форма питающего напряжения на работе электродвигателя. Асинхронный двигатель является по своей сути большой катушкой индуктивности. А характерной особенностью индукции является ее устойчивость к изменениям тока. Увеличивается или уменьшается сита ток, индукция будет выступать против этого изменения. Какое же это имеет отношение к форме сигнала напряжения ШИМ на рисунке 3? Вместо того, чтобы позволить импульсу тока увеличиваться в том же порядке, что и приложенный импульс напряжения, ток начнет медленно возрастать. Когда импульс напряжения закончился, ток плавно уменьшается, а не исчезает мгновенно. В общих чертах это происходит следующим образом: до момента, когда ток снизился до нуля, поступает следующий импульс напряжения, и ток начинает плавно увеличиваться. Если последующий импульс становятся шире, ток плавно достигает большего значения, чем раньше. В конце концов, текущий сигнал становится синусоидальным, хотя и с некоторыми зубчатыми переходами (см. Рис. 4).

Рис. 4. Форма сигнала тока на выходе частотного преобразователя

Однако не думайте, что вы можете подключить свой соленоид к фазам выходного напряжения ЧРП. Это всё же не совсем переменное напряжение.

Миф № 2: все частотные преобразователи одинаковы

В общем виде частотно-регулируемый привод сегодня является довольно зрелым продуктом. Большинство коммерчески доступных приводов содержат одни и те же базовые компоненты: мостовой выпрямитель, блок питания, конденсаторный блок постоянного тока и плата выходного инвертора. Разумеется, существуют различия в алгоритмах управления переключением транзисторов IGBT инвертора, надежности компонентов и эффективности схемы теплового рассеивания. Но основные компоненты остаются прежними.

Есть также исключения. Например, в некоторых ЧРП инвертер имеет три вывода. Такая схема позволяет выходным импульсам варьироваться от половинного до полного импульса сигнала напряжения (см. Рис. 5).

Рис. 5. Трехуровневый выходной сигнал напряжения

Для достижения трехуровневого выходного сигнала звено инвертора должно иметь в два раза больше выходных переключателей, а также запирающих диодов (см. Рис. 6). Преимущества трехуровневой схемы заключается в уменьшении перенапряжения на двигателе из-за гармонических волн, снижении синфазных помех, а также снижении паразитных токов на валах и подшипниках.

Рис. 6. Схема трехуровневого инвертора

Матричный инвертор является еще более нетипичным типом ЧРП. Частотные преобразователи с матричными инверторами не имеют шины постоянного тока или мостового выпрямителя. Вместо этого они используют двунаправленные переключатели, которые могут подключать любое из входящих фазных напряжений к любой из трех выходных фаз (см. Рис. 7). Преимущество этой схемы заключается в том, что мощность может свободно протекать от сети к двигателю или от двигателя к сети для рекуперативного привода постоянного тока. Недостатком является то, что на входе необходима установка фильтра, для обеспечения дополнительной индуктивности и фильтрации формы ШИМ, чтобы исключить негативное влияние на питающую сеть.

Рис. 7. Схема матричного ЧРП

Кроме частотных преобразователей с трехуровневыми выходами и инверторами матричного типа существуют также и другие типы частотно-регулируемых приводов. Таким образом миф о том, что все частотные преобразователи одинаковые развеян.

Миф № 3: Частотный преобразователь компенсирует коэффициентом мощности.

Нередко можно увидеть, что производители частотных преобразователей заявляют значение коэффициента мощности, например, равным 0,98 или почти 1. Действительно коэффициент мощности несколько улучшается после установки ЧРП перед асинхронным двигателем. ЧРП компенсирует реактивную мощность за счет конденсаторного звена. Однако полностью компенсировать фазовый сдвиг преобразователь частоты не может.

Полный коэффициент мощности должен включать реактивную мощность, вызываемую гармониками, создаваемыми в звене постоянного тока. Причиной является работа диодного моста. Важно помнить, что диод работает только тогда, когда напряжение на стороне анода выше, чем напряжение на стороне катода (прямое смещение). Это означает, что диоды открыты только на пике каждой временной фазы как положительной, так и отрицательной частей синусоидальной волны. Это приводит к волнообразной форме волны. Это также приводит к искажению входного тока и прерыванию (см. Рис. 8).

Рис. 7. Форма сигналов после выпрямителя

Чтобы вычислить истинный полный коэффициент мощности (PF), необходимо учесть эффекты гармоник. Следующее уравнение показывает, как гармоники влияют на полный коэффициент мощности:

где THD = суммарное гармоническое искажение

Для прерывистого сигнала входного тока в уравнении THD будет находиться в районе 100% или более. Подставляя это в уравнение, получаем истинный коэффициент мощности PF ближе к 0,71, по сравнению с заявленным 0,98, который не учитывает гармоники.

Но не всё так плохо. В настоящее время существует множество способов гармонические искажения, создаваемые в звене постоянного тока. Они используют как пассивные, так и активные методы подавления искажений входного сигнала. Так, например, вышеупомянутый матричный преобразователь частоты является примером активного метода подавления гармонических искажений.

Миф № 4: С частотным преобразователем Вы можете эксплуатировать двигатель на любой скорости.

Особенность применения частотных преобразователей заключается, что они могут изменять как напряжение, так и частоту выходного сигнала. Благодаря возможности обеспечения требуемой скорости вращения электродвигателя ЧРП нашли широкое применение во всех сферах экономики и всех отраслях промышленности ЧРП может легко выдавать сигнал любой частоту в пределах предусмотренного изготовителем диапазона регулирования. Однако необходимо учитывать, что частотный преобразователь работает в составе электродвигателя в реальных условиях. Технологические требования, такие как необходимый крутящий момент, охлаждение, требуемая мощность так или иначе ограничивают фактический диапазон регулирования преобразователя частоты.

Ограничение № 1. С точки зрения охлаждения электродвигателя, низкая скорость вращения — это не очень хорошая идея. В частности, полностью закрытые вентиляторные (TEFC) двигатели имеют охлаждаются только за счет внутреннего вентилятора, который вращается вместе с валом двигателя. Чем медленнее скорость вращения двигатель, тем меньше поток воздуха и тем хуже охлаждение. Закрытые двигатели обычно не рекомендуются эксплуатировать с частотой ниже 15 Гц (диапазон скоростей 4:1).

Ограничение № 2: Электродвигатели имеют определенные ограничения диапазона скоростей, связанные с механическими и динамическими ограничениями нагрузок вращающихся частей. Обычно эта скорость называется максимальной безопасной частотой вращения. Данная характеристика не всегда указывается на шильдике мотора.

Ограничение № 3: При достижении максимальной частоты вращения крутящий момент двигателя может снижаться. Это ограничение скорости связано с ограничением мощности, которое включает в себя скорость вращения и крутящий момент. Если быть еще точнее, что будет снижаться напряжения ЧРП. Обратите внимание, что вращение двигателя также генерирует собственное напряжение, называемое обратной электродвижущей силой (ЭДС), которое увеличивается со скоростью. Обратная ЭДС создается двигателем, чтобы противостоять приложенному напряжению от ПЧ. На более высоких скоростях ПЧ должен подавать еще большее напряжения, чтобы преодолеть обратную ЭДС, и ток мог протекать по обмоткам двигателя, создавая крутящий момент. После определенного максимального значения преобразователь частоты не может преодолеть обратную ЭДС электродвигателя, и, следовательно, крутящий момент двигателя уменьшается, что, в свою очередь, снижает скорость. Снижение скорости опять приводит к более низкой обратной ЭДС, которая, в свою очередь, позволяет протекать току в двигатель снова. Существует точка равновесия, в которой двигатель достигает максимальной скорости при максимальном крутящем моменте.

Как упоминалось выше ЧРП может создавать крутящий момент на двигателе, сохраняя постоянство отношения V/f (см. Рис. 9).

Рис. 9. График зависимости напряжения от частоты.

Когда частота выходного сигнала увеличивается, напряжение увеличивается линейно. Проблема возникает, когда частота превышает номинальную частоту двигателя. Помимо номинальной частоты, не может увеличиваться выходное напряжение, что соответственно приводит к уменьшению отношения V / f. Отношение V / f является мерой напряженности магнитного поля в двигателе и влияет на его крутящий момент. Следовательно, способность мотора создавать номинальный крутящий момент при частоте выше номинальной должна уменьшаться со скоростью 1 / частота, при этом произведение крутящего момента и частоты, равное мощности, является постоянным. Область работы над номинальной частотой называется постоянным диапазоном мощности, а работа на скоростях ниже номинальной — диапазоном постоянного крутящего момента (см. Рис. 10).

Рис. 10. Графики зависимости мощности и крутящего момента электродвигателя от частоты.

Миф № 5: Входной ток преобразователя частоты выше выходного тока

Возможно, это не миф, а недоразумение. Некоторые пользователи ПЧ измеряют значение выходного и входного тока с помощью измерительного инструмента или с помощью мониторов ПЧ и обнаруживают, что входной ток намного ниже выходного. Это похоже не согласуется с идеей о том, что частотный преобразователь должен иметь некоторые потери и поэтому вход всегда должен быть немного выше, чем выход. Концепция правильная, но она учитывает мощность, а не ток, который следует учитывать:

https://www.yaskawa.com/syndicationAssets/RTEmagicC_AAM1508_WEB_IMG_VFD_Equation2.jpg.jpg

Входное напряжение всегда находится под напряжением переменного тока. Выходное напряжение изменяется со скоростью по образцу V / f. На самом деле компоненты уравнения немного сложнее. Но ключом к пониманию данного процесса является знание того, что асинхронный двигатель имеет два токовых компонента: один отвечает за создание магнитного поля в двигателе, которое необходимо для вращения двигателя; а второй — ток, создающий крутящий момент, который, как следует из названия, отвечает за создание крутящего момента.

Привод потребляет входной ток, пропорциональный активному крутящему моменту двигателя. Ток, необходимый для создания магнитного поля, обычно не изменяется со скоростью и обеспечивается основными конденсаторами звена постоянного тока, которые заряжаются при включении питания ПЧ. При малых значения крутящего момента выходной ток может быть намного выше, чем входной, поскольку входной ток отражает только составляющую, создающую крутящий момент плюс некоторые гармоники, но не включает ток намагничивания. Ток намагничивания циркулирует между конденсаторами шины постоянного тока и двигателем. Даже при полной нагрузке входной ток обычно будет ниже, чем ток двигателя, поскольку на входе по-прежнему нет составляющей тока намагничивания.

Помните, что в уравнении мы сравниваем входную и выходную мощности. Например, рассмотрим полностью нагруженный двигатель, вращающийся на низких оборотах. Входное напряжение номинальное, а выходное напряжение будет низким из-за низкой скорости вращения. Выходной ток в данном случае будет высокий из-за полной нагрузки на двигатель. А чтобы сбалансировать уравнение мощности, входной ток должен быть ниже выходного тока.

Узнать подробную информацию о частотных преобразователях, ознакомиться с производственной линейкой YASKAWA Вы можете у нашего партнера — ООО «КоСПа»

Или в соответствующем разделе преобразователя YASKAWA

Оригинал статьи: https://www.yaskawa.com/about-us/media-center/industry-articles-display?articleId=2167778

27.07.2017

Как работает частотник? Принцип работы преобразователя.

Частотник служит для изменения характеристик энергии, поступающей от электросети к производственному оборудованию. Речь идёт о требуемом выборе частоты тока, вида напряжения. Технические возможности изменения этих понятий лежат в определённом диапазоне. Их показатели могут отличаться и быть выше данных, получаемых от первичного энергоисточника, так и гораздо ниже его.

Состав, конструкция схема

Оборудование преобразования частоты (ПЧ) компонуют из двух секций. Первая — с управляющими функциями, состоит из микропроцессоров. Их задача: регулировать коммутацию ключей, контролировать работу, выполнять диагностику и защиту. Вторая — силовая секция. Её комплектуют на транзисторах (тиристорах), выполняющих функцию переключателей.

Характеристика

Большинство распространённых электрорегулируемых приводов используют преобразователей частоты ПЧ двух классов. Основными признаками их разделения являются структурное отличие и принцип работы силовой части устройства. Свои функции ПЧ выполняет с промежуточным узлом, действующим с постоянным током, или осуществляется прямая связь с источником.

Положительной особенностью является высокая эффективность. Отдача достигает 98,5% и более. Используется для управления мощными высоковольтными приводами. Частотник значится относительно дешёвым, несмотря на дополнительную комплектацию схем регулирования. Эффективный способ его применения оценивают, рассматривая класс, преимущества или недостатки. Сначала использовались преобразователи с прямым, непосредственным подсоединением к сети. (рисунок 1).

То есть, источник питания подключается к статорным обмоткам двигателя через открытые вентили. Конструкция силовой части состояла из выпрямителей, выполненных на полупроводниковых приборах — тиристорах.

Обладающих свойствами электровентиля. И системы управления (СУ). Которая, попеременно их открывая, подключала к сети обмотки электродвигателя. Напряжение поступает на тиристоры, имея трёхфазный вид синусоиды Ua, Uв, Uс. На выходе преобразователя сформировано напряжение U вых.

Это показано на одной фазе с вырезанной полосой (рисунок 1). Увеличенный, он имеет зазубренный вид, который аппроксимирует линия синего цвета. Выходная частота устройства значится в границах 0—30 Гц.
Этот короткий диапазон лимитирует возможность привода регулировать скорость асинхронного электродвигателя. Такое подключение на практике даёт результат один к десяти. Хотя технологические процессы диктуют значительного увеличения этого соотношения.


Применение неуправляемых тиристоров считается недостатком конструкции, так как их использование требует усовершенствовать систему регулирования. Она становится более сложной. Кроме того, «зазубренная» форма напряжения на выходе (рис. 2), приводит к появлению высших гармоник. Их наличие сопровождается дополнительными потерями. Которые наблюдаются, в увеличении перегрева электродвигателя, уменьшение крутящего усилия (момент) на валу и появление помех в сети. Поэтому дополнительный монтаж деталей и узлов для устранения этих недостатков, повышает стоимость устройства. Увеличивают его габариты, вес и уменьшают эффективность привода.

В настоящее время преобразователи с прямой (непосредственной) связью не применяют. Сейчас в системах дополнительно включён узел с функцией постоянного тока. При этом задействовано удвоенное трансформирование электроэнергии. Напряжение на входе, с неизменной амплитудой, частотой и формой синусоиды, поступает на клеммы выпрямительного блока (B). Дальше проходит фильтр (Ф), уменьшающий пульсацию высших гармоник. Назначение (И) инвертора — преобразовать постоянное напряжение в переменное варьируемой частоты и амплитуды. При этом используются отдельные внутренние блоки.
Функции электронных ключей, в составе инверторов, выполняют запираемые GTO тиристоры. Или заменяемые его типы: GCT, IGCT, SGCT, а также трёхэлектродным полупроводниковым элементом с изолированным затвором IGBT.

Преимуществом частотника на тиристорах обоих классов является возможность использовать их при повышенных показателях напряжения и тока. Они выдерживают длительную работу, электроимпульсные скачки. Устойчивое функционирование преобразователи частоты поддерживают в широком диапазоне мощностей. С вилкой от сотни кВт до десятка мВт. На выходе ПЧ напряжение составляет от 3 до 10 кв. Однако, сравнивая цену по отношению к мощности, она остаётся завышенной.

Устройства регулируемого привода, в состав которого входили запираемые тиристоры, занимали преобладающее место. Но, потом их сменил транзистор IGBT с изолированным затвором.
Применение тиристора усложняет средство управления. Являясь полупроводниковым элементом, он подключается подачей импульса на регулируемый контакт, достаточно сменить полярность напряжение или понизить величину тока близкую к нулю. Сложность процесса и дополнительные элементы делают систему регулировки более громоздкой.

Транзисторы IGBT отличаются простым способом управления с незначительной затратой расхода энергии. Большой рабочий диапазон частот расширяет границы выбора оборотов электромотора и увеличивает скоростную характеристику. Совместное действие транзистора с микропроцессорным управлением влияет на степень высших гармоник. Кроме того, отмечаются следующие особенности.

  • В обмотках и магнитопроводе электродвигателя уменьшаются потери.
  • Снижается тепло подогрев.
  • Минимум проявлений пульсаций момента.
  • Исключаются рывки ротора в зоне небольших частот.
  • Сокращаются потери в конденсаторах, трансформаторах, проводах тем самым увеличиваются сроки их эксплуатационной пригодности.
  • Приборы измерений и защиты (особенно индукционные) допускают меньшее неточностей, искажённых срабатываний.

Сравнивая ПЧ одинаковой выходной мощности с другими схемами, устройства на транзисторах IGBT отличаются надёжностью, меньшими габаритами, массой. Достигается это за счёт модульной конструкции аппаратных средств. Минимальным набора элементов, составляющих устройство. Защитой от резких колебаний тока и напряжения. Снижением количества отказов и остановок электропривода. Лучшим теплоотводом

Высокая цена низковольтных преобразователей (IGBT) на единицу выходной мощности объясняется трудностью изготовления транзисторных модулей. Рассматривая цену и качество, они предпочтительнее тиристорных. И также надо учитывать постоянную динамику сокращения стоимости производства устройств. Тенденцию к её снижению.

Затруднение в применении высоковольтного привода с прямым изменением частоты является ограничение по мощности свыше двух мВт. Так как увеличение напряжения и рабочего тока укрупняют габариты транзисторного модуля, необходим более высокоэффективный теплоотвод от полупроводника. И как выход, до появления новейших биполярных элементов, модули в преобразователях соединяют последовательно по несколько штук.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Вывод

В результате работы частотника получают переменное напряжение с варьируемыми показателями. Подавая энергию с такими параметрами на обмотки электродвигателя, выбирают требуемую скорость вращения вала. Статические ПЧ являются наиболее применяемыми в регулировке исполнительных механизмов. Установка управляемого электропривода экономически обоснована в энергосберегающих технологиях.

Преобразователь частоты: описание и применение

Преобразователь частоты: вся информация об устройстве

Оглавление

Физическая основа преобразователей частоты.

Конструкция и принцип работы преобразователей частоты.

Выпрямитель.

Промежуточная цепь.

Инвертор.

Типы управления частотным преобразователем.

Интерфейсы частотных преобразователей.

ГОСТы и ТУ для частотных преобразователей.

Преимущества использования частотных преобразователей.

Недостатки преобразователей частоты.

Назначение и область применения частотных преобразователей.

Как выбрать частотный преобразователь?

Как осуществляется подключение преобразователя частоты?

Техника безопасности при подключении преобразователя частоты.

Преобразователь частоты – это статическое преобразовательное устройство, которое предназначено для регулировки частоты электрического тока. Преимущественно он используется для управления скоростью вращения двигателей асинхронного типа и позволяет повысить эффективность их работы, а также снизить изнашиваемость узлов.

Теоретические основы по работе преобразователей частоты были изложены еще в 30-х годах 20 столетия, но на тот период из-за отсутствия транзисторов и микропроцессоров практическая их реализация была невозможной. Только, когда в США, Европе и Японии были разработаны недостающие компоненты, начали появляться первые вариации частотных преобразователей. С тех пор они претерпели существенных технологических изменений, но принцип их работы до сих пор строится на одних и тех же физических законах.

Работа преобразователей частоты строится на следующей формуле:

img

Из данного выражения сразу становится ясно, что при изменении частоты входного напряжения, которое в формуле обозначено, как f1, будет меняться и угловая скорость магнитного поля статора, которая определяет и скорость вращения самого статора. Такой эффект может быть достигнут только в случае, если величина p (количество пар полюсов) будет оставаться неизменной.

Что же это дает нам? Во-первых, возможность плавного регулирования скорости вращения. Особенно актуально это на пиковых нагрузках при запуске. Во-вторых, такая зависимость позволяет повысить скольжение двигателя асинхронного типа, увеличив его КПД.

Стоит также отметить, что такие характеристики, как коэффициент мощности, КПД, коэффициент перегрузочной способности принимают высокие значения именно при одновременном регулировании частоты и напряжения тока. Закономерности изменения этих параметров напрямую зависят от нагрузочного момента, который может принимать следующий характер:

  • Постоянный. При таком характере нагрузочного момента напряжение на статоре будет прямо пропорционально зависеть от частоты:

formula0

  • Вентиляторный. В данном случае напряжение будет пропорционально частоте в квадрате:

formula1 (1)

  • Обратно пропорциональный. В данном случае формула будет иметь следующий вид:

formula2

Вышеописанные выкладки подтверждают, что при одновременной регулировке частоты и напряжения с помощью частотного преобразователя можно обеспечить плавное и равномерное изменение скорости вращения вала.

Если рассматривать общую конструкцию преобразователей частоты, то в ней стоит выделить два основных блока компонентов:

  • Управления.
  • Электропреобразований.

Первый блок обычно представлен микропроцессором, который воспринимает команды от внешних систем управления и интерфейсов и передает непосредственно на электропреобразовательные элементы.

Блок электропреобразований является основным рабочим механизмом всей системы. Именно он отвечает за прием входного тока и преобразование его параметров до нужных значений, установленных оператором через управляющий блок. В состав данного блока входят следующие элементы:

  • Выпрямитель.
  • Промежуточная цепь.
  • Инвертор.

Поговорим о каждом более подробно.

Данный компонент предназначен для формирования пульсирующего напряжения в одно- или трехфазных сетях переменного тока. Выпрямители обычно строятся либо на диодах, либо на тиристорах. В первом случае они считаются неуправляемыми, а во втором управляемыми.

  • Неуправляемые выпрямители. В их конструкции используется две группы диодов, которые подсоединены к различным клеммам и проводят различные напряжения – положительное и отрицательное. В конечном счете выходное напряжение равняется разности напряжений на этих группах диодов и в математическом выражении имеет следующее значение: 1,35*входное напряжение сети.
  • Управляемые выпрямители. В конструкции таких выпрямителей вместо диодов используются тиристоры. На них может подаваться входящий сигнал a, который стимулирует задержку тока, выражаемую в градусах. В случаях, когда значение данного параметра колеблется в пределах 0-90 градусов, тиристоры играют роль выпрямителей, а когда в 90-300 градусов – инвертора. Выходное значение постоянного напряжения составляет: 1,35* входное напряжение сети*cos α.

Промежуточная цепь выполняет роль своеобразного хранилища, из которого электродвигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточная цепь может иметь одну из следующих формаций:

  1. Инвертор-источник питания. В данном случае промежуточная цепь имеет в составе мощную индуктивную катушку, которая преобразует напряжение выпрямителя в изменяющийся постоянный ток. Само напряжение двигателя определяется по нагрузке. Такой тип цепей может работать только с управляемыми выпрямителями.
  2. Инверторы — источники напряжения. В данном случае в промежуточной цепи используется фильтр, в состав которого входит конденсатор. Он сглаживает напряжение, поступающее от выпрямителя. Такие цепи способны работать с любыми типами выпрямителей.
  3. Цепь изменяющегося постоянного напряжения. В данном случае перед фильтром устанавливается прерыватель, в котором имеется транзисторы, выключающий и включающий подачу напряжения от выпрямителя. В данном случае фильтр обеспечивает сглаживает прямоугольные напряжения после прерывателя, а также поддерживает постоянное напряжение на заданной частоте.

Инвертор является последним звеном в частотном преобразователе перед самим электродвигателем. Именно он окончательно преобразует напряжение в нужный для работы вид. Вследствие вышеописанных преобразований, происходящих на выпрямителе и промежуточной цепи, инвертор получает:

  • Постоянный ток изменяющегося характера.
  • Изменяющееся или неизменное напряжение постоянного тока.

Собственно, сам инвертор и обеспечивает подачу напряжения необходимой частоты. Если на него поступает изменяемое напряжение или ток, то он создает только нужную частоту. Если же неизменяемое, то он создают и нужную частоту, и нужное напряжение.

Обычно в конструкции инверторов используются высокочастотные транзисторы, частота коммутации которых находится в диапазоне от 300 до 20 кГц.

Существует два основным метода управления электродвигателями с использованием частотных преобразователей:

  • Скалярный.
  • Векторный.

Асинхронные системы управления на сегодняшний день считаются самыми распространенными. Они используются в приводах вентиляторов, насосов, компрессоров и т.д. Главный принцип, который лежит в основе скалярного управления, состоит в изменении частоты и амплитуды напряжения по закону U/fn = const, где n всегда больше 1. Соответственно, меняя напряжение U, мы изменяем и частоту f в степени n. При этом степенное значение определяется в зависимости от особенностей самого частотного преобразователя и его назначения.

Сама методика скалярного управления достаточно проста с точки зрения ее технической реализации, но при этом имеет два существенных недостатка. Первый заключается в том, что без дополнительного датчика скорости вы не сможете регулировать скорость вала, ведь она напрямую зависит от нагрузки. Данную проблему можно решить простым приобретение датчика.

Но существует еще один недостаток – невозможность регулировки момента. Казалось бы, данная проблема тоже решается покупкой датчика момента. Но он достаточно дорог, да и само управление получится весьма спорным. К тому же, совместно управлять и скоростью и моментом при скалярном типе управления невозможно.

Векторный тип управления подразумевает, что в саму систему закладывается математическая модель работы электродвигателя, что позволяет на программном уровне по входным параметрам рассчитывать и скорость, и момент. При этом обязательно только наличие датчика, который будет снимать показатели тока фаз статора.

Существует два класса векторных систем управления:

  • Без датчиков скорости.
  • С датчиками скорости.

Их использование в тех или иных случаях определяется в зависимости от условий эксплуатации двигателя. Если диапазон изменения скорости вращения вала не превышает 1:100, а требования по точности не более 0,5%, то отлично подойдет система без датчиков.

Если же диапазон изменения скорости составляет 1:1000, а требования по точности установлены на уровне до 0,02%, то лучше использовать системы управления с датчиками.

Стоит отметить, что у векторного управления также есть свои недостатки. Например, для их настройки требуются большие вычислительные мощности и знание рабочих параметров двигателей. Кроме того, векторное управление не может использоваться там, где в преобразователю частот подключено сразу несколько рабочих агрегатов – там целесообразно применять скалярные системы.

В конструкции большинства современных частотных преобразователей имеется целый набор различных интерфейсов, через которые можно осуществлять подключение стороннего оборудования или синхронизировать несколько частотников. Рассмотрим основные входы и выходы, используемые в подобных устройствах:

  • Аналоговый вход. Данный интерфейс служит для приема стандартного аналогового сигнала производственного диапазона, который располагается в пределах от 0(4) до 20мА или от 0 до 10В. Через него можно осуществлять регулировку работы частотного преобразователя. Например, минимальная величина аналогового сигнала может сигнализировать устройству о том, что выходная частота, поступающая на двигатель, должна иметь свое минимальное значение и наоборот – максимальная должна соответствовать максимальной. 
  • Аналоговый выход. Данный выход по своему функционалу аналогичен входу. Только в этом случае он передает информацию о частоте, поступающей на двигатель, через аналоговый сигнал определенной величины, что позволяет контролировать режим работы.
  • Дискретный вход. Данный вход способен принимать скачкообразные сигналы. Как и аналоговый вход, он способен изменять параметры. Например, минимальный сигнал может соответствовать мгновенной минимальной выходной частоте преобразователи, а максимальный – максимальной выходной частоте.
  • Дискретный выход. Данный выход позволяет выполнять аналогичные входу операции только в обратном порядке.
  • RS-485. Данный интерфейс является полноценным входом, который позволяет в полной мере взаимодействовать с преобразователем частот, например, через компьютер. С его использованием можно настраивать рабочие параметры оборудования, отслеживать его состояние и т.д. В интерфейсе RS-485 используется особенный дифференциальный сигнал, который позволяет проводить линии длиной до 120 метров. Таким образом, можно установить преобразователь частот на производственном участке, а управление им осуществлять в командной рубке, удаленной от рабочего пространства.

Кроме того, в частотных преобразователях могут использоваться и другие интерфейсы. Все зависит от конкретной модели устройства и его производителя.

Собственно, как и любые технические средства, используемые на производственных предприятиях и в оборудовании, частотные преобразователи и требования к ним регламентируются определенной технической базой, а именно следующими документами:

  • Правила устройства электроустановок 7-е издание.
  • ГОСТ 24607-88 Преобразователи частоты.
  • ГОСТ 13109-97 Совместимость технических средств электромагнитная.
  • ГОСТ Р 51137-98 Электроприводы регулируемые асинхронные.
  • ФЗ 261 Федеральный закон об энергосбережении и энергоэффективности.
  • ТР ТС 00_2011 Электромагнитная совместимость технических средств.
  • ГОСТ26284-84 — Преобразователи электроэнергии полупроводниковые. Условные обозначения.
  • ГОСТ23414-84 — Преобразователи электроэнергии полупроводниковые. Термины и определения.
  • ГОСТ 4.139-85 Система показателей качества продукции. Преобразователи электроэнергии полупроводниковые. Номенклатура показателей.

В соответствии с описанными в этих документах требованиями должен осуществлять выбор конкретной модели устройства, а также ее установка и отладка.

Частотные преобразователи нашли широкое применение в самых различных производственных нишах и оборудовании. Столь высокий спрос на подобные устройства обусловлен следующими преимуществами их использования:

  • Уменьшение тока запуска. В случае запуска электродвигателя с помощью прямых пускателей наблюдается резкое увеличение тока, значения которого превышают номинальное в 7-15 раз. Это негативно сказывается на электропривод и может привести к пробою изоляции, выгоранию контактов и ряду других негативных последствий. Кроме того, такой способ запуска оказывает влияние и на механические компоненты системы. В момент пуска рабочие узлы двигателя подвергаются высоким нагрузкам, что приводит к их более быстрому износу. Благодаря частотным преобразователям можно существенно снизить пусковые нагрузки на электродвигатель, продлив срок его безремонтной эксплуатации.
  • Экономичность. Как правило, двигатели, поддерживающие работу вентиляционных и насосных систем, всегда работают на одной и той же частоте, а регулировка давления и других рабочих показателей осуществляется с помощью арматуры (шиберы, заслонки и т.д.). Это приводит к нерациональному расходованию электроэнергии. В случае использования преобразователей частот можно осуществлять настройку рабочих параметров системы за счет корректировки интенсивности работы двигателя. Это дает возможность более рационально расходовать его ресурсы.
  • Повышенная адаптивность. При использовании частотных преобразователей можно конструировать автоматизированные системы, которые по установленным алгоритмам будут корректировать работу оборудования. Это снижает трудозатраты производственных процессов и позволяет сделать их более точными за счет исключения человеческого фактора.
  • Ремонтопригодность. В случае поломки преобразователя частот вы можете отдать его в мастерскую, где мастер заменит вышедшие из строя детали. Правда, это касается только электропреобразующего блока – с блоками управления все намного сложнее и они более требовательны с точки зрения восстановления.

Частотные преобразователи являются оптимальным решением для организации самых различных производственных процессов и отладки рабочего оборудования, на базе которого используются электромоторы.

Частотные преобразователи также имеют и свои недостатки. К ним следует отнести:

  • Дороговизна. Частотные преобразователи являются самым дорогим преобразовательным оборудованием. Правда, данный недостаток весьма относителен с учетом того, что такие устройства позволяют продлить срок эксплуатации электродвигателей, а также увеличить срок их безремонтной эксплуатации.
  • Ограниченность. Далеко не все старые электродвигатели способны работать в связке с частотным преобразователем. Даже, если это возможно с технической точки зрения, то эксплуатационного ресурса устаревших моделей может просто не хватить на постоянные скачки частоты и скорости вращения вала.
  • Сложность настройки и подключения. Преобразователь частот достаточно сложно установить самостоятельно, поэтому для выполнения подобных работ часто приходится привлекать сторонних специалистов, а это в свою очередь влечет определенные финансовые затраты.

Если сопоставить недостатки и преимущества частотных преобразователей, то они, все равно, выглядят более эффективными даже на фоне других преобразовательных устройств. Именно это и делает их особенно популярными в производственных отраслях, где они используются практически повсеместно.

Частотные преобразователи уже много лет используются в строительстве электромеханических устройств и агрегатов. Они позволяют модулировать частоту тока, что в свою очередь делает возможной точную регулировку скорости вращения двигателя. На сегодняшний день частотники используются во многих отраслях деятельности. Мы рассмотрим лишь некоторые из них:

  • Пищевая промышленность. Частотные преобразователи часто используются для регулировки работы фасовочных линий. Они позволяют настроить скорость подачи продукта и движения ленты в соответствии с пропускной способностью самого упаковочного станка. Кроме того, их часто используют в крупных миксерных агрегатах, вентиляционных системах и т.д.
  • Механизация производственного оборудования. Без преобразователей частоты не обходятся конвейерные ленты, покрасочные и моющие станки, прессы, штамповочное оборудование и т.д. Такие устройства позволяют контролировать скорость рабочих процессов, снижая вероятность повреждения продукции и повышая качество конечного результата.
  • Медицина. Относительно любого медицинского оборудования всегда устанавливаются самые высокие технические требования, добиться соответствия которым невозможно без использования управляемых электродвигателей в связке с частотником. Они устанавливаются в различных системах жизнеобеспечения, подъемных механизмах кроватей и т.д.
  • Подъемно-транспортное обеспечение. Лифты, подъемные краны, подъемники – все эти средства уже давно используют преобразователи частоты. Они позволяют точно контролировать скорость выполнения различных операций, а также продлевать срок безремонтной эксплуатации оборудования.

Перечислять области применения частотных преобразователей можно бесконечно, ведь их можно использовать в любом оборудовании, использующем электродвигатели.  

Следует выделить несколько основных параметров, на которые нужно обращать внимание  при выборе частотного преобразователя:

  • Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
  • Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения  на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
  • Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
  • Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
  • Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки. На это обязательно следует обратить внимание.
  • Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство. Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
  • Тип управления и интерфейсы. Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.

Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.

На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:

  • Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность. Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
  • Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник».  Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
  • В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.

Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:

  • После подключения всех элементов системы (предохранитель, панель управления, частотник, двигатель) необходимо перевести рукоять на пульте управления в активное положение на несколько градусов.
  • Тумблеры предохранителя переключить в положение «ВКЛ». После этого на частотном преобразователи должны загореться световые индикаторы, которые будут сигнализировать, что оборудование подключено правильно, а двигатель должен начать медленно вращаться.
  • Если вал двигателя начал вращаться в другу от нужной сторону, необходимо перепрограммировать сам частотный преобразователь на реверсное движение. Практически все современные устройства поддерживают такую функцию.
  • Постепенно передвигайте рукоять управления и следите за работой двигателя – частота вращения вала должна расти по мере того, как вы передвигаете рукоять.

Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.

Следует выделить несколько основных правил безопасности, о которых нужно помнить при выполнении работ по подключению частотных преобразователей:

  • Категорически запрещается касаться любой частью тела к токоведущим элементам цепи. Это может нанести ущерб вашему здоровью или даже лишить жизни. Перед началом работ рекомендуется полностью обесточить оборудование и использовать специальные электромонтажные инструменты с защитой от ударов током.
  • Стоит помнить, что даже после угасания индикаторов на устройстве в цепи может оставаться напряжение. Чтобы избежать ударов током при работе с системами до 7 кВт необходимо выждать 5 минут до начала работ, с агрегатами свыше 7 кВт – 15 минут. Этого времени должно хватить, чтобы все конденсаторы в цепи разрядились.
  • Заземление является неотъемлемой частью любой электрической цепи, включая цепь частотный преобразователь-двигатель. Оно должно устанавливаться в виде отдельного кабеля и ни в коем случае не может присоединяться к нулевой шине.
  • Стоит помнить, что отключения частотного преобразователя не гарантирует, что в других узлах сети не осталось напряжения, поэтому перед ремонтом или обслуживанием необходимо полностью отключить цепь от сети.

Выполнять работы по подключению преобразователей частоты могут только квалифицированные специалисты, имеющие соответствующую подготовку, а также необходимые допуски.

Рекомендации по покупке частотных преобразователей

Покупка частотного преобразователя является достаточно ответственным делом, ведь подобные устройства стоят достаточно дорого и на них возлагаются очень серьезные задачи, поэтому некорректность работы оборудования может привести не только к финансовым потерям, но и остановке всего производства или других работ.

Перед тем как покупать преобразователь частот, необходимо:

  • Определиться с параметрами, которые будут соответствовать вашему электродвигателю.
  • Составить рабочую схему, по которой будет осуществляться монтаж и подключение оборудования.
  • Выбрать дополнительные модели, которые будут подключаться к самому преобразователю.
  • Закупить все необходимые кабеля, крепления и каркасы, необходимые для установки.
  • Подготовить рабочую площадку для монтажа. Возможно, нужно будет оборудовать дополнительные источники питания или реорганизовать производственное оборудование для возможности его подключения к преобразователю.

Многие в связи с дороговизной преобразователей частот покупают б/у устройства. Такой подход более рискованный, чем покупка новой продукции, но позволяет сэкономить некоторую сумму денег.  Если вы также решили купить бывший в употреблении преобразователь, то стоит его тщательно проверять не только по внешним признакам, но и в работе. Лучше всего, если продавец не будет демонтировать его со своего объекта и сможет продемонстрировать его работоспособность на практике.

Опять же, если вы никогда не сталкивались с покупкой преобразователя частоты, лучше поручить это дело профессионалу, который сможет подобрать для вас подходящую модель и помочь с ее установкой.

Преобразователи частоты для асинхронных двигателей

До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.

Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.

Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.

По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.

Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.

В мир современной автоматизации технологических процессов, это весомый аргумент.

Устройство частотных преобразователей

Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.

За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.

По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.

Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.

Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.

В промышленном исполнении можно встретить два основных типа частотных преобразователей:

  • Специальные.
  • Универсальные.

Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.

Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.

Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.

Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.

Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.
Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.

Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.

Разница типов сигналов управления

При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.
Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.

Выбор мощности частотного преобразователя

Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.

Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.

Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.

Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.

Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.

В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.

Электромагнитная совместимость преобразователей частоты

При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.

По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.

Частотник, частотный преобразователь1ф 220 — 3ф220 для асинхронного электродвигателя


Watch this video on YouTube

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Ликбез. Настройка преобразователя частоты. — Электропривод

На стр. 31-32 инструкци есть таблица с кратким перечнем всх доступных параметров, а ниже начинается их подробное описание. Но мы не будем строго следовать порядковым номерам т. к. логически это будет неправильно. Тем не менее, переберем их все. В этом сообщении перечисляются параметры 0, 1, 2, 4, 5, 25, 6, 7, 12, 13, 14, 15, 16, 17, 18, 22

 

Про параметр 0 написано «F_00 Factory adjustment parameter. Do not change.», что означает «Заводские подстройки. Не менять.» Значит туда не лезем.

 

Параметры 1 и 2 описаны в предыдущем сообщении.

 

Параметр 4 (Motor rotation direction) — направление вращения мотора. Значение может быть либо 0 либо 1. Сменив значение этого параметра на другое, можно изменить направление вращения двигателя, как если бы мы поменяли местами любые два провода, идущие к двигателю. Рекомендовал бы не пользоваться им. Лучше перекинуть провода и быть уверенным, что при замене частотника не забудете про этот параметр и двигатель сразу будет вращаться в нужную сторону. По умолчанию значение 0.

 

Параметр 5 (V/F Pattern) — можете порассматривать графики напряжение-частота на стр. 34. Есть по три варианта для двигателей с номинальной частотой 50 и 60 Гц. Суть сводится к тому, что можно немного форсировать напряжение на двигателе на низкой частоте или наоборот на высокой. Это довольно тонкие настройки и чаще всего заморачиваться на их счет не стоит. Оставьте значение по умолчанию для вашего двигателя (1 для 50 Гц или 4 для 60 Гц). Мой случай второй, поставим 4.

 

Кстати, здесь уместно немного метнуться к параметру 25 (Factory setting). Он отличается от всех остальных тем, что не сохраняет своего значения. Считав значение вы всегда увидите 000. Но если попытаться записать в него 010, то произойдет сброс всех параметров преобразователя частоты к заводским установкам для двигателя 50 Гц. А если записать 020, то тоже к заводским, но для двигателя 60 Гц. Это может быть полезно, если вы записали только те параметры, которые меняли. А потом «что-то произошло» и частотник перестал правильно работать. Чтобы не набирать все параметры, достаточно будет сбросить его к заводским установкам и потом изменить всего несколько.

 

Параметры 6 и 7 (Frequency upper/lower limit) — верхний и нижний предел выходной частоты соответственно. Что бы вы не делали, выходная частота никогда не будет выше ограничения, установленного в параметре 6. Значит если вы планируете разогнать двигатель выше номинальных оборотов, то в этот параметр нужно записать пропорционально большее значение по сравнению с номинальной частотой. Не рекомендовал бы разгонять больше, чем вдвое. Балансировка ротора делается для номинальных оборотов. На сильно более высоких почти наверняка возникнет вибрация и подшипникам не поздоровится. Во всяком случае, обратите на это внимание. В моем случае удвоенная частота это 120 Гц.

С нижней частотой чуть по-другому. Если вы попытаетесь задать частоту ниже, чем указано в параметре 7 (с клавиатуры или внешним потенциометром — не важно), но не нулевую, то двигатель будет продолжать вращаться со скоростью из параметра 7. И только когда зададите частоту 0 Гц преобразователь перестанет выдавать на двигатель что-либо. Вот такая петрушка. Но по умолчанию в этом параметре стоит 0. Так что просто не трогайте его, если нет какой-то специфической задачи.

 

Параметр 12 (Carrier frequency control) — Несущая частота ШИМ. В общем, вам не обязательно знать что это такое. Оставьте как есть. Имеет смысл изменять только если двигатель сильно пищит при работе на высокой частоте. Иногда изменение этого параметра может помочь с уровнем шума. По умолчанию стоит 5. При установке значений от 7 и выше — частотник не может выдать полную мощность. На других частотниках этот параметр может устанавливаться в других единицах! Подробности смотрите в инструкции!

 

Параметр 13 (Torque compensation) — это некоторая модификация к параметру 5. Позволяет дополнительно приподнять напряжение на двигателе на низких частотах. Есть очень выразительная картинка как он влияет на паттерн на верху стр. 37. По умолчанию значение 0. Вот так и оставьте. Этот параметр тоже относится к тонким настройкам, меняйте только при необходимости и разобравшись что делаете.

 

Параметр 14 (Stop method) — способ остановки двигателя. Есть два варианта — тормозить или отпустить. Во втором случае все просто. Частотник полностью отключается от двигателя по команде Стоп и дальше он крутится по инерции как хочет, пока не затормозится трением. А в первом случае торможение будет контролироваться частотником, причем в два этапа. Сначала частота будет уменьшаться до значения, указанного в параметре 16 (braking starting frequency) со скоростью, заданной параметром 2. А по достижении этой скорости через двигатель будет пропускаться постоянный ток , который будет тормозить двигатель дальше (уровень постоянного тока устанавливается параметром 17 (braking level) в пределах 0-20% от номинального тока двигателя) на протяжении времени, заданного параметром 15 (braking time). Вот такая история. В моем случае останавливаться двигателю конечно нужно быстро. Поэтому оставим все параметры по умолчанию. Это даст контролируемое торможение (параметр 14=0) вплоть до частоты 1,5 Гц (параметр 16=1,5) и потом торможение постоянным током 8% (параметр 17=8 ) в течение 0,5 секунды (параметр 15=0,5). Хороший компромисс между скоростью торможения и разогревом двигателя.

 

Параметр 18 (Motor rated current) — желательно просто указать номинальный ток двигателя в % от максимального выходного тока частотника. В моем случае это 0,9 А от 2,3 А т. е. 39%. Это значение тока используется частотником для защиты двигателя от перегрева. Позволяется в течение минуты поддерживать ток до 150% от номинального тока двигателя, потом частотник выдает ошибку и перестает мучить двигатель. Кстати, можно обратить внимание на эту цифру 150% и понять почему частотник лучше брать на мощность в 1,5-2 раза большую, чем ваш двигатель. И это не единственная причина, есть еще и разница при динамическом торможении, но об этом как-нибудь в другой раз. В данном конкретном частотнике защита даже пытается учесть, что на низких оборотах двигатель плохо охлаждается т. к. крыльчатка охлаждения сидит на его собственном валу, но я бы не доверял этому. Асинхронные двигатели, которые продолжительное время работают на малых оборотах, обязательно должны иметь принудительное охлаждение. Подробности на стр. 38 для самых любознательных.

 

Параметр 22 (Reverse Lock-Out) — еще один предохранительный параметр. Если его установить в 1, то частотнику будет жестко запрещено вращать двигатель в обратную сторону, даже если управляющие сигналы будут просить об этом. По умолчанию значение 0, мне нужно так и оставить, продольная подача пригодится в обе стороны.

 

Тут мы разобрали почти все «электрические» параметры. В следующем сообщении поговорим о настройке управляющих сигналов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *