Инфракрасное отопление водяное: Система водяного лучистого отопления ТЕПЛОПАНЕЛЬ

Содержание

Сравнение конвективного и инфракрасного отопления

30.03.2016

Обогреть свое жилье сегодня можно различными способами. Выбор достаточно большой. Но есть два вида отопления, которые широко применяются, но отличаются своим принципом обогрева. Речь идет об конвективном и инфракрасном отоплении.

Отопление конвективное

Тепло в помещении генерируется с помощью отопительного прибора – конвектора. Называется он так от слова конвекция (конвективные потоки), физического свойства на основе которого работает. Конвектор нагревает воздух (он является теплоносителем), который выходит из прибора и поднимается вверх, а на его смену, снизу, затягивается холодный воздух.

Происходит постоянная циркуляция воздуха, который нужно постоянно нагревать. Конвектор работает тем эффективнее, чем ближе к полу, где скапливается прохладный воздух.

В качестве конвектора выступают батареи и радиаторы центрального отопления, электроконвекторы, тепловые пушки и тепловентиляторы. Конвекторные радиаторы водяного отопления у нас в стране используются чаще всего, их можно считать традиционными. Их располагают у внешних стен здания и получается, что стены в этих местах прогреваются больше всего, а это увеличивает теплопотерю.

Рынок предлагает огромный выбор обогревателей конвекторного типа с различной мощностью и дизайном.

Особенности конвекторного отопления:

— Конвектор должен работать постоянно для поддержания комфортной температуры в помещении.
— Тепло скапливается под потолком, имеется существенный перепад температур у пола и потолка.
— Осушается воздух.
— Невозможность вентиляции помещения без потерь тепла. 
— Нагреть высокие помещения (свыше 10 м) очень сложно, надо прогреть весь объем воздуха.

 

Отопление инфракрасное

Инфракрасное отопление осуществляется обогревателями (инфракрасными излучателями), излучающими в длинноволновой части спектра электромагнитных волн. Инфракрасный спектр волн является для нас естественным и даже необходимым, как обычный свет и тепло от солнца. Такое тепло заложено самой природой.

Инфракрасные обогреватели своими тепловыми лучами нагревают все что находится рядом: пол, стены, мебель. Помещение прогревается в результате теплообмена между нагретыми предметами и воздушной массой. Наиболее теплыми являются нижние слои воздуха, прогревание идет по всей площади помещения.

Нагревательные приборы для инфракрасного обогрева представлены на рынке широко. Системы отопления могут быть запитаны от электричества, газа, дизельного топлива, горячей воды. Монтировать их можно на потолке, стене, в полу практически любого помещения. Нужно только выбрать вид прибор, его мощность, дизайн и места желательного расположения. Это зависит от строения вашего дома, квартиры или производственного помещения, теплицы, гаража и даже открытой террасы.

нфракрасное отопление может выступать в качество основного и дополнительного, резервного, сезонного. Удобно оборудовать локальные зоны обогрева: рабочие места, зоны отдыха и т. п.

Достоинствами инфракрасного (лучистого) отопления выступают:

— Быстрый и удобный монтаж-демонтаж.
— Самый широкий выбор вариантов монтажа.
— Наличие возможности автоматического и программируемого регулирования отопления.
— Бесшумная работа, экологичность, не сжигается кислород, отсутствие сквозняков, пожаробезопасность.
— Нет конвективного движения воздуха, разница температур по высоте в помещении незначительная.
— Способность энергосбережения — не менее чем 45% энергии (или топлива, если газовое инфракрасное отопление) по сравнению с другими отопительными системами. Максимальная экономия обеспечивается применением терморегуляторов.
— Энергоэффективны, имея КПД до 90%. Более чем в 2 раза эффективнее, чем отопление электрокотлом, электроконвекторами или масляными обогревателями.
— Быстрое достижение комфортной температуры отопления через 5 минут после включения.
— Длительные сроки эксплуатации и простота в обслуживании.

Компания Буран предлагает ознакомиться со своим каталогом приборов инфракрасного отопления – современное, энергосберегающее, безопасное и хорошо управляемое.
У нас можно получить подробные консультации и помощь в выборе отопительного оборудования, сделать теплорасчет и заказать монтаж отопления.

 

Инфракрасное отопление частного дома: пленочное, потолочное, панелями

Системы отопления в наших широтах, где температура в зимнее время порой опускается до 30 градусов и ниже, играют решающую роль. В то время как жителям городов выбирать особо не приходится по причине существования централизованной системы отопления, владельцы индивидуальных домов имеют больше степеней свободы при подборе принципа обогрева своего жилья. Несомненной популярностью среди прочих вариантов создания комфортного теплового режима пользуются системы инфракрасного (ИК) отопления, обеспечивающие равномерный прогрев помещения и позволяющие экономно расходовать электроэнергию. Однако существуют некоторое особенности обустройства системы ИК обогрева для частных домов, о чем мы вам и хотим рассказать.

Основное отличие инфракрасного принципа обогрева жилья от традиционного водяного заключается в том, что нагревается не воздух в помещении, а плоскости и предметы.

Именно они затем отдают накопленное тепло, создавая необходимый температурный баланс в отапливаемой зоне. Таким образом, не происходит вытеснение холодных воздушных масс теплыми, а также закономерная концентрация нагретого воздуха под потолком помещения. Нагрев помещения осуществляется равномерно – температура воздуха одинакова по всей высоте пространства комнаты. Что немаловажно, инфракрасное отопление частного дома является энергосберегающим решением и позволяет экономить около 50% электроэнергии по сравнению с прочими вариантами обогрева жилья.

Виды инфракрасного отопления

Потолочные системы инфракрасного обогрева

При инфракрасном отоплении потолочного типа нагревательные приборы подвешиваются к потолку – за счет этого тепловой поток направлен вниз и немного в стороны. Таким образом, основная поверхность, которая нагревается ИК лучами – это напольное покрытие. Поэтому температура на уровне ног человека при данном способе обогрева оказывается на пару градусов выше, чем на уровне его головы.

При конвективном принципе нагрева воздуха, пол – это всегда самая холодная поверхность, а основная масса теплого воздуха «обитает» под потолком.

Полезно знать! Конструктивно потолочный инфракрасный обогреватель включает в себя нагревательный элемент (тэн) и отражающую пластину из алюминия, которая излучает электромагнитные волны определенной длины. Тэны изготавливают из вольфрама, кварца или керамики – от применяемого материала зависит мощность и эффективность всего обогревателя в целом.

Достаточно часто потолочные обогреватели используются, как вспомогательный источник тепла в частном доме.

Поддерживая фоновую температуру в помещении при помощи другого вида отопления и используя потолочные ИК обогреватели, можно создавать «островки» тепла, например, в зоне отдыха, рабочего места или обеденной группы. Заметьте, что при этом не забирается полезная площадь помещения.

При помощи инфракрасных обогревателей потолочного крепления можно отапливать помещение как в полном объеме, так и зонально

Обладая встроенным термодатчиком, ИК обогреватель отключится при достижении заданной температуры и включится на обогрев, если температура в помещении упадет ниже установленной отметки. Таким образом, экономится немалое количество электроэнергии. Отопление инфракрасными обогревателями потолочного типа хорошо еще и тем, что нагревательные приборы можно демонтировать и перевезти, скажем, на новое место жительства.

youtube.com/v/B_xwZeyqywM?autoplay=0″/>

В потолочном пространстве частного дома может быть с успехом установлено инфракрасное пленочное отопление, которое позволит сохранить неизменной высоту помещений и площадь жилого пространства. Особенно это важно на мансардных этажах с наклонным потолком и небольшими по площади плоскостями стен. Совсем недавно на рынке отделочных материалов появился новый вид потолочных ИК панелей, монтируемых в профиль типа Армстронг – простое и экономичное решение для общих зон в частном доме.

Важно знать! Необходимо избегать направленного потока инфракрасного излучения. Нельзя, чтобы нагревательный прибор был направлен в район головы человека. Не рекомендуется крепить инфракрасные обогреватели на натяжной потолок из пленки ПВХ или на пластиковую вагонку, а также располагать их ниже 1.5 метров от поверхности пола.

Настенные системы инфракрасного обогрева

Установка настенных инфракрасных панелей отопления может стать неплохой альтернативой традиционному обогреву при помощи радиаторов. Обладая небольшой толщиной и широким разнообразием типоразмеров, ИК панели отопления могут быть легко смонтированы в частном доме собственноручно.

Инфракрасные обогреватели панельного типа могут стать отличной альтернативой традиционному водяному радиатору

Инфракрасные панельные обогреватели выпускаются в виде:

  • настенных ИК панелей, устанавливаемых вместо привычного радиатора в нишу под окном;
  • дизайнерских стеновых ИК панелей различных габаритов и в обширной колористической гамме;
  • планок теплых ИК плинтусов, которые крепятся по периметру помещения вместо обычного плинтуса.

Универсальный вариант настенного отопления – пленочная система обогрева, смонтированная в толще стены. Подобный вид источника тепла рационально устанавливать внутри помещения с одной или несколькими наружными стенами – это обеспечит достаточный прогрев плоскостей, склонных к промерзанию и образованию плесени. Важный момент, на который необходимо обратить внимание при монтаже пленочной ИК системы – обязательное применение экранирующей пленки, препятствующей потере тепла.

Напольные системы инфракрасного обогрева

В качестве напольных систем ИК отопления применяется пленочные маты, в которые запаяны плоские нагревательные элементы, соединенные последовательно. Минимальная толщина данной системы обогрева позволяет смонтировать теплый пол под любое финишное покрытие – будь то плитка, ламинат, ковролин или линолеум. При этом не будет потерян ни один сантиметр высоты помещения. Самая эффективная по теплоотдаче комбинация ИК обогрева – с керамической плиткой, чуть хуже – с ламинатом. Наибольшее экранирование инфракрасного излучения замечено за линолеумом и ковролином.

Система инфракрасного пленочного отопления может быть смонтирована на полу, стенах и потолке

Кроме перечисленных плюсов, укладка инфракрасной пленки выполняется быстро, не сопровождается грязными работами, как, например, при обустройстве водяного теплого пола. Монтаж декоративного напольного покрытия может быть произведен тут же, без многочисленных этапов, сопровождающих установку прочих видов теплых полов.

Важно знать! При обустройстве напольного ИК обогрева не рекомендуется укладывать пленку под мебель – это снизит теплоотдачу и может спровоцировать усыхание деревянных и древесно-стружечных мебельных конструкций.

Достоинства и недостатки ИК отопления

Как всякая система для создания комфортных условий проживания в частном доме, обогрев помещений с применением инфракрасного излучения не лишен своих положительных и отрицательных сторон.

Достоинства обустройства отопления в доме с использованием инфракрасного излучения:

  1. Инфракрасное излучение подобно солнечному теплу и не нарушает здорового микроклимата в помещении – не сушит воздух и не сжигает кислород.
    Кроме того, за счет сниженной циркуляции воздуха при ИК обогреве, частички пыли не переносятся настолько интенсивно, как при конвективной системе отопления. Существуют исследования, что средневолновое инфракрасное излучение оказывает благотворное воздействие на человеческий организм.
  2. ИК отопление может применяться зонально, сочетаясь с другой системой обогрева дома, или выступать в виде автономного источника тепла.
  3. Пленочные системы обогрева на основе ИК нагревательных элементов прекрасно сочетаются с напольными и настенными декоративными покрытиями.
  4. Низкая инерционность инфракрасной системы отопления означает, что ей не требуется время «на раскачку», как водяному теплоносителю. Обогрев помещения начинается сразу после включения ИК системы и позволяет комбинировать ее с терморегуляторами.
  5. Для системы ИК обогрева не критичны перепады напряжения в центральной электросети, что позволяет говорить о высокой надежности и долговечности отопления с инфракрасным излучением.
  6. При использовании напольной или настенной системы обогрева, можно уложить ИК пленку только на 50-60% площади помещения, чтобы добиться комфортной температуры в комнате.
  7. Монтаж инфракрасной пленки и ИК обогревателей легко выполним собственными силами, так как не требует специфических знаний или умений.
  8. За счет модульности пленочного инфракрасного обогрева, выход из строя одного сегмента пленки не влечет за собой полной недееспособности всей системы отопления. Замена неисправного элемента пленочного теплого пола достаточно проста и не требует установки новой нагревающей полосы.
  9. Потребление электроэнергии ИК системой отопления составляет порядка 50 Вт/м2 в час.

Инфракрасные обогревательные приборы создают комфортный микроклимат в помещении, равномерно нагревая близлежащие поверхности, которые затем отдают тепло

Несмотря на то, что инфракрасное отопление обладает многими плюсами, нельзя не упомянуть и его минусы:

  1. Как бы то ни было, принцип инфракрасного обогрева основан на электромагнитном излучении, которое не всегда оказывает положительное влияние на организм людей. Помимо этого, на нагревательных поверхностях накапливается статическое электричество, которое способно притягивать пыль.
  2. Несмотря на экономичность ИК систем, первоначально необходимо вложить значительную сумму в оборудование, которое окупится через несколько лет.
  3. Если зональный обогрев инфракрасным излучением обойдется в небольшие деньги, то использование отопления инфракрасным излучением в качестве единственного источника тепла может вылиться в неподъемную сумму в процессе эксплуатации.
  4. Бытует мнение, что излишний нагрев поверхностей в помещении ИК излучением может негативно сказаться на работе бытовых электроприборов.

Подводя итог всему вышесказанному, можно отметить, что инфракрасная система отопления может стать рациональным, экономичным, быстро монтируемым вариантом как основного, так и зонального отопления для частного дома.

Оцените статью: Поделитесь с друзьями!

Водяные инфракрасные потолочные панели — ГАЗ-ТЕСТ

Описание товара

Представляет собой стальной излучающий формованный экран с запрессованными оцинкованными трубами для циркуляции теплоносителя (вода, этиленгликоль). Инфракрасные водяные панели отопления снабжены теплоизоляционным материалом с тыльной стороны для предотвращения конвекционных теплопотерь. Водяные инфракрасные потолочные панели Российского производства, — это инновационное решение в области эффективного отопления промышленных и торговых, выставочных и спортивных помещений.

Водяные инфракрасные потолочные панели успешно отапливают:

  1. Производственные цеха
  2. Спортивные площадки
  3. Торговые центры
  4. Автосалоны
  5. Выставочные залы
  6. Фермы
  7. Ангары и депо
  8. Автомастерские
  9. Офисы опен-спейс
  10. Автосервисы

Водяные инфракрасные потолочные панели.

Классификация водяных инфракрасных панелей.

Водяные инфракрасные потолочные панели выпускаются в нескольких типовых рядах. К ним относятся ТП Мини, ТП-1, ТП-2, ТП-3, ТП-4 типы. Отличительной особенностью каждого типа является количество труб, предназначенных для циркуляции теплоносителя и теплообмена с поверхностью панели. Так ТП Мини включает в себя 2 нержавеющие трубы, ТП-1 имеет 4 нержавеющие трубы, а все остальные типы изготавливаются на базе ТП-1.

НАПРАВИТЬ ЗАЯВКУ НА ПОДБОР ТЕПЛОПАНЕЛИ

Данная классификация была разработана для получения максимальной энергоэффективности применения водяных инфракрасных панелей в самых разных по своим архитектурным и технологическим особенностям, помещениях.

Конструкция водяных инфракрасных панелей.

Конструктивно все типы панелей идентичны друг другу. Панели представляют собой стальной профилированный экран толщиной 0,5 мм. В экран встроены трубы из нержавеющей стали диаметром 0,18 мм. С тыльной стороны экрана (стального листа) укладывается теплоизолирующий материал, предназначенный для снижения и предотвращения тепловых потерь в процессе работы водяной инфракрасной панели.

По ширине и длине.

ТП-1, ТП-2, ТП-3, ТП-4.


Инфракрасные панели производятся в следующих длинах: 1000 мм, 2000 мм, 3000 мм, 4000 мм, 5000мм, 6000мм. Длины панелей привязаны к длинам теплообменных труб, вмонтированных в полость панелей. Конструктивные особенности водяной панели обусловлены тем, что трубы выступают за длину профильного экрана. Это связано с тем, что для эксплуатации прибора к нему необходимо подключать трубопровод с внешнего источника генерирования теплоносителя. Подключение производится с помощью устанавливаемых к теплообменным трубкам, специальной гребёнки, которая запрессовывается специальными обжимными фитингами.

Принцип действия водяной инфракрасной панели.

Принцип действия инфракрасной водяной панели прост. Горячая вода, которую готовит водогрейная котельная через смесительный узел в инфракрасную панель, непрерывно нагревает поверхность стальной пластины теплопанели. Специальный состав стали пластины при нагреве излучает инфракрасное тепло по аналогии солнечной энергии. Теплопанели устанавливаются в подпотолочном пространстве помещения в горизонтальной оси. Поэтому излучаемая водяной инфракрасной панелью тепловая энергия, попадая на все поверхности физических тел, находящихся в зоне её действия под ней, нагревает их. Теплопанель можно использовать для охлаждения помещения в летний период времени.

Водяное инфракрасное отопление.

Водяное инфракрасное отопление создаётся в крупногабаритных помещениях с большими высотами с целью достижения максимальной энергоэффективности. Энергоэффективность применения водяных инфракрасных панелей достигается за счёт эксплуатации водогрейной котельной с минимальными затратами на использование топлива, так как именно инфракрасный тип теплового излучения способен практически мгновенно нагревать человека, стены, пол и все предметы, находящиеся в зоне действия излучателя. Отсутствие конвективных потоков и бесшумность делает использование водяных инфракрасных панелей идеальным решением в области теплоснабжения предприятий.

Подключение водяной инфракрасной панели.

Водяная инфракрасная панель подключается к системе с теплоносителем через специальные коллекторы, которыми комплектуются отопительные панели. Коллекторы изготавливаются из трубы квадратного сечения и имеет размер 40х40 мм. В качестве подготовки к эксплуатации коллекторов в процессе производства их окрашивают и обрабатывают антикоррозийным покрытием.

 

 

 

 

 

 

 

 

 

 

 

Крепёж водяных инфракрасных панелей.

Водяные инфракрасные панели крепятся в подпотолочном пространстве посредством специальных штанг, изготавливаемых из углового профиля. В штангах организованы отверстия для соединения подвесных тросов или цепей через карабины.

Декоративная накладка, закрывает места соединения панелей. Устанавливается после всех инсталляционных работ и проверки трубных соединений на герметичность.

Крепление водяных инфракрасных панелей к потолку.

Ввиду разнообразия архитектурных решений и материалов стеновых и кровельных перекрытий, способы крепления водяных инфракрасных панелей могут быть разными. В сущности в 90 процентах случаях фиксация панелей в подпотолочном пространстве происходит с помощью цепей или тросов с применением талрепов и карабинов. Но фиксация тросов и цепей к несущим конструкциям отличается в зависимости от свойств  и конфигурации материала.

 

Водяные инфракрасные обогреватели в СПб и Москве

Водяные ИК панели – это не только эффективный, но еще и экономичный вид отопления/охлаждения. Применение воды в качестве теплоносителя создает массу плюсов при эксплуатации такого типа оборудования. Водяные ИК панели могут работать без ограничения в потреблении электроэнергии, без угрозы возникновения пожаров, а кроме этого современные модели ИК панелей способны не только обогревать, но и охлаждать помещения летом, что удобно при отсутствии возможности монтажа в помещении кондиционера. простота в монтаже и сборке панелей, а также наличие множества вариантов для выбора площади излучающей поверхности дают возможность конструировать целые ИК потолки.

Водяные инфракрасные обогреватели Mark Infra Aqua

Голландские водяные инфракрасные обогреватели Mark Infra Aqua относятся к типу промышленных нагревателей. Принцип работы ИК излучения основан на том, что его тепловые волны распространяются не в воздух, а на предметы и людей, находящихся в помещении, что наиболее эффективно и менее энергозатратно. Кроме этого ИК нагреватели Mark Infra Aqua, как уже видно из названия, в качестве теплоносителя используют горячую воду, именно поэтому данная серия отличается наличием следующих особенностей: возможность интеграции в систему потолочного отопления; абсолютной пожарной безопасностью в работе; отсутствием ограничений по монтажу, связанных с напряжением в сети электроснабжения; алюминиевым корпусом с высокой теплопроводностью; качественной теплоизоляцией; возможностью выбора площади излучающей поверхности, которая зависит от количества и длины установленных в нагревателе трубок.Гарантия — 2 года. Компания Аэростандарт является официальным дистрибьютором компании климатические технологии Mark. Всю интересующую Вас информацию Вы можете получить позвонив нашим менеджерам или перейдя на страницу товара.


Водяные инфракрасные панели Mark Infra Aqua ECO

Водяные инфракрасные панели Mark Infra Aqua ECO выделяются своей возможностью не только нагрева, но и охлаждения. ИК излучение, вырабатываемое панелями, направляется строго в необходимые зоны и передает свою энергию не воздуху, а людям или предметам, с которым соприкасается. Возможность применения в качестве теплоносителя воды обеспечивает ИК панелям Mark Infra Aqua ECO возможность установки в помещениях или на площадках не зависимо от ограничений по электроснабжению, а монтаж под потолком значительно экономит место и пространство. Высокое качество материалов и комплектующих применяемых в производстве оборудования способствует их продолжительной эксплуатации. Стандартная длина панели составляет 4 или 6 метров. Панели стандартной ширины от 30.2 см до 129.8 cм могут подвешиваться параллельно. Вы можете заказать расчет требуемых габаритов панели, позвонив нашим менеджерам. Водяные панели выделяются: абсолютным отсутствием шума при работе; равномерным распределением излучения; компактностью корпуса; возможностью выбора площади и размера излучающей поверхности; отсутствием риска возникновения пожара.Более подробную информацию о вариантах увеличения площади поверхности, Вы можете найти в брошюре, прикрепленной внизу страницы товара.Гарантия — 2 года.


Водяные ИК панели (потолки) Mark INFRA AQUA KP для обогрева или охлаждения помещений

Стальные водяные ИК панели Mark INFRA AQUA KP из-за их размеров и возможности монтажа можно смело назвать ИК потолками. Широкие стальные рейки с водопроводным регистром заключены в алюминиевый каркас. Вся эта конструкция крепится под потолком или крышей помещения, образовывая, таким образом, еще один, так называемый ИК потолок. Ширину потолочных панелей и их тепловую или охлаждающую мощность Вы можете выбрать сами, определив расстояние между трубами в конструкции. Основные преимущества такого вида ИК панелей: максимальная экономичность и эффективность работы за счет ИК излучения; отсутствие образования перемещения потоков воздуха в помещении; качественный изоляционный слой; vвозможность работы в больших по площади помещениях: спорткомплексы, демонстрационные залы или площадки, ангары, склады и т.д.Гарантия – 2 года. Всю интересующую Вас информацию, включая рекомендации по сборке и размещению, Вы можете узнать на странице товара или у наших менеджеров. !Дополнительно: окраска в цвета или изготовление с перфорацией!


Водяные инфракрасные обогреватели Frico AQUAZTRIP

Инфракрасные обогреватели (панели) Frico Aquaztrip с подводом горячей воды применяются для обогрева промышленных объектов или зданий и помещений административного или жилого назначения. Модели Aquaztrip Design — монтаж в подвесной потолок. Температура воды 80/60ºC  и воздуха на входе +20ºC . Пульты управления докупаются отдельно. Гарантия — 1 год.



Инфракрасное отопление своими руками

При строительстве дома вопрос отопления стоит во главе угла. Сегодня известны несколько систем отопления, а именно газовое, дровяное, электрическое. Однако каждый вид требует большого количества энергоресурсов. Вот по этой причине многие находят альтернативу в инновационном отоплении частного дома – инфракрасном. Эта статья будет посвящена тому, как сделать инфракрасное отопление своими руками. Мы рассмотрим принцип его работы, особенности, преимущества и недостатки. Если вы ищите альтернативные методы отопления, тогда эта информация будет для вас полезной.

Обогрев дома ИК – что это?

Отопление дома инфракрасным отоплением является практичным вариантом, однако, это достаточно сложный процесс. Принцип работы такого отопления основан на специальных обогревательных элементах, которые, излучая инфракрасные лучи, нагревают предметы и поверхности, на которые они воздействуют, например, мебель, пол, стены. После того как они нагреваются, они начинают отдавать тепло. Самое подходящее сравнение для данного метода отопления — свет, который излучает солнце. Данная технология уникальна в своем роде. От прибора, который отдает тепло, воздух не забирает тепло. Таким образом, во время отопления теплопотери минимальны. Эта энергия без каких-либо затруднений достигает предметов, а также людей, которые находятся в зоне действия.

Монтаж на потолок

Инфракрасный обогрев не допускает нерационального распределения температуры. В момент, когда нагретый воздух поднимается наверх, холодный опускается вниз. Это случается по той причине, что нагреваются предметы и твердые поверхности, а не сам воздух. Соответственно температура потолка и пола выравнивается, а сам воздух не перегревается. Это позволяет экономить до семидесяти процентов энергии. Более того, инфракрасное отопление может иметь не только точечный обогрев, но и зональный.

Пленочное на потолке

Ввиду этого существуют различия по его установке, например, на потолок или на пол. Что касается монтажа ИК обогрева на потолок, то их установка осуществляется в среднем на высоте от 2,2 до 3,5 метра от пола. На этот показатель напрямую будет влиять высота потолков в том или ином помещении. Не рекомендуется направлять это устройство непосредственно на постоянное местопребывание человека, а именно на голову. Например, если отопление над кроватью, тогда тепло следует направлять на ноги или туловище. Не рекомендуется устанавливать ИК обогрев над оконными проемами. В этих местах тепло будет попросту рассеиваться, соответственно, оно не достигнет своего назначения. Если потолок выполнен из ПВХ панелей, то использование такого рода отопления запрещено.

Инфракрасный теплый пол

Если ИК элементы используются для монтажа теплого пола, то такое отопление можно комбинировать с разнообразным видом покрытия, например:

Подготовка к его монтажу

Перед началом монтажа инфракрасного отопления важно провести ряд подготовительных и вычислительных работ.

Схема установки инфракрасных нагревателей

Вам потребуется собрать некоторую информацию:

  1. Важно точно знать состояние теплоизоляции всего дома.
  2. Какая мощность в кВт выделяется на дом.
  3. Знать площадь каждого помещения, где планируется установка оборудования. В этом случае нужны точные размеры комнат.
Обратите внимание! Крайне важно предварительно измерить общее напряжение электросети во всем доме. Для этого включите все электроприборы одновременно и осуществите измерение напряжения. Допускается небольшое отклонение, максимум до 20%, а показатель должен быть на уровне 220-230V. В том случае если напряжение электросети имеет большее отклонение, то рекомендуется использовать стабилизатор напряжения.
Пленочная система отопления на потолке

После этих вычислений вам остается ознакомиться с планом дома и правильно рассчитать систему инфракрасного отопления. При этом точно определитесь с тем, где будет установлен обогреватель, как правило, это следующие помещения:

  • спальная комната,
  • кухня,
  • гостиная,
  • санузел,
  • ванная комната,
  • прихожая,
  • подсобное помещение,
  • кладовка,
  • гараж.
Схема подключения инфракрасного теплого пола

Ширина пленочных нагревательных элементов может составлять 50, 80 и 100 см. Количество нагревателей считают метражом.

Работы по установке ИК обогревателей

Как говорилось выше, такой обогреватель монтируется на определенной высоте. Также существует еще одно важно ограничение. Не допускается его установка на высоте полметра от головы человека. Минимальная высота его расположения в таком случае должна составлять 2,4 метра, но это при росте человека 1,9 м.

Высота установки инфракрасного обогревателя

Это правило касается и непосредственно рабочих зон, а именно письменный стол, кухонный стол и тому подобного. Отметим, что необязательно монтировать ИК обогреватель прямо над головой. Сам прибор можно слегка сместить в одну или другую сторону. Исходя из этого, вам следует точно рассчитать все эти нюансы, и уже потом осуществлять монтаж инфракрасного отопления.

Инфракрасные обогреватели

Также важно осуществить балансировку нагрузки. Это автоматизированный процесс, который позволяет регулировать и даже управлять инфракрасными обогревателями, а именно нагрузкой на саму систему. Управление можно осуществлять по разным параметрам. Какой выбрать решать только вам. Рассмотрим принцип балансировки нагрузки обогревателя.

Чтобы поддерживать нормальную температуру достаточно работы обогревателя в течение 20 минут в час. Такой промежуток времени считается идеальным при условии нормальной теплоизоляции. При этом пиковая нагрузка должна быть не более 1,8 кВт. Чтобы провести провод, предварительно изготавливается короб. Если вы хотите сделать скрытую систему в стене, тогда необходимо использовать гофру. Если дом построен из дерева, тогда можно применить гофру и короб одновременно. Когда короб готов, в него укладывают провод в гофре, сечение которого должно быть 1,5 мм2 либо 2,5 мм2. Позаботьтесь об установке общего автомата, который будет включать и, соответственно, выключать всю отопительную систему.

Плюсы и минусы инфракрасного обогрева дома

В отличие от электрического отопления, инфракрасное экономнее на сорок процентов. Самое первое его преимущество заключается в том, что он не выжигает кислород. Если использовать другую систему отопления, то проект будет подразумевать обязательное использование котельной и системы труб с радиаторами. Но если выполнить хорошую теплоизоляцию, или построить так называемый «пассивный дом», тогда вы сможете явно сэкономить. Ведь обогрев дома инфракрасным отоплением считается инновационным и эффективным.

Некоторые решают использовать ИК отопление как дополнение к основной системе отопления. Если говорить о минусах такого типа обогрева, то здесь можно выделить главный недостаток, а именно пожароопасность. По этой причине в процессе проектирования инфракрасного отопления важно учитывать все эти нюансы. Такое отопление ограничивает и выбор отделочных материалов. Не допускается использование материалов из ПВХ.

Следует заметить и важный плюс. Инфракрасные обогреватели не оказывают на человека никакого отрицательного влияния, а только положительное. Даже существуют некоторые методики лечения, где в качестве профилактики простудных заболеваний применяют инфракрасные сауны. Корпусные инфракрасные обогреватели в большинстве случаев монтируют на потолок, соответственно, такое отопление никак не будет влиять на месторасположение мебели в комнате. Более того, если у вас есть маленькие дети, то такой вид крепления позволяет предотвратить ожоги.

Сравнение схемы отопления

Что касается теплопотерь, то они минимальны. В среднем они составляют от пяти до десяти процентов. Если вы желаете регулировать стабильную температуру, то можно устанавливать терморегуляторы. Осуществляется отопление только той поверхности, которую вы сами захотите отапливать. Вы не будете отапливать лишние квадратные метры.

Отдельно следует упомянуть и о практическом применении. В начале этой статьи мы говорили о напольном виде инфракрасного отопления, которое представляет собой специальную пленку. Здесь следует учитывать некоторые характерные особенности. Не всегда будет происходить одинаковая отдача тепла. Если в качестве покрытия у вас используется ковролин или линолеум, то излучение будет задерживаться меньше всего. Такие покрытия требуют большего потребления энергии по причине того, что они не аккумулируют тепло. Как показывает практика, самый оптимальный и практичный отделочный материал – керамическая плитка. Ламинат имеет меньшее преимущество. При использовании напольного ИК обогрева важно правильно расставить мебель. В тех местах, где будет стоять шкаф или другая мебель пленку стелить нет смысла. Ее использование сократит теплоотдачу, а также может привести к пересыханию мебели из дерева.

Итак, из этой статьи мы узнали, что представляет собой инфракрасное отопление, по какому принципу оно работает, и как правильно осуществлять его монтаж. Следуя всем правилам и нормам у вас получится создать экономичную систему отопления, которая позволит вам не замерзнуть зимой. Если в ходе работы или вычислений у вас возникнут вопросы, то их вы можете задавать нашим экспертам, которые предоставят объективную и проверенную информацию.

Видео

Смотрите, как осуществляется установка пленочных нагревателей на потолок:

Какие инфракрасные обогреватели подходят для инфракрасного отопления?

Главная → Статьи и советы по выбору → Какие инфракрасные обогреватели подходят для инфракрасного отопления?

Многие сейчас всерьез задумываются о создании систем отопления, отличных от классических систем водяного отопления, и в том числе в качестве одного из вариантов рассматривается инфракрасное отопление.

Если отопление с помощью инфракрасных обогревателей планируется просто как дополнительная к основной системе водяного отопления, то здесь все проще. Даже самые простые модели способны дать необходимое дополнительное тепло, необходимо только определиться с наиболее оптимальным вариантом установки инфракрасного обогревателя (выбрать потолочное, настенное или оконное размещение), рассчитать мощность отдельных обогревателей и определиться, в какой зоне помещения более всего необходимо обеспечить дополнительное тепло.

А вот если система инфракрасного отопления предполагается использоваться в качестве основной системы обогрева, здесь все уже не так просто. Основная трудность заключается в в выборе оборудования, способного обеспечить эффективный и надежный обогрев заданных объемов помещения. Сразу скажем, что дешевые инфракрасные обогреватели (чаще всего это приборы отечественного производства) для решения этой задачи не подходят, так как они не способны обеспечить требуемую интенсивность инфракрасного излучения и не смогут достаточно эффективно решить задачу обогрева, особенно если учитывать суровость наших сибирских зим.

Кроме того, дешевые ИК обогреватели отечественного производства, к сожалению, не обладают достаточной надежностью и отказоустойчивостью, которая в данном случае, как Вы понимаете, является не менее важной, чем сама эффективность обогрева. Так как в этом случае инфракрасное отопление выполняет функцию основного, то и требования к надежности работы, качеству изготовления и уровню технологий, использованных при производстве обогревателей, выходят на первый план.

Из ИК обогревателей, представленных на российском рынке, этим требованиям отвечает оборудование только двух производителей — известного во всем мире шведского завода FRICO и крупнейшего в мире завода по производству инфракрасных обогревателей, расположенного в Турции — до мирового финансового кризиса он производил свои обогреватели под торговой маркой UFO, теперь то же оборудование поставляется с новым торговым названием INFRATEC.

Что касается продукции завода FRICO — она безупречна по своему качеству, предлагает беспрецендентный выбор моделей всевозможных размеров, вариантов размещения и дизайна, благодаря чему у проектировщиков появляется уникальная возможность подобрать инфракрасный обогреватель, идеально подходящий под конкретные условия каждого помещения. Только этот производитель предлагает модели потолочных инфракрасных обогревателей, рассчитанных на обогрев помещений с очень высокими потолками — от 4 до 6 метров!

Обогреватели FRICO имеют лишь один недостаток — высокая цена, которая конечно же понятна и легко объяснима, так как их заводы действительно располагаются в Европе (Швеция и Норвегия), где уровень зарплат и прочих накладных расходов, мягко скажем, не низкий. Однако если речь идет об обогреве больших площадей приобретение этих моделей инфракрасных обогревателей может вылиться в просто неподъемную сумму, да и с наличием оборудования на московских складах часто случаются перебои.

Поэтому мы предлагаем обратить Ваше внимание на более доступные по цене, но не уступающие по качеству и надежности инфракрасные обогреватели другого крупнейшего производителя — оборудование INFRATEC. Эти обогреватели по своим техническим характеристикам, интенсивности инфракрасного излучения и показателям надежности прекрасно подходят для создания эффективной системы инфракрасного отопления.

Есть только один случай, когда эти ИК обогреватели не могут заменить шведского оборудования- это помещения с высотой потолков более 4,5 метров, в этом случае альтернативы обогревателями FRICO действительно не существует. Во всех остальных случаях со спокойной совестью можно использовать более доступные по цене инфракрасные модели обогревателей INFRATEC.

Инфракрасный излучатель этих обогревателей вполощает в себе все наиболее современные достижения в области технологии инфракрасного отопления, благодаря чему он способен генерировать инфракрасные лучи наиболее эффективного по своей тепловой мощности спектра, на 30-40% превышающего эффективность теплового излучения недорогих отечественных моделей.

Еще одна немаловажная деталь — благодаря особым конструктивным решениям эти обогреватели имеют существенно больший угол распространения тепловых лучей, иными словами один такой обогреватель способен более эффективно обслужить большую площадь помещения.

Единственный момент, который нужно учитывать — эти инфракрасные модели имеют излучают видимый свет, и хотя он имеет очень приятный для человеческого глаза солнечно-оранжевый цвет, это нужно иметь ввиду при разработке системы инфракрасного отопления. Если по каким-либо причинам постоянное присутствие этого света в обогреваемых помещениях не является желательным, лучше обратится к моделям обогревателей шведского производства.

По опыту применения инфракрасных обогревателей INFRATEC (бывшие UFO) в Красноярске можно смело утверждать, что они прекрасно зарекомендовали себя не только для обогрева жилых, офисных, складских и производственных помещений, но и для решения таких нетрадиционных задач, как например, обогрев уличных открытых кафе и площадок, ускорение процесса сушки окрашенных деталей в покрасочных автомастерских, обеспечение качественного затвердевания бетона на морозе и даже при подогреве молока на молочных заводах.

Таким образом, правильный выбор оборудования наравне с грамотным проектированием требуемых мощностей и выбором наиболее рациональных мест для их размещения является залогом создания эффективной и надежной системы инфракрасного отопления, представляющей собой хорошую альтернативу устаревшим системам водяного отопления.

Также рекомендуем прочитать статью об инфракрасных обогревателях на сайте климатической фирмы «Дисконт-климат»:
«Инфракрасные обогреватели — комфортное тепло Вашего дома»

инфракрасный,  обогреватель,  отопление,  Ballu,  frico 

20.11.2010, 6542 просмотра.

Инфракрасное отопление цеха | Академия промышленного отопления

Принцип работы инфракрасных обогревателей заключается в нагреве поверхностей за счет воздействия ИК излечения. Если система отопления сварочного цеха рассчитана на точечный обогрев определенных зон, то лучше всего использовать эти приборы. Эффективное отопление инфракрасными обогревателями для цехов следует начать с выбора нагревательных элементов. В настоящее время применяется два метода генерирования ИК излучения.

Карбоновые обогреватели

Его конструкция состоит из колбы, внутри которой расположена карбоновая спираль, и отражающего элемента. При прохождении тока по нагревательному элементу происходит его накаливание за счет высокого электрического сопротивления. В результате этого выделяются ИК излучение.

Для фокусировки тепловой энергии предусмотрен отражатель, изготавливаемый из нержавеющего железа или алюминия.

ИК электрические обогреватели могут применяться как дополнительное отопление столярного цеха. Их монтируют над теми рабочими зонами, где необходим стабильный температурный режим.

К преимуществам электрических инфракрасных обогревателей можно отнести:

  • Простой монтаж;
  • Возможность регулирования температуры нагрева за счет изменения подаваемой мощности тока;
  • Небольшие габаритные размеры.

Однако из-за большого энергопотребления отопление электрическими инфракрасными обогревателями для цехов встречается редко. Вместо них монтируют газовые модели.

Газовые ИК обогреватели

Для производственных цехов большой площадью при необходимости зонального обогрева рекомендуется применять газовые модели инфракрасных обогревателей. Их принцип работы основан на так называемом беспламенном горении смеси газа и воздуха на керамической поверхности. В результате этого формируется ИК излучение, которое фокусируется отражателем.

Для эффективного отопления инфракрасными обогревателями цехов зачастую используют потолочные модели обогревателей. Важно правильно рассчитать высоту крепления и требуемую мощность. От этих параметров будет зависеть площадь обогрева и температурный режим в этой части цеха.

Они используются в качестве системы отопления сварочного цеха, где комфортная температура нужна только для обеспечения нормальных условий рабочему персоналу. Однако при планировании такого вида обогрева нужно учитывать ряд нюансов:

  • Инфракрасную систему отопления для цеха нельзя применять, если нужен нагрев воздуха во всем помещении. Обогреватели рассчитаны на локальное воздействие;
  • Для минимизации расходов нужно использовать только природный магистральный газ. Сжиженный баллонный помимо дополнительной закупки обменных емкостей неудобен периодической процедурой подключения.

Но несмотря на эти недостатки, применение инфракрасного отопления для цехов деревообработки и других направлений промышленности остается оптимальным вариантом. Однако для монтажа газового отопления цеха только своими руками нужно провести ряд согласовательных мероприятий со службой газа, чтобы получить все разрешительные документы.

Как же правильно выбрать систему отопления для того или иного цеха? Нужно учитывать ее эксплуатационные параметры, расходы на приобретение оборудования и цену энергоносителя. Помните, что от эффективности отопления любого производственного цеха будет зависеть себестоимость продукции.

Если же нужен экономный вариант организации отопления столярного цеха – на видео можно увидеть нестандартные способы нагрева воздуха с использованием опилок и деревянной стружки.

Инфракрасный водонагреватель

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Необычная конструкция этого резервуара обеспечивает значительную поверхность нагрева (более одного квадратного метра), обернутую специальной нагревательной крышкой. После включения температура крышки достигает 120 ° C, а температура внутренних стенок резервуара достигает 85 ° C: это увеличивает теплообмен с водой и, в то же время, предотвращает образование накипи.

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

Холодная вода, поступающая в резервуар снизу, проходит по нагретым стенкам, так что температурный обмен между водой и стенками происходит быстрее и эффективнее, а вода быстрее нагревается.

Это приводит к снижению и оптимизации энергопотребления благодаря: i. нагреватель, который состоит из кабелей из углеродного волокна (углеродные волокна сокращают потребление энергии на 40% при той же целевой температуре), и ii. деление мощности (470 Вт — 1220 Вт — 1470 Вт в режиме «Плюс»).

Процесс контролируется электронным блоком управления. Блок управления, снабженный дисплеем, подключен к двум постоянно работающим датчикам измерения температуры воды: один установлен в нижней, а другой в верхней части резервуара.

Блок управления позволяет:

  • Установить два дневных интервала рабочего времени (вариант двухтарифного повременного тарифа),
  • Решите, как использовать температуру хранения и измерить потребление электроэнергии, исходя из фактической потребности пользователя в горячей воде,
  • Управление выходной мощностью.

ПРЕИМУЩЕСТВА

Благодаря вышесказанному водонагреватель может:

  • Производят беспрецедентное количество горячей воды по сравнению с аналогичными продуктами, погруженными в воду с электрическим подогревом,
  • Обеспечьте значительную экономию энергии и бережное отношение к окружающей среде,
  • Регулировка энергопотребления, что является очень важным условием для экономии и рационализации энергии.

ТИПИЧНЫЙ КОТЛ

Вышеуказанные характеристики в сочетании с электронным блоком управления позволяют предварительно настроить подачу горячей воды в зависимости от ваших реальных потребностей.

КОЛИЧЕСТВО ЛЮДЕЙ ТЕМП. ВОДЫ ПОТОК ВОДЫ ПОТРЕБЛЕНИЕ кВтч / день СТОИМОСТЬ 1 кВтч- 0,115 фунта стерлингов
1 45 ° С 90 л 2,45 £ 0,28
2 55 ° С 135 л 4.1 £ 0,47
3 60 ° С 190 л 5,15 £ 0,59
4 65 ° С 245 л 6,25 £ 0,72
ТЕХНИЧЕСКИЕ ДАННЫЕ NTA1.A NTA1.B NTA1.C
Вместимость л 50 75 100
Мощность Вт 250/710/1020 470/1220/1470 470/1630/1880
Напряжение В 230 230 230
Макс.рабочая температура: ° С 90 90 90
Тепловые потери при 65 ° C кВтч / 24 часа * 1,37 *
Макс. рабочее давление бар 6 6 6
Масса нетто кг 21 29 33
РАЗМЕР
A мм 500 500 500
B мм 460 460 460
С мм 460 720 960
D мм 650 910 1150

ЗАМЕЧАНИЯ ПО УСТАНОВКЕ

  • Рекомендуем установить расширительный бак для компенсации увеличенного объема нагретой воды.
  • Установить блок регулировки давления на впуске.
  • Учитывая, что питательная вода обычно довольно жесткая (до 25 ° F), мы рекомендуем установить полифосфатный фильтр, чтобы избежать осаждения кальция в котле. Для интенсивного использования или воды с жесткостью более 25 ° F необходимо установить смягчитель воды.

КУПИТЬ ИНФРАКРАСНЫЙ ВОДОНАГРЕВАТЕЛЬ

Инфракрасный безбаковый водонагреватель использует кварцевые элементы.

Краткое содержание пресс-релиза:

Вместо использования металлических змеевиков, которые со временем могут подвергаться коррозии и вызывать отложения, в водонагревателе SuperGreen Tankless Water Heater используются кварцевые нагревательные элементы и инфракрасный свет для мгновенного производства горячей воды, который нагревается только при необходимости.Термодатчик, датчик потока, прикрепленный к нагревательным элементам, и нечеткая логика позволяют системе потреблять только необходимую мощность для поддержания заданной температуры. В целях безопасности нечеткая логика контролирует нагреватель, чтобы гарантировать его безопасное использование при включении.


Оригинальный пресс-релиз:

Первый в мире инфракрасный водонагреватель без резервуара экономит деньги, служит дольше и не требует технического обслуживания

Клируотер, Флорида — SuperGreen Inc. представила первый в мире инфракрасный водонагреватель без резервуара.Это революционный продукт, в котором не используются металлические змеевики для нагрева воды. Вместо этого они используют кварцевые нагревательные элементы и инфракрасный свет для мгновенного получения горячей воды.

«В обычных водонагревателях для нагрева воды используются металлические змеевики. Это может со временем подвергнуться коррозии и вызвать отложения, снижающие эффективность. Со временем обычные водонагреватели теряют энергоэффективность и требуют больше времени для нагрева воды », — говорит представитель компании по производству инфракрасных безбаквальных водонагревателей во Флориде.

Но в продуктах SuperGreen используются кварцевые элементы и они нагревают воду с помощью инфракрасных лучей. В них используется запатентованная технология, в которой вода и углеродные компоненты отделены друг от друга. Пользователям не нужно беспокоиться о коррозии металла, благодаря чему срок службы изделия в 4 раза дольше, чем у обычных нагревателей. Кроме того, SuperGreen разработан для уменьшения известкового налета и смягчения воды.

SuperGreen нагревается только при необходимости; когда не используется, не нагревается. Эта система не похожа на обычный водонагреватель, в котором вода должна постоянно оставаться горячей.Термодатчик, датчик потока, прикрепленный к нагревательным элементам, и нечеткая логика позволяют машине потреблять только необходимую мощность для поддержания желаемой температуры.

Что касается безопасности, Supergreen использует нечеткую логику, чтобы контролировать, безопасно ли использовать машину при включении. Вода нагревается только после проверки безопасности использования. Кроме того, нечеткая логика также позволяет пользователям устанавливать желаемую температуру.

«Типичная семья из четырех человек может ежегодно экономить около 500 долларов на отоплении только на душах.А коммерческие пользователи, переходящие с газа, могут сэкономить около 700 долларов в год. Не говоря уже о деньгах, сэкономленных на обслуживании и сроке службы продукта », — добавляет представитель.

О SuperGreen Inc:
SuperGreen Inc. — это компания из Флориды, производящая инфракрасные безрезервуарные водонагреватели. Их инфракрасные водонагреватели без резервуаров — единственные системы мгновенного нагрева воды, в которых используются инфракрасные кварцевые элементы, и они являются самыми энергоэффективными обогревателями в мире.

Чтобы узнать больше, посетите https: // www.supergreenusa.com/

Связанные

Всесторонний обзор применения инфракрасного обогрева в пищевой промышленности

Энергосбережение — один из факторов, определяющих полезность и успех работы любого предприятия пищевой промышленности. Тепло передается за счет теплопроводности, конвекции и излучения. Цель нагрева пищи — продлить срок хранения и улучшить вкус пищи [2]. Температура — это мера теплового движения на молекулярном уровне. Когда температура материала увеличивается, молекулярное движение получает больше энергии, а когда она увеличивается, это вызывает физические и химические изменения в нагретом материале.При обычном нагреве, который происходит за счет сгорания топлива или электрических обогревателей, тепло передается материалу извне за счет конвекции горячим воздухом или теплопроводности. Процесс передачи энергии от источника к пище зависит от типа приготовления. Например, в случае процесса выпечки энергия передается посредством конвекции, а жарка и кипячение — посредством теплопроводности. Энергия будет находиться очень близко к поверхности пищи, а затем постепенно нагревать пищу от горячей поверхности внутрь.Тепло передается пище только за счет теплопроводности, а это требует непрерывной обработки тепла. Высокая температура и время, необходимое для приготовления пищи, зависят от термических и технических свойств пищи [3].

Когда нагрев осуществляется излучением, тепло передается за счет конвекции и теплопроводности. Процесс жарки происходит за счет теплового излучения. Электромагнитное излучение вызывает тепловые движения молекул, но эффективность преобразования сильно зависит от частоты (энергии) излучения.Передаваемая излучением энергия на более коротких длинах волн, чем инфракрасный, вызывает электронно-химические изменения в молекулах, поглощающих излучение, такие как химическая связь, электронное возбуждение и рассеивание поглощенной энергии в виде меньшего количества тепла. Эффективность преобразования поглощенной энергии в тепло высока на высоких длинах волн инфракрасного излучения, поэтому электромагнитное излучение, создаваемое инфракрасным излучением, углубляет пищу на несколько миллиметров. Инфракрасное излучение поглощается органическими веществами на разных частотах, которые соответствуют переносу внутренних молекул между уровнями энергии.Этот переход в диапазоне инфракрасной энергии выражается во вращательном движении и колебательном (растягивающем) движении внутренних атомных связей. Частоты вращения колеблются от 1011 до 1013 Гц с длиной волны 30 мкм -1 мм. Передача энергии при разделении жидкостей очень мала, поэтому поглощение инфракрасного излучения является непрерывным. Инфракрасные полосы поглощения, связанные с нагреванием пищи, показаны на.

показывает, что существует сильное поглощение из-за продольных колебаний.Поглощение материала излучением не делает его насыщенным инфракрасным излучением, поскольку молекулы, возбужденные колебательным движением, непрерывно теряют энергию в случайных направлениях в результате столкновений между молекулами, которые передают энергию окружающей среде в виде нагревать. Длины волн в диапазоне 1,4–5 мкм считаются более эффективными при приготовлении пищи из-за их способности проникать через слой пара, окружающий пищу, а также внутрь нее на глубину нескольких миллиметров.Большая часть инфракрасного излучения поглощается тонким слоем органических веществ и воды, поэтому нагревание происходит поверхностно. Процесс инфракрасного нагрева происходит быстрее, потому что энергия передается от источника тепла к пище одновременно. Следовательно, нет необходимости в другом способе передачи энергии, например, использовании горячего воздуха. Тепло от инфракрасного нагрева образуется на поверхности материала, обработанного инфракрасным излучением, поэтому внутренняя часть материала нагревается за счет связи между молекулами пищи, таким образом, температура изменяется от поверхности к центру.Воздух, соприкасающийся с поверхностью пищи, нагревается косвенно, но он не такой горячий, как при нагревании за счет конвекции и теплопроводности. Диапазоны поглощения инфракрасного излучения компонентами пищи показаны на рисунке, который показывает, что компоненты пищи мешают друг другу в поглощении различных инфракрасных спектров. Вода в основном влияет на поглощение падающего излучения на всех длинах волн, тогда как поглощение белков инфракрасным излучением происходит на длинах волн 3–4 и 6–9 мкм. Поглощение жиров происходит при длинах волн 3–4, 6 и 9–10 мкм, а сахаров — 3 и 7–10 мкм.Пучки водопоглощения составляют 3, 4,7, 6 и 15,3 мкм [13]. Кроме того, когда толщина пищи увеличивается, абсорбция увеличивается.

3.1. Инфракрасный нагрев при сушке пищевых продуктов

Инфракрасные волны с длиной волны от 2,5 до 200 мкм часто используются в процессах сушки пищевых продуктов. Вода сильно поглощается инфракрасной энергией на длинах волн 3, 6, 12 и 15 мкм [36,37]. Керамические нагреватели часто используются для процессов сушки, поскольку их излучение составляет до 3 мкм. Причина, по которой вода сильно поглощает инфракрасное излучение, заключается в наличии связей O-H в воде, поэтому она начинает циркулировать с той же частотой излучения.Процесс преобразования инфракрасного излучения в циркулирующую энергию вызывает испарение воды. Когда инфракрасное излучение попадает на поверхность, его часть поглощается, отражается и передается. Если проницаемость слишком мала, материал отражает или поглощает инфракрасное излучение в зависимости от природы излучения и свойств поверхности материала, и это называется излучательной способностью (ε).

Энергия, обезвоживающая пищу, — это лучистая энергия. Источником инфракрасного излучения, используемым при сушке пищевых продуктов, являются инфракрасные лампы и керамические обогреватели, работающие на электричестве или газе.Инфракрасным лучам не нужна среда для передачи энергии излучения от источника на поверхность пищи. Это отличная особенность, так как считается, что пища поглощает инфракрасное излучение и высыхает непосредственно. Следовательно, чтобы повысить эффективность сушки, поглощение и рассеивание падающего излучения должно быть ниже, а пища должна содержать воду. Источник инфракрасного излучения должен находиться в закрытом помещении, а его поверхность должна иметь высокую отражающую способность с целью максимизации множественных отражений и повышения энергоэффективности [9].Инфракрасное поглощение в пище зависит от белков, жиров, углеводов и воды. Направление падающего излучения, свойства поверхности пищи и спектральная структура также определяют поглощение инфракрасного излучения. Одним из определяющих факторов использования инфракрасного излучения в продуктах питания является неоднородность его формы и размера, поэтому интенсивность излучения, падающего на материал, различается от одного места к другому. показано преобразование ИК-пены на рисовых зернах в различные компоненты [38].Стенки и дно плиты должны быть покрыты алюминиевой фольгой, чтобы уменьшить потери тепла и отражать падающие на них лучи и быть радиоактивными стенками. Увеличение отраженного и испускаемого излучения, теплопередача за счет конвекции и теплоты испарения различаются в зависимости от характеристик поверхности и состояния воды в рисе [36,38].

Энергетический баланс тонкого слоя грубого риса, подвергшегося воздействию ИК-излучения.

Собственное колебание молекулы воды бывает в двух случаях, а именно: симметричное растягивающее колебание и симметричное деформационное колебание.Инфракрасная энергия относительно этих частот эффективно поглощается телом. Следовательно, пища эффективно поглощает инфракрасное излучение на длинах волн более 2,5 мкм за счет изменения вибрационного состояния механизма вибрации, которое вызывает повышение ее температуры (нагревание) [39]. Ричардсон [40] отметил, что существуют две основные вибрации: растяжение и изгиб, расширение означает увеличение или уменьшение расстояния между атомами, а изгиб означает движение атомов. Когда инфракрасное излучение поражает молекулы, энергия поглощается, и вибрация изменяется.

Лаохаванич и Вонгпичет [41] заявили, что кривая сушки риса на длине волны 2,7 мкм является функцией времени сушки при начальном содержании влаги 0,22, 0,27, 0,32 и 0,37 в расчете на твердую массу db, при содержании влаги 0,37 является функцией времени высыхания при длинах волн 2,47, 2,58 и 2,7 мкм. Влагосодержание экспоненциально уменьшается со временем сушки, а также показывает, что существует значительное влияние длины волны на скорость сушки риса. Скорость сушки увеличивается с увеличением длины волны инфракрасного излучения.Время высыхания уменьшается с увеличением длины волны.

Комбинирование инфракрасного излучения и горячего воздуха более эффективно, чем если бы оно использовалось по отдельности, в результате их совместного действия. Афзал и др. [11] обнаружили, что при использовании инфракрасного излучения и горячего воздуха для сушки ячменя потребление энергии снижается при сохранении хорошего качества ячменя. Использование инфракрасного излучения с горячим воздухом снижает общую потребность в энергии на 245% по сравнению с одним только горячим воздухом.

3.2. Влияние инфракрасного излучения на антиоксиданты в продуктах питания

3.2.1. Общее содержание фенолов

Фенольные соединения — это антиоксиданты, извлекаемые из растений [42]. Они обладают способностью отдавать водород или электроны, а также делать свободные радикалы более стабильными [43,44]. Наружные кожуры растений содержат большое количество фенольных соединений с целью защиты их внутренних частей. показывает влияние инфракрасного излучения при различных температурах на общее содержание фенола в апельсиновой цедре и апельсиновых листьях. Свежая апельсиновая цедра имеет более высокое содержание фенолов по сравнению с листьями.Инфракрасное излучение оказывает значительное влияние на содержание общих фенолов в кожуре и листьях. Компоненты растительных клеток в осушающих материалах прилипают друг к другу, и, таким образом, возможность экстракции биоактивных соединений растворителем будет более сложной [45]. При инфракрасной обработке при высоких температурах (60 и 70 ° C) в течение короткого периода времени общее содержание фенолов в кожуре и листьях было выше, поскольку фенольные соединения сопротивляются термическому разрушению, как показано на рис. Длительное время сушки при низких температурах (40 и 50 ° C) приводит к разрушению некоторых фенолов [46].Anagnostopoulou et al. (2006) обнаружили, что общее количество фенолов в апельсиновых корках, высушенных инфракрасным излучением, было выше, чем в цедрах, высушенных горячим воздухом [12]. Инфракрасные лучи могут реактивировать низкомолекулярные антиоксиданты, потому что нагревание материалов не повреждает лежащие под ними молекулы нагретой поверхности, а также способствует передаче тепла к центру нагретого материала [47]. Эффективность фенольного содержания увеличивалась после воздействия на рисовую шелуху FIR [48,49]. Ли и др. [50] обнаружили, что воздействие инфракрасного излучения на рисовую шелуху в течение двух часов увеличивает содержание фенольных соединений.Когда рисовая шелуха подвергается воздействию инфракрасного излучения, ковалентно связанные фенольные соединения, обладающие антиоксидантной активностью, высвобождаются и активируются.

Влияние инфракрасной температуры на общее количество фенолов апельсиновой корки и листьев.

Ли и др. [2] показали, что общее содержание фенола в водном экстракте скорлупы арахиса значительно увеличивалось при увеличении времени инфракрасного воздействия и времени термической обработки (). Общее количество фенолов увеличивается с 72,9 мкМ для стандартной обработки (0) до 141.6 мкМ для инфракрасного излучения и 90,3 мкМ для обычного нагрева при 150 ° C в течение 60 мин. Таким образом, инфракрасный FIR более эффективен для увеличения содержания фенола в скорлупе арахиса по сравнению с традиционной термообработкой. Инфракрасное излучение является биологически активным [51], и тепло равномерно передается к центру вещества, не разрушая молекулы, образующие поверхность [47]. Инфракрасное излучение может иметь доступ к ковалентным связям и высвобождать антиоксиданты [47, 48]. С другой стороны, простая тепловая обработка увеличила содержание фенола в обезжиренном кунжуте, а также в кожуре цитрусовых [52].Это показывает, что ассоциация фенольных соединений в растениях различается в зависимости от типа растения. Эффективные производственные этапы высвобождения антиоксидантов из разных растений могут быть разными.

Таблица 2

Влияние ДИК-излучения и термообработки на общее содержание фенолов в водной вытяжке из шелухи арахиса [2].

c 9022.2. Удаление свободных радикалов

При воздействии на водный экстракт шелухи арахиса FIR в течение 60 минут процент улавливания свободных радикалов увеличился с 2,34% до 48,33%. Напротив, простая термообработка увеличилась до 23,69%. Увеличение зависит от времени воздействия как инфракрасного, так и обычного нагрева [48,51].

Эффективность антиоксидантов была выше при использовании инфракрасного излучения с начальной обработкой (предварительная обработка 5% карбонатом калия и 0,5% оливковым маслом в течение 2 минут при 20 ° C) по сравнению со стандартной обработкой (только инфракрасное излучение) при 62 и 88 Вт. ().Антиоксидантная эффективность стандартной обработки при 125 Вт была выше, чем у инфракрасной обработки при начальной обработке. Следовательно, чтобы повысить эффективность антиоксидантов, способность инфракрасного излучения во время сушки должна быть уменьшена [53].

Таблица 3

Общие фенолы и антиоксидантная эффективность инфракрасной сушеной мармелада [53].

Обработки Время (мин)
0 5 10 15 20 40 60
FIR-излучение 72.9 e 79,3 de 88,6 d 99,4 cx 107,8 cx 124,1 bx 141,6 ax 79,8 b 79,5 b 78,6 по 78,5 по 86,7 ay 90,3 ay

Значение пероксида

Значение пероксида быстро увеличивается, когда только инфракрасное излучение и инфракрасное излучение с горячим воздухом обрабатываются вместе в результате более высоких температур. Значение перекиси через три месяца составило 1,59, 12,10 и 36,07 мэкв / кг при температурах 130, 140 и 150 ° C соответственно ().Инфракрасный обжиг при 150 ° C дает значительное увеличение пероксидного числа и более высокую скорость окисления, чем другие виды обработки. Причина в том, что инфракрасные лучи быстро проникают в миндаль и заставляют жир перемещаться на поверхность, подверженную воздействию высокой температуры, что вызывает быстрое окисление. Лучшими условиями для обжаривания миндаля и обеспечения того, чтобы перекисное число миндаля находилось в допустимых пределах 5 мэкв / кг, являются совместное использование инфракрасного и горячего воздуха и горячего воздуха только при температуре 130–150 ° C и использование инфракрасного излучения. облучение при 130 ° C продлевает срок хранения с четырех до пяти месяцев при 37 ° C, в то время как обжиг горячим воздухом продлевает срок хранения еще дольше [54].Инфракрасная обжарка орехов кешью улучшает окислительную стабильность их масла [55]. Это может быть результатом образования продуктов реакции Милларда, обладающих антиоксидантным действием.

Изменение перекисного числа обжаренного миндаля с ИК и ИК с горячим воздухом во время хранения при 37 ° C [54].

3.2.4. Токоферол (витамин E)

Tuncel et al. [56] показали, что содержание γ- и δ-токоферола в семенах льна (лен не содержит α- и β-токоферолы) в свежих и жареных инфракрасных семенах было 146.57–193,14 и 2,91–3,23 мг / 100 г соответственно. Влияние инфракрасного излучения на δ-токоферол было незначительным, в то время как количество γ-токоферола было высоким по сравнению со свежим. Причиной получения наибольшего содержания γ-токоферола при инфракрасном нагреве был разрыв стенок клеток при термической обработке, что привело к усиленному извлечению токоферола из масла. Рим и др. [57] продемонстрировали, что воздействие инфракрасных лучей на скорлупу арахиса дает наивысшую антиоксидантную эффективность по сравнению с традиционной обработкой нагреванием.Антиоксидантная эффективность увеличивается с увеличением времени воздействия инфракрасного излучения. Кроме того, Seok et al. [58] показали, что при термической обработке винограда с использованием инфракрасного излучения повышается уровень антиоксидантов и фенольных соединений.

3.2.5. Влияние инфракрасного излучения на микроорганизмы

Инфракрасное излучение можно использовать для подавления бактерий, спор, дрожжей и плесени в жидких и твердых пищевых продуктах. Эффективность ингибирования инфракрасного излучения зависит от количества инфракрасной энергии, температуры пищи, длины волны, ширины волны, глубины корма, типа микроорганизма, содержания влаги и типа пищевого материала.Увеличение мощности инфракрасного источника, необходимого для обогрева, дает больше энергии. Следовательно, общая энергия, поглощаемая микроорганизмами, увеличивается и, таким образом, усиливается подавление микробов.

Hamanaka et al. [29] использовали инфракрасное излучение для стерилизации поверхности зерна пшеницы и обнаружили, что температура поверхности пшеницы быстро повышается, когда инфракрасное излучение падает на нее без необходимости в проводниках. При мощности излучения 0,5, 1, 1,5 и 2 кВт температура внутри устройства составляла 45, 65, 95 и 120 ° C.В результате содержание микробов составило 0,83, 1,14, 1,18 и 1,90 КОЕ / г после 60 с воздействия инфракрасного нагрева. Молин и Остлунд [59] изучали влияние инфракрасной температуры на ингибирование микроорганизмов. Значения D Basillus subtilis составляли 26, 6,6, 9,3 и 3,2 с при 120, 140, 160 и 180 ° C, соответственно, в то время как значение z составляло 23 ° C. Небольшое время обработки при высоких температурах было достаточным для уничтожения патогенных микроорганизмов. Логарифмические числа E.coli уменьшилось до 0,76, 0,90 и 0,98 КОЕ / г через 2 мин воздействия инфракрасного излучения [60].

Jun и Irudayaraj [61] использовали инфракрасное излучение в диапазоне длин волн 5,88–6,66 мкм, используя оптические полосовые фильтры низких частот для подавления Aspergillus niger и Fusarium proliferatum в кукурузной муке. Определенная длина волны денатурирует белок в микроорганизмах и приводит к увеличению ингибирования на 40% по сравнению с использованием инфракрасного излучения без определения конкретной длины волны.Если длина волны была определена и не указана, уменьшение логарифмических чисел A. niger составило 2,3 и 1,8 КОЕ / г, соответственно, после пяти минут воздействия инфракрасного излучения. Напротив, логарифмические числа F. proliferatum составляли 1,95 и 1,4 КОЕ / г, соответственно, при воздействии инфракрасного излучения. Причина заключалась в том, что поглощение энергии врожденными спорами было больше на выбранной длине волны и, следовательно, приводило к более высокому уровню смертности [61].

3.2.6. Механизм инфракрасной и микробной инактивации

Термическое ингибирование работает путем повреждения ДНК, РНК, рибосом, клеточного покрытия и белков в бактериальных клетках. Sawai et al. [62] изучали механизм действия микробиологического ингибитора инфракрасного излучения против бактерий E. coli при солевой фосфатной лихорадке. Полученные результаты позволяют предположить, что частично поврежденные клетки станут более чувствительными к антибиотикам, оказывающим угнетающее действие на поврежденную часть клетки.РНК, белки и клеточные стенки более уязвимы для инфракрасного нагрева, чем для кондуктивного нагрева. Порядок величины инфракрасного повреждения следующий:

Белок> РНК> Клеточная стенка> ДНК

Использование инфракрасного нагрева при 3,22 кВт / м 2 в течение 8 минут привело к снижению на 1,8, 1,9, 2,7 и 3,2 log E. coli , когда агар был богат налидиксом, пенициллином (PCG), рифампицином (RFG) и хлорамфениколом (CP). Однако скорость восстановления E. coli составляла 1.8 log без использования каких-либо вышеупомянутых антибиотиков. Это означает, что действие ингибирующих факторов привело к снижению на 0,1, 0,9 и 1,4 log за счет PCG, RFP и CP соответственно. Глубина проникновения инфракрасного излучения мала. Температура поверхности пищевых материалов быстро увеличивается, и тепло передается пище за счет теплопроводности.

Теплопроводность твердых продуктов ниже, чем у жидких. В случае жидких пищевых продуктов передача тепла происходит за счет конвекции с использованием инфракрасного нагрева, что увеличивает микробную смертность [2].Hamanaka et al. [28] изучали эффективность ингибирования B. subtilis , обработанного тремя инфракрасными нагревателями с разной длиной волны (950, 1100 и 1150 нм). Результаты показали, что подавление патогенных микроорганизмов на длине волны 950 нм было выше, чем на других длинах волн при той же температуре. Десятичное время при активности воды 0,7 и длинах волн 950, 1100 и 1150 нм составляло 4, 12 и 22 мин соответственно. Полученные результаты показали, что эффективность ингибирования зависит от спектра излучения, как показано на.Влияние инфракрасного излучения на подавление микробов уменьшалось с увеличением глубины кормления, поскольку глубина проникновения инфракрасного излучения мала, поэтому инфракрасное излучение можно использовать только для стерилизации поверхностей пищевых продуктов. Rosenthal et al. [63] показали, что инфракрасное нагревание эффективно снижает рост дрожжей и плесени на поверхности сыра при температуре 70 ° C в течение 5 минут, не влияя на качество сыра.

Связь между активностью воды и десятичным временем восстановления для спор B. subtilis с использованием инфракрасной обработки [28].

Инфракрасные лампы, используемые для инкубации яиц домашней птицы и борьбы с вредителями. Согласно Киркпатрику [64], инфракрасные лучи привели к уничтожению насекомых 99% Sitophilus oryzae и 93% Rhyzopertha dominica , а температура пшеницы во время обработки повысилась до 48,6 ° C.

3.2.7. Ингибирование ферментов с помощью инфракрасного излучения

Инфракрасное излучение можно эффективно использовать для подавления ферментов. Фермент липооксигеназа, ответственный за повреждение сои, ингибируется 95.5% с использованием инфракрасного излучения [15]. На липазу и α-амилазы сильно влияет инфракрасное излучение при температуре 30–40 ° C [64,65]. Активность липазы снижается на 60% после инфракрасной обработки в течение 6 минут, а после использования теплопроводности — на 70%. Ингибирование фермента полифенолоксидазы в обработанных картофельных чипсах с использованием инфракрасного нагрева начинается, когда температура в центре ломтика достигает 65 ° C, а ингибирование не может достигать 100% в центре ломтика. Это требует, чтобы первая область устройства обеспечивала более высокую пропускную способность, чтобы гарантировать подавление более высокой эффективности и уменьшить толщину чипов [62].

Yi et al. [66] обнаружили, что лучшей предварительной обработкой кубиков яблока было погружение на 5 минут в хлорид кальция и 0,5% аскорбиновую кислоту для подавления коричневой окраски. Инфракрасный нагрев с интенсивностью 5000 Вт / м 2 может подавлять ферментативные полифенолоксидазу и пероксидазу намного быстрее, чем интенсивность 3000 Вт / м². Ферменты полифенолоксидаза и пероксидаза обладали высокой термостойкостью, и процесс их ингибирования происходил в соответствии с моделями кинетики первого порядка и фракционной конверсией соответственно.Быстрое кипячение с использованием инфракрасной сушки характеризуется быстрым ингибированием сложных ферментов, вызывающих ухудшение качества, без потери или очень простой потери витаминов, ароматизаторов, красителей, углеводов и некоторых водорастворимых компонентов. Скорость реакции при инфракрасном сухом кипении очень низкая. Ингибирование фосфатазы в инфракрасных ломтиках яблока зависит от толщины чипа и интенсивности излучения. Вареный горошек в инфракрасном свете сохраняет больше аскорбиновой кислоты и вкуса, чем кипяченый в горячей воде.Инфракрасное излучение можно использовать для эффективного подавления ферментов. Время кипячения ломтиков моркови в инфракрасном диапазоне составляет 10–15 минут, по сравнению с методами кипячения паром и горячей водой, для которых требуется время 5–10 минут (). Это может быть связано с постепенным повышением температуры продукта в результате периодического инфракрасного нагрева и движения воздуха по поверхности продукта. Это привело к стабильности температуры продукта и улучшило качество, где количество витамина С было выше по сравнению с методами с паром и горячей водой [67].

Принципиальная схема системы ИК-бланширования ( a ) и гибридной сушки ( b ) [67].

3.2.8. Инфракрасные печи и выпечка

Выпечка хлеба — это сложный процесс, который включает в себя сочетание физических, химических и биохимических изменений в пищевых продуктах, таких как желатинизация крахмала, денатурация белка, выделение углекислого газа из-за добавления дрожжей, испарение воды, выпечка корки. образование и коричневые реакции в результате тепломассопереноса через продукт и пространство внутри печи.Тепло передается тесту за счет излучения, конвекции и теплопроводности. Пей [68] классифицирует традиционный хлеб на четыре этапа: белый хлеб с хрустящей корочкой, передача тепла изнутри на корку, приготовление или желатинизация и подрумянивание. Альтернативной технологией для традиционного хлеба является коротковолновое инфракрасное излучение [68,69,70].

В 1950 году Гинзбург использовал инфракрасное излучение в качестве печи для выпечки хлеба. В то время этот метод не был разработан из-за отсутствия информации об этой технологии. В 1970 году исследователи использовали инфракрасное излучение как средство нагрева пищи, особенно для жарки мясных продуктов [10,71].Затем этот прием был применен для выпечки хлеба [72]. Инфракрасный хлеб для печенья был применен Уэйдом [70], и было обнаружено, что существует широкий диапазон печенья, которое можно выпекать с инфракрасной длиной волны 1,2 мкм и для чего требуется вдвое меньше времени по сравнению с традиционным методом.

Преимущество использования инфракрасного нагрева в духовке для выпечки хлеба заключается в быстрой передаче тепла хлебу. Свойство хлеба обеспечивает хорошую пропитку до 2–3 мм и скорость нагрева. Причина, по которой инфракрасные печи лучше обычных духовок, заключается в том, что этот метод более эффективен для нагрева поверхностей и центральных частей пищи за короткое время выпечки из-за эффективной передачи тепла поверхности.Это приводит к более высокому содержанию воды в центре блюда во время выпечки. Таким образом, срок хранения продукта будет лучше и дольше [16].

Heist и Cremer [73] изучали влияние инфракрасного хлеба на сенсорные качества и потребление энергии пирожных, сделанных из белой, беленой и небелой муки, и сравнили его с традиционной духовкой. Ли [74] слился между микроволновой печью и галогенной лампой. Девяносто процентов энергии излучения в пределах длины волны было менее 1 мкм и использовалось в качестве источника инфракрасного излучения.Два из них использовались выше и два снизу, чтобы не было помех между ними в микроволновой печи, и этот метод обеспечивает большую однородность приготовления. В этой конструкции было два механизма: микроволновая печь быстро нагревает пищу, а инфракрасное излучение активирует реакции дубления и хрустящей корочки, и этот метод устраняет проблему плохого качества выпечки с использованием микроволновой печи [75]. Микроволновая печь имеет галогенные лампы, излучающие инфракрасные лучи, которые разделены на две части: одна часть расположена вверху, а другая — вниз, а для гомогенизации имеется вращающееся основание.Галогенные лампы находятся на расстоянии 15 см от обжигаемого материала, в то время как другие галогенные лампы помещаются под вращающуюся пластину (). Результаты эксперимента заключаются в том, что размер торта увеличивался с увеличением времени выпекания, а цвет и твердость торта были такими же, как в обычной печи [76].

Комбинированный духовой шкаф с ИК-СВЧ. ( 1 ) Верхние галогенные лампы, ( 2 ) нижние галогенные лампы, ( 3 ) микроволны, ( 4 ) поворотный стол [76].

3.2.9. Инфракрасный и соки

Aghajanzadeh et al. [18] разработали систему инфракрасного нагрева для сока лайма, как показано на рис. Он состоит из камеры инфракрасного нагрева мощностью 1500 Вт. Расстояние между источником инфракрасного излучения и поверхностью сока составляет 8,5 см, а система оснащена системой контроля температуры. Кроме того, система оснащена системой перемешивания образца каждые 15 с для равномерного нагрева. показывает, что время, необходимое для достижения температуры, было меньше при использовании инфракрасного излучения по сравнению с обычным нагревом.Это положительно влияет на питательные качества сока и снижает потребление энергии и цвет сока. Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77]. Температура и время нагревания существенно влияют на потерю аскорбиновой кислоты из сока. Аскорбиновая кислота восстанавливается при любой тепловой обработке, будь то инфракрасное или обычное нагревание, и процесс разрушения аскорбиновой кислоты следует кинетике реакции в процессе производства сока с большим коэффициентом корреляции [18].Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77].

Принципиальная схема инфракрасного обогревателя для производства лимонного сока. (1) Нагревательная камера, (2) лампа с инфракрасным излучателем, (3) чаша с соком, (4) термостат, (5) двойной термостат [18].

Температура сока меняется со временем ( a ) при обычном нагреве, ( b ) инфракрасном нагреве [18].

Удерживаемое количество аскорбиновой кислоты было выше при использовании инфракрасного нагрева по сравнению с обычным нагревом, что указывает на то, что инфракрасный нагрев более эффективен для сохранения сока во время производства [18].

3.2.10. Инфракрасная сушка фруктов и овощей

В последние годы технология инфракрасной сушки была успешно применена к фруктам и овощам, таким как сушка картофеля [78,79], сладкий картофель [80], лук [81,82] и яблоки [7] , 83]. Сушка водорослей, овощей, рыбных хлопьев и макаронных изделий также исследовалась с использованием инфракрасных туннельных сушилок [84]. Bejar et al. [27] показали, что температура инфракрасной сушки не оказывает значительного влияния на поверхность, толщину и размер апельсиновой корки.Он не дает усадки, когда содержание влаги в нем падает до 0,1 кг воды / кг сухого вещества. Однако очень простое сжатие происходит при повышении температуры от 40 до 70 ° C. Толщина усадки была больше при 70 ° C и ниже при 40 ° C. Объем усадки был ниже при 60 ° C и выше при 50 ° C из-за толщины усадки. Усадка апельсиновых корок, высушенных инфракрасным излучением, была результатом испарения количества влаги.

Bejar et al. [27] также изучали влияние температуры инфракрасной сушки на цветовые характеристики апельсиновой корки (L *, a *, b *, C и ΔE).Были значительные различия в цвете высушенной апельсиновой корки по сравнению со свежими образцами. Инфракрасная сушка оказала значительное влияние на a и b, поскольку значения a, b и c уменьшились. Температуры 50–60 оказывали значительное влияние на c, а температура 70 ° C не оказывала значительного влияния. Значение b быстро уменьшалось при 40, 50 и 60 ° C, а при 70 ° C значительного эффекта не наблюдалось. Значение L было значительно увеличено с помощью инфракрасной сушки. Изменение цвета было результатом разложения флавоноидов и каротиноидов, которые отвечали за оранжевый и желтый цвет корок [85].Наименьшее значение ΔE получается при самой высокой температуре. Инфракрасная обработка была применена к сушке двух сортов клубники. Для определения оптимальных условий инфракрасной сушки использовались два фактора. Время инфракрасного излучения сорта Camarosa составляло 508, 280 и 246 минут, в то время как время инфракрасного излучения фестивальных сортов составляло 536, 304 и 290 минут при температурах сушки 60, 70 и 80 ° C соответственно. Результаты показали, что время инфракрасного излучения полностью зависит от температуры сушки.Время высыхания сорта Cama-rosa было больше, чем у сорта фестивального.

3.2.11. Стоимость инфракрасного обогрева

An et al. [86] сообщили о стоимости использования инфракрасного обогрева по сравнению с воздухонагревателем, работающим на дизельном топливе, для выращивания клубники. Средняя ночная температура воздуха составила 6,6 ° C при обработке инфракрасным обогревателем и 7,1 ° C при обработке воздухонагревателем. Результаты показали, что стоимость обогрева при использовании системы воздухонагревателя составляла 537,35 доллара из расчета на 543 литра не облагаемого налогом дизельного топлива, в то время как стоимость использования инфракрасной системы составляла 203 доллара.05 за счет потребления 5685 кВтч электроэнергии. Таким образом, система инфракрасного обогрева смогла сэкономить примерно 62,2% затрат на отопление. Была подсчитана стоимость различных режимов обогрева и резюмировано, что основная стоимость инфракрасной сушки приходилась на радиаторы. Это исследование также продемонстрировало значительную взаимосвязь между стоимостью различных типов излучателей [87].

Всесторонний обзор применения инфракрасного обогрева в пищевой промышленности

Энергосбережение является одним из факторов, определяющих полезность и успех работы любого предприятия пищевой промышленности.Тепло передается за счет теплопроводности, конвекции и излучения. Цель нагрева пищи — продлить срок хранения и улучшить вкус пищи [2]. Температура — это мера теплового движения на молекулярном уровне. Когда температура материала увеличивается, молекулярное движение получает больше энергии, а когда она увеличивается, это вызывает физические и химические изменения в нагретом материале. При обычном нагреве, который происходит за счет сгорания топлива или электрических обогревателей, тепло передается материалу извне за счет конвекции горячим воздухом или теплопроводности.Процесс передачи энергии от источника к пище зависит от типа приготовления. Например, в случае процесса выпечки энергия передается посредством конвекции, а жарка и кипячение — посредством теплопроводности. Энергия будет находиться очень близко к поверхности пищи, а затем постепенно нагревать пищу от горячей поверхности внутрь. Тепло передается пище только за счет теплопроводности, а это требует непрерывной обработки тепла. Высокая температура и время, необходимое для приготовления пищи, зависят от термических и технических свойств пищи [3].

Когда нагрев осуществляется излучением, тепло передается за счет конвекции и теплопроводности. Процесс жарки происходит за счет теплового излучения. Электромагнитное излучение вызывает тепловые движения молекул, но эффективность преобразования сильно зависит от частоты (энергии) излучения. Передаваемая излучением энергия на более коротких длинах волн, чем инфракрасный, вызывает электронно-химические изменения в молекулах, поглощающих излучение, такие как химическая связь, электронное возбуждение и рассеивание поглощенной энергии в виде меньшего количества тепла.Эффективность преобразования поглощенной энергии в тепло высока на высоких длинах волн инфракрасного излучения, поэтому электромагнитное излучение, создаваемое инфракрасным излучением, углубляет пищу на несколько миллиметров. Инфракрасное излучение поглощается органическими веществами на разных частотах, которые соответствуют переносу внутренних молекул между уровнями энергии. Этот переход в диапазоне инфракрасной энергии выражается во вращательном движении и колебательном (растягивающем) движении внутренних атомных связей.Частоты вращения колеблются от 1011 до 1013 Гц с длиной волны 30 мкм -1 мм. Передача энергии при разделении жидкостей очень мала, поэтому поглощение инфракрасного излучения является непрерывным. Инфракрасные полосы поглощения, связанные с нагреванием пищи, показаны на.

показывает, что существует сильное поглощение из-за продольных колебаний. Поглощение материала излучением не делает его насыщенным инфракрасным излучением, поскольку молекулы, возбужденные колебательным движением, непрерывно теряют энергию в случайных направлениях в результате столкновений между молекулами, которые передают энергию окружающей среде в виде нагревать.Длины волн в диапазоне 1,4–5 мкм считаются более эффективными при приготовлении пищи из-за их способности проникать через слой пара, окружающий пищу, а также внутрь нее на глубину нескольких миллиметров. Большая часть инфракрасного излучения поглощается тонким слоем органических веществ и воды, поэтому нагревание происходит поверхностно. Процесс инфракрасного нагрева происходит быстрее, потому что энергия передается от источника тепла к пище одновременно. Следовательно, нет необходимости в другом способе передачи энергии, например, использовании горячего воздуха.Тепло от инфракрасного нагрева образуется на поверхности материала, обработанного инфракрасным излучением, поэтому внутренняя часть материала нагревается за счет связи между молекулами пищи, таким образом, температура изменяется от поверхности к центру. Воздух, соприкасающийся с поверхностью пищи, нагревается косвенно, но он не такой горячий, как при нагревании за счет конвекции и теплопроводности. Диапазоны поглощения инфракрасного излучения компонентами пищи показаны на рисунке, который показывает, что компоненты пищи мешают друг другу в поглощении различных инфракрасных спектров.Вода в основном влияет на поглощение падающего излучения на всех длинах волн, тогда как поглощение белков инфракрасным излучением происходит на длинах волн 3–4 и 6–9 мкм. Поглощение жиров происходит при длинах волн 3–4, 6 и 9–10 мкм, а сахаров — 3 и 7–10 мкм. Пучки водопоглощения составляют 3, 4,7, 6 и 15,3 мкм [13]. Кроме того, когда толщина пищи увеличивается, абсорбция увеличивается.

3.1. Инфракрасный нагрев при сушке пищевых продуктов

Инфракрасные волны с длиной волны от 2,5 до 200 мкм часто используются в процессах сушки пищевых продуктов.Вода сильно поглощается инфракрасной энергией на длинах волн 3, 6, 12 и 15 мкм [36,37]. Керамические нагреватели часто используются для процессов сушки, поскольку их излучение составляет до 3 мкм. Причина, по которой вода сильно поглощает инфракрасное излучение, заключается в наличии связей O-H в воде, поэтому она начинает циркулировать с той же частотой излучения. Процесс преобразования инфракрасного излучения в циркулирующую энергию вызывает испарение воды. Когда инфракрасное излучение попадает на поверхность, его часть поглощается, отражается и передается.Если проницаемость слишком мала, материал отражает или поглощает инфракрасное излучение в зависимости от природы излучения и свойств поверхности материала, и это называется излучательной способностью (ε).

Энергия, обезвоживающая пищу, — это лучистая энергия. Источником инфракрасного излучения, используемым при сушке пищевых продуктов, являются инфракрасные лампы и керамические обогреватели, работающие на электричестве или газе. Инфракрасным лучам не нужна среда для передачи энергии излучения от источника на поверхность пищи. Это отличная особенность, так как считается, что пища поглощает инфракрасное излучение и высыхает непосредственно.Следовательно, чтобы повысить эффективность сушки, поглощение и рассеивание падающего излучения должно быть ниже, а пища должна содержать воду. Источник инфракрасного излучения должен находиться в закрытом помещении, а его поверхность должна иметь высокую отражающую способность с целью максимизации множественных отражений и повышения энергоэффективности [9]. Инфракрасное поглощение в пище зависит от белков, жиров, углеводов и воды. Направление падающего излучения, свойства поверхности пищи и спектральная структура также определяют поглощение инфракрасного излучения.Одним из определяющих факторов использования инфракрасного излучения в продуктах питания является неоднородность его формы и размера, поэтому интенсивность излучения, падающего на материал, различается от одного места к другому. показано преобразование ИК-пены на рисовых зернах в различные компоненты [38]. Стенки и дно плиты должны быть покрыты алюминиевой фольгой, чтобы уменьшить потери тепла и отражать падающие на них лучи и быть радиоактивными стенками. Увеличение отраженного и испускаемого излучения, теплопередача за счет конвекции и теплоты испарения различаются в зависимости от характеристик поверхности и состояния воды в рисе [36,38].

Энергетический баланс тонкого слоя грубого риса, подвергшегося воздействию ИК-излучения.

Собственное колебание молекулы воды бывает в двух случаях, а именно: симметричное растягивающее колебание и симметричное деформационное колебание. Инфракрасная энергия относительно этих частот эффективно поглощается телом. Следовательно, пища эффективно поглощает инфракрасное излучение на длинах волн более 2,5 мкм за счет изменения вибрационного состояния механизма вибрации, которое вызывает повышение ее температуры (нагревание) [39].Ричардсон [40] отметил, что существуют две основные вибрации: растяжение и изгиб, расширение означает увеличение или уменьшение расстояния между атомами, а изгиб означает движение атомов. Когда инфракрасное излучение поражает молекулы, энергия поглощается, и вибрация изменяется.

Лаохаванич и Вонгпичет [41] заявили, что кривая сушки риса на длине волны 2,7 мкм является функцией времени сушки при начальном содержании влаги 0,22, 0,27, 0,32 и 0,37 в расчете на твердую массу db, при содержании влаги 0 .37 является функцией времени высыхания при длинах волн 2,47, 2,58 и 2,7 мкм. Влагосодержание экспоненциально уменьшается со временем сушки, а также показывает, что существует значительное влияние длины волны на скорость сушки риса. Скорость сушки увеличивается с увеличением длины волны инфракрасного излучения. Время высыхания уменьшается с увеличением длины волны.

Комбинирование инфракрасного излучения и горячего воздуха более эффективно, чем если бы оно использовалось по отдельности, в результате их совместного действия. Афзал и др. [11] обнаружили, что при использовании инфракрасного излучения и горячего воздуха для сушки ячменя потребление энергии снижается при сохранении хорошего качества ячменя.Использование инфракрасного излучения с горячим воздухом снижает общую потребность в энергии на 245% по сравнению с одним только горячим воздухом.

3.2. Влияние инфракрасного излучения на антиоксиданты в продуктах питания

3.2.1. Общее содержание фенолов

Фенольные соединения — это антиоксиданты, извлекаемые из растений [42]. Они обладают способностью отдавать водород или электроны, а также делать свободные радикалы более стабильными [43,44]. Наружные кожуры растений содержат большое количество фенольных соединений с целью защиты их внутренних частей.показывает влияние инфракрасного излучения при различных температурах на общее содержание фенола в апельсиновой цедре и апельсиновых листьях. Свежая апельсиновая цедра имеет более высокое содержание фенолов по сравнению с листьями. Инфракрасное излучение оказывает значительное влияние на содержание общих фенолов в кожуре и листьях. Компоненты растительных клеток в осушающих материалах прилипают друг к другу, и, таким образом, возможность экстракции биоактивных соединений растворителем будет более сложной [45]. При инфракрасной обработке при высоких температурах (60 и 70 ° C) в течение короткого периода времени общее содержание фенолов в кожуре и листьях было выше, поскольку фенольные соединения сопротивляются термическому разрушению, как показано на рис.Длительное время сушки при низких температурах (40 и 50 ° C) приводит к разрушению некоторых фенолов [46]. Anagnostopoulou et al. (2006) обнаружили, что общее количество фенолов в апельсиновых корках, высушенных инфракрасным излучением, было выше, чем в цедрах, высушенных горячим воздухом [12]. Инфракрасные лучи могут реактивировать низкомолекулярные антиоксиданты, потому что нагревание материалов не повреждает лежащие под ними молекулы нагретой поверхности, а также способствует передаче тепла к центру нагретого материала [47]. Эффективность фенольного содержания увеличивалась после воздействия на рисовую шелуху FIR [48,49].Ли и др. [50] обнаружили, что воздействие инфракрасного излучения на рисовую шелуху в течение двух часов увеличивает содержание фенольных соединений. Когда рисовая шелуха подвергается воздействию инфракрасного излучения, ковалентно связанные фенольные соединения, обладающие антиоксидантной активностью, высвобождаются и активируются.

Влияние инфракрасной температуры на общее количество фенолов апельсиновой корки и листьев.

Ли и др. [2] показали, что общее содержание фенола в водном экстракте скорлупы арахиса значительно увеличивалось при увеличении времени инфракрасного воздействия и времени термической обработки ().Общее количество фенолов увеличивается с 72,9 мкМ для стандартной обработки (0) до 141,6 мкМ для инфракрасного излучения и 90,3 мкМ для обычного нагревания при 150 ° C в течение 60 мин. Таким образом, инфракрасный FIR более эффективен для увеличения содержания фенола в скорлупе арахиса по сравнению с традиционной термообработкой. Инфракрасное излучение является биологически активным [51], и тепло равномерно передается к центру вещества, не разрушая молекулы, образующие поверхность [47]. Инфракрасное излучение может иметь доступ к ковалентным связям и высвобождать антиоксиданты [47, 48].С другой стороны, простая тепловая обработка увеличила содержание фенола в обезжиренном кунжуте, а также в кожуре цитрусовых [52]. Это показывает, что ассоциация фенольных соединений в растениях различается в зависимости от типа растения. Эффективные производственные этапы высвобождения антиоксидантов из разных растений могут быть разными.

Таблица 2

Влияние ДИК-излучения и термообработки на общее содержание фенолов в водной вытяжке из шелухи арахиса [2].

Параметры Исходный Инфракрасный (стандартный) Вт Инфракрасный диапазон (предварительно обработанный 5% карбонатом калия и 0.5% оливкового масла в течение 2 минут)
62 88 125 62 88 125
TPC (мг GA / 100 г сухого вещества)263,15 a 181,6 e 134,35 d 221,24 b 155,41 d 191,32 c 192,41 c г сухого вещества) 4.23 a 0,99 f 1,98 c 3,23 b 1,51 d 2,70 b 2,55 c 9070,3
c 9022.2. Удаление свободных радикалов

При воздействии на водный экстракт шелухи арахиса FIR в течение 60 минут процент улавливания свободных радикалов увеличился с 2,34% до 48,33%. Напротив, простая термообработка увеличилась до 23,69%. Увеличение зависит от времени воздействия как инфракрасного, так и обычного нагрева [48,51].

Эффективность антиоксидантов была выше при использовании инфракрасного излучения с начальной обработкой (предварительная обработка 5% карбонатом калия и 0,5% оливковым маслом в течение 2 минут при 20 ° C) по сравнению со стандартной обработкой (только инфракрасное излучение) при 62 и 88 Вт. ().Антиоксидантная эффективность стандартной обработки при 125 Вт была выше, чем у инфракрасной обработки при начальной обработке. Следовательно, чтобы повысить эффективность антиоксидантов, способность инфракрасного излучения во время сушки должна быть уменьшена [53].

Таблица 3

Общие фенолы и антиоксидантная эффективность инфракрасной сушеной мармелада [53].

Обработки Время (мин)
0 5 10 15 20 40 60
FIR-излучение 72.9 e 79,3 de 88,6 d 99,4 cx 107,8 cx 124,1 bx 141,6 ax 79,8 b 79,5 b 78,6 по 78,5 по 86,7 ay 90,3 ay

Значение пероксида

Значение пероксида быстро увеличивается, когда только инфракрасное излучение и инфракрасное излучение с горячим воздухом обрабатываются вместе в результате более высоких температур. Значение перекиси через три месяца составило 1,59, 12,10 и 36,07 мэкв / кг при температурах 130, 140 и 150 ° C соответственно ().Инфракрасный обжиг при 150 ° C дает значительное увеличение пероксидного числа и более высокую скорость окисления, чем другие виды обработки. Причина в том, что инфракрасные лучи быстро проникают в миндаль и заставляют жир перемещаться на поверхность, подверженную воздействию высокой температуры, что вызывает быстрое окисление. Лучшими условиями для обжаривания миндаля и обеспечения того, чтобы перекисное число миндаля находилось в допустимых пределах 5 мэкв / кг, являются совместное использование инфракрасного и горячего воздуха и горячего воздуха только при температуре 130–150 ° C и использование инфракрасного излучения. облучение при 130 ° C продлевает срок хранения с четырех до пяти месяцев при 37 ° C, в то время как обжиг горячим воздухом продлевает срок хранения еще дольше [54].Инфракрасная обжарка орехов кешью улучшает окислительную стабильность их масла [55]. Это может быть результатом образования продуктов реакции Милларда, обладающих антиоксидантным действием.

Изменение перекисного числа обжаренного миндаля с ИК и ИК с горячим воздухом во время хранения при 37 ° C [54].

3.2.4. Токоферол (витамин E)

Tuncel et al. [56] показали, что содержание γ- и δ-токоферола в семенах льна (лен не содержит α- и β-токоферолы) в свежих и жареных инфракрасных семенах было 146.57–193,14 и 2,91–3,23 мг / 100 г соответственно. Влияние инфракрасного излучения на δ-токоферол было незначительным, в то время как количество γ-токоферола было высоким по сравнению со свежим. Причиной получения наибольшего содержания γ-токоферола при инфракрасном нагреве был разрыв стенок клеток при термической обработке, что привело к усиленному извлечению токоферола из масла. Рим и др. [57] продемонстрировали, что воздействие инфракрасных лучей на скорлупу арахиса дает наивысшую антиоксидантную эффективность по сравнению с традиционной обработкой нагреванием.Антиоксидантная эффективность увеличивается с увеличением времени воздействия инфракрасного излучения. Кроме того, Seok et al. [58] показали, что при термической обработке винограда с использованием инфракрасного излучения повышается уровень антиоксидантов и фенольных соединений.

3.2.5. Влияние инфракрасного излучения на микроорганизмы

Инфракрасное излучение можно использовать для подавления бактерий, спор, дрожжей и плесени в жидких и твердых пищевых продуктах. Эффективность ингибирования инфракрасного излучения зависит от количества инфракрасной энергии, температуры пищи, длины волны, ширины волны, глубины корма, типа микроорганизма, содержания влаги и типа пищевого материала.Увеличение мощности инфракрасного источника, необходимого для обогрева, дает больше энергии. Следовательно, общая энергия, поглощаемая микроорганизмами, увеличивается и, таким образом, усиливается подавление микробов.

Hamanaka et al. [29] использовали инфракрасное излучение для стерилизации поверхности зерна пшеницы и обнаружили, что температура поверхности пшеницы быстро повышается, когда инфракрасное излучение падает на нее без необходимости в проводниках. При мощности излучения 0,5, 1, 1,5 и 2 кВт температура внутри устройства составляла 45, 65, 95 и 120 ° C.В результате содержание микробов составило 0,83, 1,14, 1,18 и 1,90 КОЕ / г после 60 с воздействия инфракрасного нагрева. Молин и Остлунд [59] изучали влияние инфракрасной температуры на ингибирование микроорганизмов. Значения D Basillus subtilis составляли 26, 6,6, 9,3 и 3,2 с при 120, 140, 160 и 180 ° C, соответственно, в то время как значение z составляло 23 ° C. Небольшое время обработки при высоких температурах было достаточным для уничтожения патогенных микроорганизмов. Логарифмические числа E.coli уменьшилось до 0,76, 0,90 и 0,98 КОЕ / г через 2 мин воздействия инфракрасного излучения [60].

Jun и Irudayaraj [61] использовали инфракрасное излучение в диапазоне длин волн 5,88–6,66 мкм, используя оптические полосовые фильтры низких частот для подавления Aspergillus niger и Fusarium proliferatum в кукурузной муке. Определенная длина волны денатурирует белок в микроорганизмах и приводит к увеличению ингибирования на 40% по сравнению с использованием инфракрасного излучения без определения конкретной длины волны.Если длина волны была определена и не указана, уменьшение логарифмических чисел A. niger составило 2,3 и 1,8 КОЕ / г, соответственно, после пяти минут воздействия инфракрасного излучения. Напротив, логарифмические числа F. proliferatum составляли 1,95 и 1,4 КОЕ / г, соответственно, при воздействии инфракрасного излучения. Причина заключалась в том, что поглощение энергии врожденными спорами было больше на выбранной длине волны и, следовательно, приводило к более высокому уровню смертности [61].

3.2.6. Механизм инфракрасной и микробной инактивации

Термическое ингибирование работает путем повреждения ДНК, РНК, рибосом, клеточного покрытия и белков в бактериальных клетках. Sawai et al. [62] изучали механизм действия микробиологического ингибитора инфракрасного излучения против бактерий E. coli при солевой фосфатной лихорадке. Полученные результаты позволяют предположить, что частично поврежденные клетки станут более чувствительными к антибиотикам, оказывающим угнетающее действие на поврежденную часть клетки.РНК, белки и клеточные стенки более уязвимы для инфракрасного нагрева, чем для кондуктивного нагрева. Порядок величины инфракрасного повреждения следующий:

Белок> РНК> Клеточная стенка> ДНК

Использование инфракрасного нагрева при 3,22 кВт / м 2 в течение 8 минут привело к снижению на 1,8, 1,9, 2,7 и 3,2 log E. coli , когда агар был богат налидиксом, пенициллином (PCG), рифампицином (RFG) и хлорамфениколом (CP). Однако скорость восстановления E. coli составляла 1.8 log без использования каких-либо вышеупомянутых антибиотиков. Это означает, что действие ингибирующих факторов привело к снижению на 0,1, 0,9 и 1,4 log за счет PCG, RFP и CP соответственно. Глубина проникновения инфракрасного излучения мала. Температура поверхности пищевых материалов быстро увеличивается, и тепло передается пище за счет теплопроводности.

Теплопроводность твердых продуктов ниже, чем у жидких. В случае жидких пищевых продуктов передача тепла происходит за счет конвекции с использованием инфракрасного нагрева, что увеличивает микробную смертность [2].Hamanaka et al. [28] изучали эффективность ингибирования B. subtilis , обработанного тремя инфракрасными нагревателями с разной длиной волны (950, 1100 и 1150 нм). Результаты показали, что подавление патогенных микроорганизмов на длине волны 950 нм было выше, чем на других длинах волн при той же температуре. Десятичное время при активности воды 0,7 и длинах волн 950, 1100 и 1150 нм составляло 4, 12 и 22 мин соответственно. Полученные результаты показали, что эффективность ингибирования зависит от спектра излучения, как показано на.Влияние инфракрасного излучения на подавление микробов уменьшалось с увеличением глубины кормления, поскольку глубина проникновения инфракрасного излучения мала, поэтому инфракрасное излучение можно использовать только для стерилизации поверхностей пищевых продуктов. Rosenthal et al. [63] показали, что инфракрасное нагревание эффективно снижает рост дрожжей и плесени на поверхности сыра при температуре 70 ° C в течение 5 минут, не влияя на качество сыра.

Связь между активностью воды и десятичным временем восстановления для спор B. subtilis с использованием инфракрасной обработки [28].

Инфракрасные лампы, используемые для инкубации яиц домашней птицы и борьбы с вредителями. Согласно Киркпатрику [64], инфракрасные лучи привели к уничтожению насекомых 99% Sitophilus oryzae и 93% Rhyzopertha dominica , а температура пшеницы во время обработки повысилась до 48,6 ° C.

3.2.7. Ингибирование ферментов с помощью инфракрасного излучения

Инфракрасное излучение можно эффективно использовать для подавления ферментов. Фермент липооксигеназа, ответственный за повреждение сои, ингибируется 95.5% с использованием инфракрасного излучения [15]. На липазу и α-амилазы сильно влияет инфракрасное излучение при температуре 30–40 ° C [64,65]. Активность липазы снижается на 60% после инфракрасной обработки в течение 6 минут, а после использования теплопроводности — на 70%. Ингибирование фермента полифенолоксидазы в обработанных картофельных чипсах с использованием инфракрасного нагрева начинается, когда температура в центре ломтика достигает 65 ° C, а ингибирование не может достигать 100% в центре ломтика. Это требует, чтобы первая область устройства обеспечивала более высокую пропускную способность, чтобы гарантировать подавление более высокой эффективности и уменьшить толщину чипов [62].

Yi et al. [66] обнаружили, что лучшей предварительной обработкой кубиков яблока было погружение на 5 минут в хлорид кальция и 0,5% аскорбиновую кислоту для подавления коричневой окраски. Инфракрасный нагрев с интенсивностью 5000 Вт / м 2 может подавлять ферментативные полифенолоксидазу и пероксидазу намного быстрее, чем интенсивность 3000 Вт / м². Ферменты полифенолоксидаза и пероксидаза обладали высокой термостойкостью, и процесс их ингибирования происходил в соответствии с моделями кинетики первого порядка и фракционной конверсией соответственно.Быстрое кипячение с использованием инфракрасной сушки характеризуется быстрым ингибированием сложных ферментов, вызывающих ухудшение качества, без потери или очень простой потери витаминов, ароматизаторов, красителей, углеводов и некоторых водорастворимых компонентов. Скорость реакции при инфракрасном сухом кипении очень низкая. Ингибирование фосфатазы в инфракрасных ломтиках яблока зависит от толщины чипа и интенсивности излучения. Вареный горошек в инфракрасном свете сохраняет больше аскорбиновой кислоты и вкуса, чем кипяченый в горячей воде.Инфракрасное излучение можно использовать для эффективного подавления ферментов. Время кипячения ломтиков моркови в инфракрасном диапазоне составляет 10–15 минут, по сравнению с методами кипячения паром и горячей водой, для которых требуется время 5–10 минут (). Это может быть связано с постепенным повышением температуры продукта в результате периодического инфракрасного нагрева и движения воздуха по поверхности продукта. Это привело к стабильности температуры продукта и улучшило качество, где количество витамина С было выше по сравнению с методами с паром и горячей водой [67].

Принципиальная схема системы ИК-бланширования ( a ) и гибридной сушки ( b ) [67].

3.2.8. Инфракрасные печи и выпечка

Выпечка хлеба — это сложный процесс, который включает в себя сочетание физических, химических и биохимических изменений в пищевых продуктах, таких как желатинизация крахмала, денатурация белка, выделение углекислого газа из-за добавления дрожжей, испарение воды, выпечка корки. образование и коричневые реакции в результате тепломассопереноса через продукт и пространство внутри печи.Тепло передается тесту за счет излучения, конвекции и теплопроводности. Пей [68] классифицирует традиционный хлеб на четыре этапа: белый хлеб с хрустящей корочкой, передача тепла изнутри на корку, приготовление или желатинизация и подрумянивание. Альтернативной технологией для традиционного хлеба является коротковолновое инфракрасное излучение [68,69,70].

В 1950 году Гинзбург использовал инфракрасное излучение в качестве печи для выпечки хлеба. В то время этот метод не был разработан из-за отсутствия информации об этой технологии. В 1970 году исследователи использовали инфракрасное излучение как средство нагрева пищи, особенно для жарки мясных продуктов [10,71].Затем этот прием был применен для выпечки хлеба [72]. Инфракрасный хлеб для печенья был применен Уэйдом [70], и было обнаружено, что существует широкий диапазон печенья, которое можно выпекать с инфракрасной длиной волны 1,2 мкм и для чего требуется вдвое меньше времени по сравнению с традиционным методом.

Преимущество использования инфракрасного нагрева в духовке для выпечки хлеба заключается в быстрой передаче тепла хлебу. Свойство хлеба обеспечивает хорошую пропитку до 2–3 мм и скорость нагрева. Причина, по которой инфракрасные печи лучше обычных духовок, заключается в том, что этот метод более эффективен для нагрева поверхностей и центральных частей пищи за короткое время выпечки из-за эффективной передачи тепла поверхности.Это приводит к более высокому содержанию воды в центре блюда во время выпечки. Таким образом, срок хранения продукта будет лучше и дольше [16].

Heist и Cremer [73] изучали влияние инфракрасного хлеба на сенсорные качества и потребление энергии пирожных, сделанных из белой, беленой и небелой муки, и сравнили его с традиционной духовкой. Ли [74] слился между микроволновой печью и галогенной лампой. Девяносто процентов энергии излучения в пределах длины волны было менее 1 мкм и использовалось в качестве источника инфракрасного излучения.Два из них использовались выше и два снизу, чтобы не было помех между ними в микроволновой печи, и этот метод обеспечивает большую однородность приготовления. В этой конструкции было два механизма: микроволновая печь быстро нагревает пищу, а инфракрасное излучение активирует реакции дубления и хрустящей корочки, и этот метод устраняет проблему плохого качества выпечки с использованием микроволновой печи [75]. Микроволновая печь имеет галогенные лампы, излучающие инфракрасные лучи, которые разделены на две части: одна часть расположена вверху, а другая — вниз, а для гомогенизации имеется вращающееся основание.Галогенные лампы находятся на расстоянии 15 см от обжигаемого материала, в то время как другие галогенные лампы помещаются под вращающуюся пластину (). Результаты эксперимента заключаются в том, что размер торта увеличивался с увеличением времени выпекания, а цвет и твердость торта были такими же, как в обычной печи [76].

Комбинированный духовой шкаф с ИК-СВЧ. ( 1 ) Верхние галогенные лампы, ( 2 ) нижние галогенные лампы, ( 3 ) микроволны, ( 4 ) поворотный стол [76].

3.2.9. Инфракрасный и соки

Aghajanzadeh et al. [18] разработали систему инфракрасного нагрева для сока лайма, как показано на рис. Он состоит из камеры инфракрасного нагрева мощностью 1500 Вт. Расстояние между источником инфракрасного излучения и поверхностью сока составляет 8,5 см, а система оснащена системой контроля температуры. Кроме того, система оснащена системой перемешивания образца каждые 15 с для равномерного нагрева. показывает, что время, необходимое для достижения температуры, было меньше при использовании инфракрасного излучения по сравнению с обычным нагревом.Это положительно влияет на питательные качества сока и снижает потребление энергии и цвет сока. Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77]. Температура и время нагревания существенно влияют на потерю аскорбиновой кислоты из сока. Аскорбиновая кислота восстанавливается при любой тепловой обработке, будь то инфракрасное или обычное нагревание, и процесс разрушения аскорбиновой кислоты следует кинетике реакции в процессе производства сока с большим коэффициентом корреляции [18].Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77].

Принципиальная схема инфракрасного обогревателя для производства лимонного сока. (1) Нагревательная камера, (2) лампа с инфракрасным излучателем, (3) чаша с соком, (4) термостат, (5) двойной термостат [18].

Температура сока меняется со временем ( a ) при обычном нагреве, ( b ) инфракрасном нагреве [18].

Удерживаемое количество аскорбиновой кислоты было выше при использовании инфракрасного нагрева по сравнению с обычным нагревом, что указывает на то, что инфракрасный нагрев более эффективен для сохранения сока во время производства [18].

3.2.10. Инфракрасная сушка фруктов и овощей

В последние годы технология инфракрасной сушки была успешно применена к фруктам и овощам, таким как сушка картофеля [78,79], сладкий картофель [80], лук [81,82] и яблоки [7] , 83]. Сушка водорослей, овощей, рыбных хлопьев и макаронных изделий также исследовалась с использованием инфракрасных туннельных сушилок [84]. Bejar et al. [27] показали, что температура инфракрасной сушки не оказывает значительного влияния на поверхность, толщину и размер апельсиновой корки.Он не дает усадки, когда содержание влаги в нем падает до 0,1 кг воды / кг сухого вещества. Однако очень простое сжатие происходит при повышении температуры от 40 до 70 ° C. Толщина усадки была больше при 70 ° C и ниже при 40 ° C. Объем усадки был ниже при 60 ° C и выше при 50 ° C из-за толщины усадки. Усадка апельсиновых корок, высушенных инфракрасным излучением, была результатом испарения количества влаги.

Bejar et al. [27] также изучали влияние температуры инфракрасной сушки на цветовые характеристики апельсиновой корки (L *, a *, b *, C и ΔE).Были значительные различия в цвете высушенной апельсиновой корки по сравнению со свежими образцами. Инфракрасная сушка оказала значительное влияние на a и b, поскольку значения a, b и c уменьшились. Температуры 50–60 оказывали значительное влияние на c, а температура 70 ° C не оказывала значительного влияния. Значение b быстро уменьшалось при 40, 50 и 60 ° C, а при 70 ° C значительного эффекта не наблюдалось. Значение L было значительно увеличено с помощью инфракрасной сушки. Изменение цвета было результатом разложения флавоноидов и каротиноидов, которые отвечали за оранжевый и желтый цвет корок [85].Наименьшее значение ΔE получается при самой высокой температуре. Инфракрасная обработка была применена к сушке двух сортов клубники. Для определения оптимальных условий инфракрасной сушки использовались два фактора. Время инфракрасного излучения сорта Camarosa составляло 508, 280 и 246 минут, в то время как время инфракрасного излучения фестивальных сортов составляло 536, 304 и 290 минут при температурах сушки 60, 70 и 80 ° C соответственно. Результаты показали, что время инфракрасного излучения полностью зависит от температуры сушки.Время высыхания сорта Cama-rosa было больше, чем у сорта фестивального.

3.2.11. Стоимость инфракрасного обогрева

An et al. [86] сообщили о стоимости использования инфракрасного обогрева по сравнению с воздухонагревателем, работающим на дизельном топливе, для выращивания клубники. Средняя ночная температура воздуха составила 6,6 ° C при обработке инфракрасным обогревателем и 7,1 ° C при обработке воздухонагревателем. Результаты показали, что стоимость обогрева при использовании системы воздухонагревателя составляла 537,35 доллара из расчета на 543 литра не облагаемого налогом дизельного топлива, в то время как стоимость использования инфракрасной системы составляла 203 доллара.05 за счет потребления 5685 кВтч электроэнергии. Таким образом, система инфракрасного обогрева смогла сэкономить примерно 62,2% затрат на отопление. Была подсчитана стоимость различных режимов обогрева и резюмировано, что основная стоимость инфракрасной сушки приходилась на радиаторы. Это исследование также продемонстрировало значительную взаимосвязь между стоимостью различных типов излучателей [87].

Всесторонний обзор применения инфракрасного обогрева в пищевой промышленности

Энергосбережение является одним из факторов, определяющих полезность и успех работы любого предприятия пищевой промышленности.Тепло передается за счет теплопроводности, конвекции и излучения. Цель нагрева пищи — продлить срок хранения и улучшить вкус пищи [2]. Температура — это мера теплового движения на молекулярном уровне. Когда температура материала увеличивается, молекулярное движение получает больше энергии, а когда она увеличивается, это вызывает физические и химические изменения в нагретом материале. При обычном нагреве, который происходит за счет сгорания топлива или электрических обогревателей, тепло передается материалу извне за счет конвекции горячим воздухом или теплопроводности.Процесс передачи энергии от источника к пище зависит от типа приготовления. Например, в случае процесса выпечки энергия передается посредством конвекции, а жарка и кипячение — посредством теплопроводности. Энергия будет находиться очень близко к поверхности пищи, а затем постепенно нагревать пищу от горячей поверхности внутрь. Тепло передается пище только за счет теплопроводности, а это требует непрерывной обработки тепла. Высокая температура и время, необходимое для приготовления пищи, зависят от термических и технических свойств пищи [3].

Когда нагрев осуществляется излучением, тепло передается за счет конвекции и теплопроводности. Процесс жарки происходит за счет теплового излучения. Электромагнитное излучение вызывает тепловые движения молекул, но эффективность преобразования сильно зависит от частоты (энергии) излучения. Передаваемая излучением энергия на более коротких длинах волн, чем инфракрасный, вызывает электронно-химические изменения в молекулах, поглощающих излучение, такие как химическая связь, электронное возбуждение и рассеивание поглощенной энергии в виде меньшего количества тепла.Эффективность преобразования поглощенной энергии в тепло высока на высоких длинах волн инфракрасного излучения, поэтому электромагнитное излучение, создаваемое инфракрасным излучением, углубляет пищу на несколько миллиметров. Инфракрасное излучение поглощается органическими веществами на разных частотах, которые соответствуют переносу внутренних молекул между уровнями энергии. Этот переход в диапазоне инфракрасной энергии выражается во вращательном движении и колебательном (растягивающем) движении внутренних атомных связей.Частоты вращения колеблются от 1011 до 1013 Гц с длиной волны 30 мкм -1 мм. Передача энергии при разделении жидкостей очень мала, поэтому поглощение инфракрасного излучения является непрерывным. Инфракрасные полосы поглощения, связанные с нагреванием пищи, показаны на.

показывает, что существует сильное поглощение из-за продольных колебаний. Поглощение материала излучением не делает его насыщенным инфракрасным излучением, поскольку молекулы, возбужденные колебательным движением, непрерывно теряют энергию в случайных направлениях в результате столкновений между молекулами, которые передают энергию окружающей среде в виде нагревать.Длины волн в диапазоне 1,4–5 мкм считаются более эффективными при приготовлении пищи из-за их способности проникать через слой пара, окружающий пищу, а также внутрь нее на глубину нескольких миллиметров. Большая часть инфракрасного излучения поглощается тонким слоем органических веществ и воды, поэтому нагревание происходит поверхностно. Процесс инфракрасного нагрева происходит быстрее, потому что энергия передается от источника тепла к пище одновременно. Следовательно, нет необходимости в другом способе передачи энергии, например, использовании горячего воздуха.Тепло от инфракрасного нагрева образуется на поверхности материала, обработанного инфракрасным излучением, поэтому внутренняя часть материала нагревается за счет связи между молекулами пищи, таким образом, температура изменяется от поверхности к центру. Воздух, соприкасающийся с поверхностью пищи, нагревается косвенно, но он не такой горячий, как при нагревании за счет конвекции и теплопроводности. Диапазоны поглощения инфракрасного излучения компонентами пищи показаны на рисунке, который показывает, что компоненты пищи мешают друг другу в поглощении различных инфракрасных спектров.Вода в основном влияет на поглощение падающего излучения на всех длинах волн, тогда как поглощение белков инфракрасным излучением происходит на длинах волн 3–4 и 6–9 мкм. Поглощение жиров происходит при длинах волн 3–4, 6 и 9–10 мкм, а сахаров — 3 и 7–10 мкм. Пучки водопоглощения составляют 3, 4,7, 6 и 15,3 мкм [13]. Кроме того, когда толщина пищи увеличивается, абсорбция увеличивается.

3.1. Инфракрасный нагрев при сушке пищевых продуктов

Инфракрасные волны с длиной волны от 2,5 до 200 мкм часто используются в процессах сушки пищевых продуктов.Вода сильно поглощается инфракрасной энергией на длинах волн 3, 6, 12 и 15 мкм [36,37]. Керамические нагреватели часто используются для процессов сушки, поскольку их излучение составляет до 3 мкм. Причина, по которой вода сильно поглощает инфракрасное излучение, заключается в наличии связей O-H в воде, поэтому она начинает циркулировать с той же частотой излучения. Процесс преобразования инфракрасного излучения в циркулирующую энергию вызывает испарение воды. Когда инфракрасное излучение попадает на поверхность, его часть поглощается, отражается и передается.Если проницаемость слишком мала, материал отражает или поглощает инфракрасное излучение в зависимости от природы излучения и свойств поверхности материала, и это называется излучательной способностью (ε).

Энергия, обезвоживающая пищу, — это лучистая энергия. Источником инфракрасного излучения, используемым при сушке пищевых продуктов, являются инфракрасные лампы и керамические обогреватели, работающие на электричестве или газе. Инфракрасным лучам не нужна среда для передачи энергии излучения от источника на поверхность пищи. Это отличная особенность, так как считается, что пища поглощает инфракрасное излучение и высыхает непосредственно.Следовательно, чтобы повысить эффективность сушки, поглощение и рассеивание падающего излучения должно быть ниже, а пища должна содержать воду. Источник инфракрасного излучения должен находиться в закрытом помещении, а его поверхность должна иметь высокую отражающую способность с целью максимизации множественных отражений и повышения энергоэффективности [9]. Инфракрасное поглощение в пище зависит от белков, жиров, углеводов и воды. Направление падающего излучения, свойства поверхности пищи и спектральная структура также определяют поглощение инфракрасного излучения.Одним из определяющих факторов использования инфракрасного излучения в продуктах питания является неоднородность его формы и размера, поэтому интенсивность излучения, падающего на материал, различается от одного места к другому. показано преобразование ИК-пены на рисовых зернах в различные компоненты [38]. Стенки и дно плиты должны быть покрыты алюминиевой фольгой, чтобы уменьшить потери тепла и отражать падающие на них лучи и быть радиоактивными стенками. Увеличение отраженного и испускаемого излучения, теплопередача за счет конвекции и теплоты испарения различаются в зависимости от характеристик поверхности и состояния воды в рисе [36,38].

Энергетический баланс тонкого слоя грубого риса, подвергшегося воздействию ИК-излучения.

Собственное колебание молекулы воды бывает в двух случаях, а именно: симметричное растягивающее колебание и симметричное деформационное колебание. Инфракрасная энергия относительно этих частот эффективно поглощается телом. Следовательно, пища эффективно поглощает инфракрасное излучение на длинах волн более 2,5 мкм за счет изменения вибрационного состояния механизма вибрации, которое вызывает повышение ее температуры (нагревание) [39].Ричардсон [40] отметил, что существуют две основные вибрации: растяжение и изгиб, расширение означает увеличение или уменьшение расстояния между атомами, а изгиб означает движение атомов. Когда инфракрасное излучение поражает молекулы, энергия поглощается, и вибрация изменяется.

Лаохаванич и Вонгпичет [41] заявили, что кривая сушки риса на длине волны 2,7 мкм является функцией времени сушки при начальном содержании влаги 0,22, 0,27, 0,32 и 0,37 в расчете на твердую массу db, при содержании влаги 0 .37 является функцией времени высыхания при длинах волн 2,47, 2,58 и 2,7 мкм. Влагосодержание экспоненциально уменьшается со временем сушки, а также показывает, что существует значительное влияние длины волны на скорость сушки риса. Скорость сушки увеличивается с увеличением длины волны инфракрасного излучения. Время высыхания уменьшается с увеличением длины волны.

Комбинирование инфракрасного излучения и горячего воздуха более эффективно, чем если бы оно использовалось по отдельности, в результате их совместного действия. Афзал и др. [11] обнаружили, что при использовании инфракрасного излучения и горячего воздуха для сушки ячменя потребление энергии снижается при сохранении хорошего качества ячменя.Использование инфракрасного излучения с горячим воздухом снижает общую потребность в энергии на 245% по сравнению с одним только горячим воздухом.

3.2. Влияние инфракрасного излучения на антиоксиданты в продуктах питания

3.2.1. Общее содержание фенолов

Фенольные соединения — это антиоксиданты, извлекаемые из растений [42]. Они обладают способностью отдавать водород или электроны, а также делать свободные радикалы более стабильными [43,44]. Наружные кожуры растений содержат большое количество фенольных соединений с целью защиты их внутренних частей.показывает влияние инфракрасного излучения при различных температурах на общее содержание фенола в апельсиновой цедре и апельсиновых листьях. Свежая апельсиновая цедра имеет более высокое содержание фенолов по сравнению с листьями. Инфракрасное излучение оказывает значительное влияние на содержание общих фенолов в кожуре и листьях. Компоненты растительных клеток в осушающих материалах прилипают друг к другу, и, таким образом, возможность экстракции биоактивных соединений растворителем будет более сложной [45]. При инфракрасной обработке при высоких температурах (60 и 70 ° C) в течение короткого периода времени общее содержание фенолов в кожуре и листьях было выше, поскольку фенольные соединения сопротивляются термическому разрушению, как показано на рис.Длительное время сушки при низких температурах (40 и 50 ° C) приводит к разрушению некоторых фенолов [46]. Anagnostopoulou et al. (2006) обнаружили, что общее количество фенолов в апельсиновых корках, высушенных инфракрасным излучением, было выше, чем в цедрах, высушенных горячим воздухом [12]. Инфракрасные лучи могут реактивировать низкомолекулярные антиоксиданты, потому что нагревание материалов не повреждает лежащие под ними молекулы нагретой поверхности, а также способствует передаче тепла к центру нагретого материала [47]. Эффективность фенольного содержания увеличивалась после воздействия на рисовую шелуху FIR [48,49].Ли и др. [50] обнаружили, что воздействие инфракрасного излучения на рисовую шелуху в течение двух часов увеличивает содержание фенольных соединений. Когда рисовая шелуха подвергается воздействию инфракрасного излучения, ковалентно связанные фенольные соединения, обладающие антиоксидантной активностью, высвобождаются и активируются.

Влияние инфракрасной температуры на общее количество фенолов апельсиновой корки и листьев.

Ли и др. [2] показали, что общее содержание фенола в водном экстракте скорлупы арахиса значительно увеличивалось при увеличении времени инфракрасного воздействия и времени термической обработки ().Общее количество фенолов увеличивается с 72,9 мкМ для стандартной обработки (0) до 141,6 мкМ для инфракрасного излучения и 90,3 мкМ для обычного нагревания при 150 ° C в течение 60 мин. Таким образом, инфракрасный FIR более эффективен для увеличения содержания фенола в скорлупе арахиса по сравнению с традиционной термообработкой. Инфракрасное излучение является биологически активным [51], и тепло равномерно передается к центру вещества, не разрушая молекулы, образующие поверхность [47]. Инфракрасное излучение может иметь доступ к ковалентным связям и высвобождать антиоксиданты [47, 48].С другой стороны, простая тепловая обработка увеличила содержание фенола в обезжиренном кунжуте, а также в кожуре цитрусовых [52]. Это показывает, что ассоциация фенольных соединений в растениях различается в зависимости от типа растения. Эффективные производственные этапы высвобождения антиоксидантов из разных растений могут быть разными.

Таблица 2

Влияние ДИК-излучения и термообработки на общее содержание фенолов в водной вытяжке из шелухи арахиса [2].

Параметры Исходный Инфракрасный (стандартный) Вт Инфракрасный диапазон (предварительно обработанный 5% карбонатом калия и 0.5% оливкового масла в течение 2 минут)
62 88 125 62 88 125
TPC (мг GA / 100 г сухого вещества)263,15 a 181,6 e 134,35 d 221,24 b 155,41 d 191,32 c 192,41 c г сухого вещества) 4.23 a 0,99 f 1,98 c 3,23 b 1,51 d 2,70 b 2,55 c 9070,3
c 9022.2. Удаление свободных радикалов

При воздействии на водный экстракт шелухи арахиса FIR в течение 60 минут процент улавливания свободных радикалов увеличился с 2,34% до 48,33%. Напротив, простая термообработка увеличилась до 23,69%. Увеличение зависит от времени воздействия как инфракрасного, так и обычного нагрева [48,51].

Эффективность антиоксидантов была выше при использовании инфракрасного излучения с начальной обработкой (предварительная обработка 5% карбонатом калия и 0,5% оливковым маслом в течение 2 минут при 20 ° C) по сравнению со стандартной обработкой (только инфракрасное излучение) при 62 и 88 Вт. ().Антиоксидантная эффективность стандартной обработки при 125 Вт была выше, чем у инфракрасной обработки при начальной обработке. Следовательно, чтобы повысить эффективность антиоксидантов, способность инфракрасного излучения во время сушки должна быть уменьшена [53].

Таблица 3

Общие фенолы и антиоксидантная эффективность инфракрасной сушеной мармелада [53].

Обработки Время (мин)
0 5 10 15 20 40 60
FIR-излучение 72.9 e 79,3 de 88,6 d 99,4 cx 107,8 cx 124,1 bx 141,6 ax 79,8 b 79,5 b 78,6 по 78,5 по 86,7 ay 90,3 ay

Значение пероксида

Значение пероксида быстро увеличивается, когда только инфракрасное излучение и инфракрасное излучение с горячим воздухом обрабатываются вместе в результате более высоких температур. Значение перекиси через три месяца составило 1,59, 12,10 и 36,07 мэкв / кг при температурах 130, 140 и 150 ° C соответственно ().Инфракрасный обжиг при 150 ° C дает значительное увеличение пероксидного числа и более высокую скорость окисления, чем другие виды обработки. Причина в том, что инфракрасные лучи быстро проникают в миндаль и заставляют жир перемещаться на поверхность, подверженную воздействию высокой температуры, что вызывает быстрое окисление. Лучшими условиями для обжаривания миндаля и обеспечения того, чтобы перекисное число миндаля находилось в допустимых пределах 5 мэкв / кг, являются совместное использование инфракрасного и горячего воздуха и горячего воздуха только при температуре 130–150 ° C и использование инфракрасного излучения. облучение при 130 ° C продлевает срок хранения с четырех до пяти месяцев при 37 ° C, в то время как обжиг горячим воздухом продлевает срок хранения еще дольше [54].Инфракрасная обжарка орехов кешью улучшает окислительную стабильность их масла [55]. Это может быть результатом образования продуктов реакции Милларда, обладающих антиоксидантным действием.

Изменение перекисного числа обжаренного миндаля с ИК и ИК с горячим воздухом во время хранения при 37 ° C [54].

3.2.4. Токоферол (витамин E)

Tuncel et al. [56] показали, что содержание γ- и δ-токоферола в семенах льна (лен не содержит α- и β-токоферолы) в свежих и жареных инфракрасных семенах было 146.57–193,14 и 2,91–3,23 мг / 100 г соответственно. Влияние инфракрасного излучения на δ-токоферол было незначительным, в то время как количество γ-токоферола было высоким по сравнению со свежим. Причиной получения наибольшего содержания γ-токоферола при инфракрасном нагреве был разрыв стенок клеток при термической обработке, что привело к усиленному извлечению токоферола из масла. Рим и др. [57] продемонстрировали, что воздействие инфракрасных лучей на скорлупу арахиса дает наивысшую антиоксидантную эффективность по сравнению с традиционной обработкой нагреванием.Антиоксидантная эффективность увеличивается с увеличением времени воздействия инфракрасного излучения. Кроме того, Seok et al. [58] показали, что при термической обработке винограда с использованием инфракрасного излучения повышается уровень антиоксидантов и фенольных соединений.

3.2.5. Влияние инфракрасного излучения на микроорганизмы

Инфракрасное излучение можно использовать для подавления бактерий, спор, дрожжей и плесени в жидких и твердых пищевых продуктах. Эффективность ингибирования инфракрасного излучения зависит от количества инфракрасной энергии, температуры пищи, длины волны, ширины волны, глубины корма, типа микроорганизма, содержания влаги и типа пищевого материала.Увеличение мощности инфракрасного источника, необходимого для обогрева, дает больше энергии. Следовательно, общая энергия, поглощаемая микроорганизмами, увеличивается и, таким образом, усиливается подавление микробов.

Hamanaka et al. [29] использовали инфракрасное излучение для стерилизации поверхности зерна пшеницы и обнаружили, что температура поверхности пшеницы быстро повышается, когда инфракрасное излучение падает на нее без необходимости в проводниках. При мощности излучения 0,5, 1, 1,5 и 2 кВт температура внутри устройства составляла 45, 65, 95 и 120 ° C.В результате содержание микробов составило 0,83, 1,14, 1,18 и 1,90 КОЕ / г после 60 с воздействия инфракрасного нагрева. Молин и Остлунд [59] изучали влияние инфракрасной температуры на ингибирование микроорганизмов. Значения D Basillus subtilis составляли 26, 6,6, 9,3 и 3,2 с при 120, 140, 160 и 180 ° C, соответственно, в то время как значение z составляло 23 ° C. Небольшое время обработки при высоких температурах было достаточным для уничтожения патогенных микроорганизмов. Логарифмические числа E.coli уменьшилось до 0,76, 0,90 и 0,98 КОЕ / г через 2 мин воздействия инфракрасного излучения [60].

Jun и Irudayaraj [61] использовали инфракрасное излучение в диапазоне длин волн 5,88–6,66 мкм, используя оптические полосовые фильтры низких частот для подавления Aspergillus niger и Fusarium proliferatum в кукурузной муке. Определенная длина волны денатурирует белок в микроорганизмах и приводит к увеличению ингибирования на 40% по сравнению с использованием инфракрасного излучения без определения конкретной длины волны.Если длина волны была определена и не указана, уменьшение логарифмических чисел A. niger составило 2,3 и 1,8 КОЕ / г, соответственно, после пяти минут воздействия инфракрасного излучения. Напротив, логарифмические числа F. proliferatum составляли 1,95 и 1,4 КОЕ / г, соответственно, при воздействии инфракрасного излучения. Причина заключалась в том, что поглощение энергии врожденными спорами было больше на выбранной длине волны и, следовательно, приводило к более высокому уровню смертности [61].

3.2.6. Механизм инфракрасной и микробной инактивации

Термическое ингибирование работает путем повреждения ДНК, РНК, рибосом, клеточного покрытия и белков в бактериальных клетках. Sawai et al. [62] изучали механизм действия микробиологического ингибитора инфракрасного излучения против бактерий E. coli при солевой фосфатной лихорадке. Полученные результаты позволяют предположить, что частично поврежденные клетки станут более чувствительными к антибиотикам, оказывающим угнетающее действие на поврежденную часть клетки.РНК, белки и клеточные стенки более уязвимы для инфракрасного нагрева, чем для кондуктивного нагрева. Порядок величины инфракрасного повреждения следующий:

Белок> РНК> Клеточная стенка> ДНК

Использование инфракрасного нагрева при 3,22 кВт / м 2 в течение 8 минут привело к снижению на 1,8, 1,9, 2,7 и 3,2 log E. coli , когда агар был богат налидиксом, пенициллином (PCG), рифампицином (RFG) и хлорамфениколом (CP). Однако скорость восстановления E. coli составляла 1.8 log без использования каких-либо вышеупомянутых антибиотиков. Это означает, что действие ингибирующих факторов привело к снижению на 0,1, 0,9 и 1,4 log за счет PCG, RFP и CP соответственно. Глубина проникновения инфракрасного излучения мала. Температура поверхности пищевых материалов быстро увеличивается, и тепло передается пище за счет теплопроводности.

Теплопроводность твердых продуктов ниже, чем у жидких. В случае жидких пищевых продуктов передача тепла происходит за счет конвекции с использованием инфракрасного нагрева, что увеличивает микробную смертность [2].Hamanaka et al. [28] изучали эффективность ингибирования B. subtilis , обработанного тремя инфракрасными нагревателями с разной длиной волны (950, 1100 и 1150 нм). Результаты показали, что подавление патогенных микроорганизмов на длине волны 950 нм было выше, чем на других длинах волн при той же температуре. Десятичное время при активности воды 0,7 и длинах волн 950, 1100 и 1150 нм составляло 4, 12 и 22 мин соответственно. Полученные результаты показали, что эффективность ингибирования зависит от спектра излучения, как показано на.Влияние инфракрасного излучения на подавление микробов уменьшалось с увеличением глубины кормления, поскольку глубина проникновения инфракрасного излучения мала, поэтому инфракрасное излучение можно использовать только для стерилизации поверхностей пищевых продуктов. Rosenthal et al. [63] показали, что инфракрасное нагревание эффективно снижает рост дрожжей и плесени на поверхности сыра при температуре 70 ° C в течение 5 минут, не влияя на качество сыра.

Связь между активностью воды и десятичным временем восстановления для спор B. subtilis с использованием инфракрасной обработки [28].

Инфракрасные лампы, используемые для инкубации яиц домашней птицы и борьбы с вредителями. Согласно Киркпатрику [64], инфракрасные лучи привели к уничтожению насекомых 99% Sitophilus oryzae и 93% Rhyzopertha dominica , а температура пшеницы во время обработки повысилась до 48,6 ° C.

3.2.7. Ингибирование ферментов с помощью инфракрасного излучения

Инфракрасное излучение можно эффективно использовать для подавления ферментов. Фермент липооксигеназа, ответственный за повреждение сои, ингибируется 95.5% с использованием инфракрасного излучения [15]. На липазу и α-амилазы сильно влияет инфракрасное излучение при температуре 30–40 ° C [64,65]. Активность липазы снижается на 60% после инфракрасной обработки в течение 6 минут, а после использования теплопроводности — на 70%. Ингибирование фермента полифенолоксидазы в обработанных картофельных чипсах с использованием инфракрасного нагрева начинается, когда температура в центре ломтика достигает 65 ° C, а ингибирование не может достигать 100% в центре ломтика. Это требует, чтобы первая область устройства обеспечивала более высокую пропускную способность, чтобы гарантировать подавление более высокой эффективности и уменьшить толщину чипов [62].

Yi et al. [66] обнаружили, что лучшей предварительной обработкой кубиков яблока было погружение на 5 минут в хлорид кальция и 0,5% аскорбиновую кислоту для подавления коричневой окраски. Инфракрасный нагрев с интенсивностью 5000 Вт / м 2 может подавлять ферментативные полифенолоксидазу и пероксидазу намного быстрее, чем интенсивность 3000 Вт / м². Ферменты полифенолоксидаза и пероксидаза обладали высокой термостойкостью, и процесс их ингибирования происходил в соответствии с моделями кинетики первого порядка и фракционной конверсией соответственно.Быстрое кипячение с использованием инфракрасной сушки характеризуется быстрым ингибированием сложных ферментов, вызывающих ухудшение качества, без потери или очень простой потери витаминов, ароматизаторов, красителей, углеводов и некоторых водорастворимых компонентов. Скорость реакции при инфракрасном сухом кипении очень низкая. Ингибирование фосфатазы в инфракрасных ломтиках яблока зависит от толщины чипа и интенсивности излучения. Вареный горошек в инфракрасном свете сохраняет больше аскорбиновой кислоты и вкуса, чем кипяченый в горячей воде.Инфракрасное излучение можно использовать для эффективного подавления ферментов. Время кипячения ломтиков моркови в инфракрасном диапазоне составляет 10–15 минут, по сравнению с методами кипячения паром и горячей водой, для которых требуется время 5–10 минут (). Это может быть связано с постепенным повышением температуры продукта в результате периодического инфракрасного нагрева и движения воздуха по поверхности продукта. Это привело к стабильности температуры продукта и улучшило качество, где количество витамина С было выше по сравнению с методами с паром и горячей водой [67].

Принципиальная схема системы ИК-бланширования ( a ) и гибридной сушки ( b ) [67].

3.2.8. Инфракрасные печи и выпечка

Выпечка хлеба — это сложный процесс, который включает в себя сочетание физических, химических и биохимических изменений в пищевых продуктах, таких как желатинизация крахмала, денатурация белка, выделение углекислого газа из-за добавления дрожжей, испарение воды, выпечка корки. образование и коричневые реакции в результате тепломассопереноса через продукт и пространство внутри печи.Тепло передается тесту за счет излучения, конвекции и теплопроводности. Пей [68] классифицирует традиционный хлеб на четыре этапа: белый хлеб с хрустящей корочкой, передача тепла изнутри на корку, приготовление или желатинизация и подрумянивание. Альтернативной технологией для традиционного хлеба является коротковолновое инфракрасное излучение [68,69,70].

В 1950 году Гинзбург использовал инфракрасное излучение в качестве печи для выпечки хлеба. В то время этот метод не был разработан из-за отсутствия информации об этой технологии. В 1970 году исследователи использовали инфракрасное излучение как средство нагрева пищи, особенно для жарки мясных продуктов [10,71].Затем этот прием был применен для выпечки хлеба [72]. Инфракрасный хлеб для печенья был применен Уэйдом [70], и было обнаружено, что существует широкий диапазон печенья, которое можно выпекать с инфракрасной длиной волны 1,2 мкм и для чего требуется вдвое меньше времени по сравнению с традиционным методом.

Преимущество использования инфракрасного нагрева в духовке для выпечки хлеба заключается в быстрой передаче тепла хлебу. Свойство хлеба обеспечивает хорошую пропитку до 2–3 мм и скорость нагрева. Причина, по которой инфракрасные печи лучше обычных духовок, заключается в том, что этот метод более эффективен для нагрева поверхностей и центральных частей пищи за короткое время выпечки из-за эффективной передачи тепла поверхности.Это приводит к более высокому содержанию воды в центре блюда во время выпечки. Таким образом, срок хранения продукта будет лучше и дольше [16].

Heist и Cremer [73] изучали влияние инфракрасного хлеба на сенсорные качества и потребление энергии пирожных, сделанных из белой, беленой и небелой муки, и сравнили его с традиционной духовкой. Ли [74] слился между микроволновой печью и галогенной лампой. Девяносто процентов энергии излучения в пределах длины волны было менее 1 мкм и использовалось в качестве источника инфракрасного излучения.Два из них использовались выше и два снизу, чтобы не было помех между ними в микроволновой печи, и этот метод обеспечивает большую однородность приготовления. В этой конструкции было два механизма: микроволновая печь быстро нагревает пищу, а инфракрасное излучение активирует реакции дубления и хрустящей корочки, и этот метод устраняет проблему плохого качества выпечки с использованием микроволновой печи [75]. Микроволновая печь имеет галогенные лампы, излучающие инфракрасные лучи, которые разделены на две части: одна часть расположена вверху, а другая — вниз, а для гомогенизации имеется вращающееся основание.Галогенные лампы находятся на расстоянии 15 см от обжигаемого материала, в то время как другие галогенные лампы помещаются под вращающуюся пластину (). Результаты эксперимента заключаются в том, что размер торта увеличивался с увеличением времени выпекания, а цвет и твердость торта были такими же, как в обычной печи [76].

Комбинированный духовой шкаф с ИК-СВЧ. ( 1 ) Верхние галогенные лампы, ( 2 ) нижние галогенные лампы, ( 3 ) микроволны, ( 4 ) поворотный стол [76].

3.2.9. Инфракрасный и соки

Aghajanzadeh et al. [18] разработали систему инфракрасного нагрева для сока лайма, как показано на рис. Он состоит из камеры инфракрасного нагрева мощностью 1500 Вт. Расстояние между источником инфракрасного излучения и поверхностью сока составляет 8,5 см, а система оснащена системой контроля температуры. Кроме того, система оснащена системой перемешивания образца каждые 15 с для равномерного нагрева. показывает, что время, необходимое для достижения температуры, было меньше при использовании инфракрасного излучения по сравнению с обычным нагревом.Это положительно влияет на питательные качества сока и снижает потребление энергии и цвет сока. Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77]. Температура и время нагревания существенно влияют на потерю аскорбиновой кислоты из сока. Аскорбиновая кислота восстанавливается при любой тепловой обработке, будь то инфракрасное или обычное нагревание, и процесс разрушения аскорбиновой кислоты следует кинетике реакции в процессе производства сока с большим коэффициентом корреляции [18].Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77].

Принципиальная схема инфракрасного обогревателя для производства лимонного сока. (1) Нагревательная камера, (2) лампа с инфракрасным излучателем, (3) чаша с соком, (4) термостат, (5) двойной термостат [18].

Температура сока меняется со временем ( a ) при обычном нагреве, ( b ) инфракрасном нагреве [18].

Удерживаемое количество аскорбиновой кислоты было выше при использовании инфракрасного нагрева по сравнению с обычным нагревом, что указывает на то, что инфракрасный нагрев более эффективен для сохранения сока во время производства [18].

3.2.10. Инфракрасная сушка фруктов и овощей

В последние годы технология инфракрасной сушки была успешно применена к фруктам и овощам, таким как сушка картофеля [78,79], сладкий картофель [80], лук [81,82] и яблоки [7] , 83]. Сушка водорослей, овощей, рыбных хлопьев и макаронных изделий также исследовалась с использованием инфракрасных туннельных сушилок [84]. Bejar et al. [27] показали, что температура инфракрасной сушки не оказывает значительного влияния на поверхность, толщину и размер апельсиновой корки.Он не дает усадки, когда содержание влаги в нем падает до 0,1 кг воды / кг сухого вещества. Однако очень простое сжатие происходит при повышении температуры от 40 до 70 ° C. Толщина усадки была больше при 70 ° C и ниже при 40 ° C. Объем усадки был ниже при 60 ° C и выше при 50 ° C из-за толщины усадки. Усадка апельсиновых корок, высушенных инфракрасным излучением, была результатом испарения количества влаги.

Bejar et al. [27] также изучали влияние температуры инфракрасной сушки на цветовые характеристики апельсиновой корки (L *, a *, b *, C и ΔE).Были значительные различия в цвете высушенной апельсиновой корки по сравнению со свежими образцами. Инфракрасная сушка оказала значительное влияние на a и b, поскольку значения a, b и c уменьшились. Температуры 50–60 оказывали значительное влияние на c, а температура 70 ° C не оказывала значительного влияния. Значение b быстро уменьшалось при 40, 50 и 60 ° C, а при 70 ° C значительного эффекта не наблюдалось. Значение L было значительно увеличено с помощью инфракрасной сушки. Изменение цвета было результатом разложения флавоноидов и каротиноидов, которые отвечали за оранжевый и желтый цвет корок [85].Наименьшее значение ΔE получается при самой высокой температуре. Инфракрасная обработка была применена к сушке двух сортов клубники. Для определения оптимальных условий инфракрасной сушки использовались два фактора. Время инфракрасного излучения сорта Camarosa составляло 508, 280 и 246 минут, в то время как время инфракрасного излучения фестивальных сортов составляло 536, 304 и 290 минут при температурах сушки 60, 70 и 80 ° C соответственно. Результаты показали, что время инфракрасного излучения полностью зависит от температуры сушки.Время высыхания сорта Cama-rosa было больше, чем у сорта фестивального.

3.2.11. Стоимость инфракрасного обогрева

An et al. [86] сообщили о стоимости использования инфракрасного обогрева по сравнению с воздухонагревателем, работающим на дизельном топливе, для выращивания клубники. Средняя ночная температура воздуха составила 6,6 ° C при обработке инфракрасным обогревателем и 7,1 ° C при обработке воздухонагревателем. Результаты показали, что стоимость обогрева при использовании системы воздухонагревателя составляла 537,35 доллара из расчета на 543 литра не облагаемого налогом дизельного топлива, в то время как стоимость использования инфракрасной системы составляла 203 доллара.05 за счет потребления 5685 кВтч электроэнергии. Таким образом, система инфракрасного обогрева смогла сэкономить примерно 62,2% затрат на отопление. Была подсчитана стоимость различных режимов обогрева и резюмировано, что основная стоимость инфракрасной сушки приходилась на радиаторы. Это исследование также продемонстрировало значительную взаимосвязь между стоимостью различных типов излучателей [87].

Всесторонний обзор применения инфракрасного обогрева в пищевой промышленности

Энергосбережение является одним из факторов, определяющих полезность и успех работы любого предприятия пищевой промышленности.Тепло передается за счет теплопроводности, конвекции и излучения. Цель нагрева пищи — продлить срок хранения и улучшить вкус пищи [2]. Температура — это мера теплового движения на молекулярном уровне. Когда температура материала увеличивается, молекулярное движение получает больше энергии, а когда она увеличивается, это вызывает физические и химические изменения в нагретом материале. При обычном нагреве, который происходит за счет сгорания топлива или электрических обогревателей, тепло передается материалу извне за счет конвекции горячим воздухом или теплопроводности.Процесс передачи энергии от источника к пище зависит от типа приготовления. Например, в случае процесса выпечки энергия передается посредством конвекции, а жарка и кипячение — посредством теплопроводности. Энергия будет находиться очень близко к поверхности пищи, а затем постепенно нагревать пищу от горячей поверхности внутрь. Тепло передается пище только за счет теплопроводности, а это требует непрерывной обработки тепла. Высокая температура и время, необходимое для приготовления пищи, зависят от термических и технических свойств пищи [3].

Когда нагрев осуществляется излучением, тепло передается за счет конвекции и теплопроводности. Процесс жарки происходит за счет теплового излучения. Электромагнитное излучение вызывает тепловые движения молекул, но эффективность преобразования сильно зависит от частоты (энергии) излучения. Передаваемая излучением энергия на более коротких длинах волн, чем инфракрасный, вызывает электронно-химические изменения в молекулах, поглощающих излучение, такие как химическая связь, электронное возбуждение и рассеивание поглощенной энергии в виде меньшего количества тепла.Эффективность преобразования поглощенной энергии в тепло высока на высоких длинах волн инфракрасного излучения, поэтому электромагнитное излучение, создаваемое инфракрасным излучением, углубляет пищу на несколько миллиметров. Инфракрасное излучение поглощается органическими веществами на разных частотах, которые соответствуют переносу внутренних молекул между уровнями энергии. Этот переход в диапазоне инфракрасной энергии выражается во вращательном движении и колебательном (растягивающем) движении внутренних атомных связей.Частоты вращения колеблются от 1011 до 1013 Гц с длиной волны 30 мкм -1 мм. Передача энергии при разделении жидкостей очень мала, поэтому поглощение инфракрасного излучения является непрерывным. Инфракрасные полосы поглощения, связанные с нагреванием пищи, показаны на.

показывает, что существует сильное поглощение из-за продольных колебаний. Поглощение материала излучением не делает его насыщенным инфракрасным излучением, поскольку молекулы, возбужденные колебательным движением, непрерывно теряют энергию в случайных направлениях в результате столкновений между молекулами, которые передают энергию окружающей среде в виде нагревать.Длины волн в диапазоне 1,4–5 мкм считаются более эффективными при приготовлении пищи из-за их способности проникать через слой пара, окружающий пищу, а также внутрь нее на глубину нескольких миллиметров. Большая часть инфракрасного излучения поглощается тонким слоем органических веществ и воды, поэтому нагревание происходит поверхностно. Процесс инфракрасного нагрева происходит быстрее, потому что энергия передается от источника тепла к пище одновременно. Следовательно, нет необходимости в другом способе передачи энергии, например, использовании горячего воздуха.Тепло от инфракрасного нагрева образуется на поверхности материала, обработанного инфракрасным излучением, поэтому внутренняя часть материала нагревается за счет связи между молекулами пищи, таким образом, температура изменяется от поверхности к центру. Воздух, соприкасающийся с поверхностью пищи, нагревается косвенно, но он не такой горячий, как при нагревании за счет конвекции и теплопроводности. Диапазоны поглощения инфракрасного излучения компонентами пищи показаны на рисунке, который показывает, что компоненты пищи мешают друг другу в поглощении различных инфракрасных спектров.Вода в основном влияет на поглощение падающего излучения на всех длинах волн, тогда как поглощение белков инфракрасным излучением происходит на длинах волн 3–4 и 6–9 мкм. Поглощение жиров происходит при длинах волн 3–4, 6 и 9–10 мкм, а сахаров — 3 и 7–10 мкм. Пучки водопоглощения составляют 3, 4,7, 6 и 15,3 мкм [13]. Кроме того, когда толщина пищи увеличивается, абсорбция увеличивается.

3.1. Инфракрасный нагрев при сушке пищевых продуктов

Инфракрасные волны с длиной волны от 2,5 до 200 мкм часто используются в процессах сушки пищевых продуктов.Вода сильно поглощается инфракрасной энергией на длинах волн 3, 6, 12 и 15 мкм [36,37]. Керамические нагреватели часто используются для процессов сушки, поскольку их излучение составляет до 3 мкм. Причина, по которой вода сильно поглощает инфракрасное излучение, заключается в наличии связей O-H в воде, поэтому она начинает циркулировать с той же частотой излучения. Процесс преобразования инфракрасного излучения в циркулирующую энергию вызывает испарение воды. Когда инфракрасное излучение попадает на поверхность, его часть поглощается, отражается и передается.Если проницаемость слишком мала, материал отражает или поглощает инфракрасное излучение в зависимости от природы излучения и свойств поверхности материала, и это называется излучательной способностью (ε).

Энергия, обезвоживающая пищу, — это лучистая энергия. Источником инфракрасного излучения, используемым при сушке пищевых продуктов, являются инфракрасные лампы и керамические обогреватели, работающие на электричестве или газе. Инфракрасным лучам не нужна среда для передачи энергии излучения от источника на поверхность пищи. Это отличная особенность, так как считается, что пища поглощает инфракрасное излучение и высыхает непосредственно.Следовательно, чтобы повысить эффективность сушки, поглощение и рассеивание падающего излучения должно быть ниже, а пища должна содержать воду. Источник инфракрасного излучения должен находиться в закрытом помещении, а его поверхность должна иметь высокую отражающую способность с целью максимизации множественных отражений и повышения энергоэффективности [9]. Инфракрасное поглощение в пище зависит от белков, жиров, углеводов и воды. Направление падающего излучения, свойства поверхности пищи и спектральная структура также определяют поглощение инфракрасного излучения.Одним из определяющих факторов использования инфракрасного излучения в продуктах питания является неоднородность его формы и размера, поэтому интенсивность излучения, падающего на материал, различается от одного места к другому. показано преобразование ИК-пены на рисовых зернах в различные компоненты [38]. Стенки и дно плиты должны быть покрыты алюминиевой фольгой, чтобы уменьшить потери тепла и отражать падающие на них лучи и быть радиоактивными стенками. Увеличение отраженного и испускаемого излучения, теплопередача за счет конвекции и теплоты испарения различаются в зависимости от характеристик поверхности и состояния воды в рисе [36,38].

Энергетический баланс тонкого слоя грубого риса, подвергшегося воздействию ИК-излучения.

Собственное колебание молекулы воды бывает в двух случаях, а именно: симметричное растягивающее колебание и симметричное деформационное колебание. Инфракрасная энергия относительно этих частот эффективно поглощается телом. Следовательно, пища эффективно поглощает инфракрасное излучение на длинах волн более 2,5 мкм за счет изменения вибрационного состояния механизма вибрации, которое вызывает повышение ее температуры (нагревание) [39].Ричардсон [40] отметил, что существуют две основные вибрации: растяжение и изгиб, расширение означает увеличение или уменьшение расстояния между атомами, а изгиб означает движение атомов. Когда инфракрасное излучение поражает молекулы, энергия поглощается, и вибрация изменяется.

Лаохаванич и Вонгпичет [41] заявили, что кривая сушки риса на длине волны 2,7 мкм является функцией времени сушки при начальном содержании влаги 0,22, 0,27, 0,32 и 0,37 в расчете на твердую массу db, при содержании влаги 0 .37 является функцией времени высыхания при длинах волн 2,47, 2,58 и 2,7 мкм. Влагосодержание экспоненциально уменьшается со временем сушки, а также показывает, что существует значительное влияние длины волны на скорость сушки риса. Скорость сушки увеличивается с увеличением длины волны инфракрасного излучения. Время высыхания уменьшается с увеличением длины волны.

Комбинирование инфракрасного излучения и горячего воздуха более эффективно, чем если бы оно использовалось по отдельности, в результате их совместного действия. Афзал и др. [11] обнаружили, что при использовании инфракрасного излучения и горячего воздуха для сушки ячменя потребление энергии снижается при сохранении хорошего качества ячменя.Использование инфракрасного излучения с горячим воздухом снижает общую потребность в энергии на 245% по сравнению с одним только горячим воздухом.

3.2. Влияние инфракрасного излучения на антиоксиданты в продуктах питания

3.2.1. Общее содержание фенолов

Фенольные соединения — это антиоксиданты, извлекаемые из растений [42]. Они обладают способностью отдавать водород или электроны, а также делать свободные радикалы более стабильными [43,44]. Наружные кожуры растений содержат большое количество фенольных соединений с целью защиты их внутренних частей.показывает влияние инфракрасного излучения при различных температурах на общее содержание фенола в апельсиновой цедре и апельсиновых листьях. Свежая апельсиновая цедра имеет более высокое содержание фенолов по сравнению с листьями. Инфракрасное излучение оказывает значительное влияние на содержание общих фенолов в кожуре и листьях. Компоненты растительных клеток в осушающих материалах прилипают друг к другу, и, таким образом, возможность экстракции биоактивных соединений растворителем будет более сложной [45]. При инфракрасной обработке при высоких температурах (60 и 70 ° C) в течение короткого периода времени общее содержание фенолов в кожуре и листьях было выше, поскольку фенольные соединения сопротивляются термическому разрушению, как показано на рис.Длительное время сушки при низких температурах (40 и 50 ° C) приводит к разрушению некоторых фенолов [46]. Anagnostopoulou et al. (2006) обнаружили, что общее количество фенолов в апельсиновых корках, высушенных инфракрасным излучением, было выше, чем в цедрах, высушенных горячим воздухом [12]. Инфракрасные лучи могут реактивировать низкомолекулярные антиоксиданты, потому что нагревание материалов не повреждает лежащие под ними молекулы нагретой поверхности, а также способствует передаче тепла к центру нагретого материала [47]. Эффективность фенольного содержания увеличивалась после воздействия на рисовую шелуху FIR [48,49].Ли и др. [50] обнаружили, что воздействие инфракрасного излучения на рисовую шелуху в течение двух часов увеличивает содержание фенольных соединений. Когда рисовая шелуха подвергается воздействию инфракрасного излучения, ковалентно связанные фенольные соединения, обладающие антиоксидантной активностью, высвобождаются и активируются.

Влияние инфракрасной температуры на общее количество фенолов апельсиновой корки и листьев.

Ли и др. [2] показали, что общее содержание фенола в водном экстракте скорлупы арахиса значительно увеличивалось при увеличении времени инфракрасного воздействия и времени термической обработки ().Общее количество фенолов увеличивается с 72,9 мкМ для стандартной обработки (0) до 141,6 мкМ для инфракрасного излучения и 90,3 мкМ для обычного нагревания при 150 ° C в течение 60 мин. Таким образом, инфракрасный FIR более эффективен для увеличения содержания фенола в скорлупе арахиса по сравнению с традиционной термообработкой. Инфракрасное излучение является биологически активным [51], и тепло равномерно передается к центру вещества, не разрушая молекулы, образующие поверхность [47]. Инфракрасное излучение может иметь доступ к ковалентным связям и высвобождать антиоксиданты [47, 48].С другой стороны, простая тепловая обработка увеличила содержание фенола в обезжиренном кунжуте, а также в кожуре цитрусовых [52]. Это показывает, что ассоциация фенольных соединений в растениях различается в зависимости от типа растения. Эффективные производственные этапы высвобождения антиоксидантов из разных растений могут быть разными.

Таблица 2

Влияние ДИК-излучения и термообработки на общее содержание фенолов в водной вытяжке из шелухи арахиса [2].

Параметры Исходный Инфракрасный (стандартный) Вт Инфракрасный диапазон (предварительно обработанный 5% карбонатом калия и 0.5% оливкового масла в течение 2 минут)
62 88 125 62 88 125
TPC (мг GA / 100 г сухого вещества)263,15 a 181,6 e 134,35 d 221,24 b 155,41 d 191,32 c 192,41 c г сухого вещества) 4.23 a 0,99 f 1,98 c 3,23 b 1,51 d 2,70 b 2,55 c 9070,3
c 9022.2. Удаление свободных радикалов

При воздействии на водный экстракт шелухи арахиса FIR в течение 60 минут процент улавливания свободных радикалов увеличился с 2,34% до 48,33%. Напротив, простая термообработка увеличилась до 23,69%. Увеличение зависит от времени воздействия как инфракрасного, так и обычного нагрева [48,51].

Эффективность антиоксидантов была выше при использовании инфракрасного излучения с начальной обработкой (предварительная обработка 5% карбонатом калия и 0,5% оливковым маслом в течение 2 минут при 20 ° C) по сравнению со стандартной обработкой (только инфракрасное излучение) при 62 и 88 Вт. ().Антиоксидантная эффективность стандартной обработки при 125 Вт была выше, чем у инфракрасной обработки при начальной обработке. Следовательно, чтобы повысить эффективность антиоксидантов, способность инфракрасного излучения во время сушки должна быть уменьшена [53].

Таблица 3

Общие фенолы и антиоксидантная эффективность инфракрасной сушеной мармелада [53].

Обработки Время (мин)
0 5 10 15 20 40 60
FIR-излучение 72.9 e 79,3 de 88,6 d 99,4 cx 107,8 cx 124,1 bx 141,6 ax 79,8 b 79,5 b 78,6 по 78,5 по 86,7 ay 90,3 ay

Значение пероксида

Значение пероксида быстро увеличивается, когда только инфракрасное излучение и инфракрасное излучение с горячим воздухом обрабатываются вместе в результате более высоких температур. Значение перекиси через три месяца составило 1,59, 12,10 и 36,07 мэкв / кг при температурах 130, 140 и 150 ° C соответственно ().Инфракрасный обжиг при 150 ° C дает значительное увеличение пероксидного числа и более высокую скорость окисления, чем другие виды обработки. Причина в том, что инфракрасные лучи быстро проникают в миндаль и заставляют жир перемещаться на поверхность, подверженную воздействию высокой температуры, что вызывает быстрое окисление. Лучшими условиями для обжаривания миндаля и обеспечения того, чтобы перекисное число миндаля находилось в допустимых пределах 5 мэкв / кг, являются совместное использование инфракрасного и горячего воздуха и горячего воздуха только при температуре 130–150 ° C и использование инфракрасного излучения. облучение при 130 ° C продлевает срок хранения с четырех до пяти месяцев при 37 ° C, в то время как обжиг горячим воздухом продлевает срок хранения еще дольше [54].Инфракрасная обжарка орехов кешью улучшает окислительную стабильность их масла [55]. Это может быть результатом образования продуктов реакции Милларда, обладающих антиоксидантным действием.

Изменение перекисного числа обжаренного миндаля с ИК и ИК с горячим воздухом во время хранения при 37 ° C [54].

3.2.4. Токоферол (витамин E)

Tuncel et al. [56] показали, что содержание γ- и δ-токоферола в семенах льна (лен не содержит α- и β-токоферолы) в свежих и жареных инфракрасных семенах было 146.57–193,14 и 2,91–3,23 мг / 100 г соответственно. Влияние инфракрасного излучения на δ-токоферол было незначительным, в то время как количество γ-токоферола было высоким по сравнению со свежим. Причиной получения наибольшего содержания γ-токоферола при инфракрасном нагреве был разрыв стенок клеток при термической обработке, что привело к усиленному извлечению токоферола из масла. Рим и др. [57] продемонстрировали, что воздействие инфракрасных лучей на скорлупу арахиса дает наивысшую антиоксидантную эффективность по сравнению с традиционной обработкой нагреванием.Антиоксидантная эффективность увеличивается с увеличением времени воздействия инфракрасного излучения. Кроме того, Seok et al. [58] показали, что при термической обработке винограда с использованием инфракрасного излучения повышается уровень антиоксидантов и фенольных соединений.

3.2.5. Влияние инфракрасного излучения на микроорганизмы

Инфракрасное излучение можно использовать для подавления бактерий, спор, дрожжей и плесени в жидких и твердых пищевых продуктах. Эффективность ингибирования инфракрасного излучения зависит от количества инфракрасной энергии, температуры пищи, длины волны, ширины волны, глубины корма, типа микроорганизма, содержания влаги и типа пищевого материала.Увеличение мощности инфракрасного источника, необходимого для обогрева, дает больше энергии. Следовательно, общая энергия, поглощаемая микроорганизмами, увеличивается и, таким образом, усиливается подавление микробов.

Hamanaka et al. [29] использовали инфракрасное излучение для стерилизации поверхности зерна пшеницы и обнаружили, что температура поверхности пшеницы быстро повышается, когда инфракрасное излучение падает на нее без необходимости в проводниках. При мощности излучения 0,5, 1, 1,5 и 2 кВт температура внутри устройства составляла 45, 65, 95 и 120 ° C.В результате содержание микробов составило 0,83, 1,14, 1,18 и 1,90 КОЕ / г после 60 с воздействия инфракрасного нагрева. Молин и Остлунд [59] изучали влияние инфракрасной температуры на ингибирование микроорганизмов. Значения D Basillus subtilis составляли 26, 6,6, 9,3 и 3,2 с при 120, 140, 160 и 180 ° C, соответственно, в то время как значение z составляло 23 ° C. Небольшое время обработки при высоких температурах было достаточным для уничтожения патогенных микроорганизмов. Логарифмические числа E.coli уменьшилось до 0,76, 0,90 и 0,98 КОЕ / г через 2 мин воздействия инфракрасного излучения [60].

Jun и Irudayaraj [61] использовали инфракрасное излучение в диапазоне длин волн 5,88–6,66 мкм, используя оптические полосовые фильтры низких частот для подавления Aspergillus niger и Fusarium proliferatum в кукурузной муке. Определенная длина волны денатурирует белок в микроорганизмах и приводит к увеличению ингибирования на 40% по сравнению с использованием инфракрасного излучения без определения конкретной длины волны.Если длина волны была определена и не указана, уменьшение логарифмических чисел A. niger составило 2,3 и 1,8 КОЕ / г, соответственно, после пяти минут воздействия инфракрасного излучения. Напротив, логарифмические числа F. proliferatum составляли 1,95 и 1,4 КОЕ / г, соответственно, при воздействии инфракрасного излучения. Причина заключалась в том, что поглощение энергии врожденными спорами было больше на выбранной длине волны и, следовательно, приводило к более высокому уровню смертности [61].

3.2.6. Механизм инфракрасной и микробной инактивации

Термическое ингибирование работает путем повреждения ДНК, РНК, рибосом, клеточного покрытия и белков в бактериальных клетках. Sawai et al. [62] изучали механизм действия микробиологического ингибитора инфракрасного излучения против бактерий E. coli при солевой фосфатной лихорадке. Полученные результаты позволяют предположить, что частично поврежденные клетки станут более чувствительными к антибиотикам, оказывающим угнетающее действие на поврежденную часть клетки.РНК, белки и клеточные стенки более уязвимы для инфракрасного нагрева, чем для кондуктивного нагрева. Порядок величины инфракрасного повреждения следующий:

Белок> РНК> Клеточная стенка> ДНК

Использование инфракрасного нагрева при 3,22 кВт / м 2 в течение 8 минут привело к снижению на 1,8, 1,9, 2,7 и 3,2 log E. coli , когда агар был богат налидиксом, пенициллином (PCG), рифампицином (RFG) и хлорамфениколом (CP). Однако скорость восстановления E. coli составляла 1.8 log без использования каких-либо вышеупомянутых антибиотиков. Это означает, что действие ингибирующих факторов привело к снижению на 0,1, 0,9 и 1,4 log за счет PCG, RFP и CP соответственно. Глубина проникновения инфракрасного излучения мала. Температура поверхности пищевых материалов быстро увеличивается, и тепло передается пище за счет теплопроводности.

Теплопроводность твердых продуктов ниже, чем у жидких. В случае жидких пищевых продуктов передача тепла происходит за счет конвекции с использованием инфракрасного нагрева, что увеличивает микробную смертность [2].Hamanaka et al. [28] изучали эффективность ингибирования B. subtilis , обработанного тремя инфракрасными нагревателями с разной длиной волны (950, 1100 и 1150 нм). Результаты показали, что подавление патогенных микроорганизмов на длине волны 950 нм было выше, чем на других длинах волн при той же температуре. Десятичное время при активности воды 0,7 и длинах волн 950, 1100 и 1150 нм составляло 4, 12 и 22 мин соответственно. Полученные результаты показали, что эффективность ингибирования зависит от спектра излучения, как показано на.Влияние инфракрасного излучения на подавление микробов уменьшалось с увеличением глубины кормления, поскольку глубина проникновения инфракрасного излучения мала, поэтому инфракрасное излучение можно использовать только для стерилизации поверхностей пищевых продуктов. Rosenthal et al. [63] показали, что инфракрасное нагревание эффективно снижает рост дрожжей и плесени на поверхности сыра при температуре 70 ° C в течение 5 минут, не влияя на качество сыра.

Связь между активностью воды и десятичным временем восстановления для спор B. subtilis с использованием инфракрасной обработки [28].

Инфракрасные лампы, используемые для инкубации яиц домашней птицы и борьбы с вредителями. Согласно Киркпатрику [64], инфракрасные лучи привели к уничтожению насекомых 99% Sitophilus oryzae и 93% Rhyzopertha dominica , а температура пшеницы во время обработки повысилась до 48,6 ° C.

3.2.7. Ингибирование ферментов с помощью инфракрасного излучения

Инфракрасное излучение можно эффективно использовать для подавления ферментов. Фермент липооксигеназа, ответственный за повреждение сои, ингибируется 95.5% с использованием инфракрасного излучения [15]. На липазу и α-амилазы сильно влияет инфракрасное излучение при температуре 30–40 ° C [64,65]. Активность липазы снижается на 60% после инфракрасной обработки в течение 6 минут, а после использования теплопроводности — на 70%. Ингибирование фермента полифенолоксидазы в обработанных картофельных чипсах с использованием инфракрасного нагрева начинается, когда температура в центре ломтика достигает 65 ° C, а ингибирование не может достигать 100% в центре ломтика. Это требует, чтобы первая область устройства обеспечивала более высокую пропускную способность, чтобы гарантировать подавление более высокой эффективности и уменьшить толщину чипов [62].

Yi et al. [66] обнаружили, что лучшей предварительной обработкой кубиков яблока было погружение на 5 минут в хлорид кальция и 0,5% аскорбиновую кислоту для подавления коричневой окраски. Инфракрасный нагрев с интенсивностью 5000 Вт / м 2 может подавлять ферментативные полифенолоксидазу и пероксидазу намного быстрее, чем интенсивность 3000 Вт / м². Ферменты полифенолоксидаза и пероксидаза обладали высокой термостойкостью, и процесс их ингибирования происходил в соответствии с моделями кинетики первого порядка и фракционной конверсией соответственно.Быстрое кипячение с использованием инфракрасной сушки характеризуется быстрым ингибированием сложных ферментов, вызывающих ухудшение качества, без потери или очень простой потери витаминов, ароматизаторов, красителей, углеводов и некоторых водорастворимых компонентов. Скорость реакции при инфракрасном сухом кипении очень низкая. Ингибирование фосфатазы в инфракрасных ломтиках яблока зависит от толщины чипа и интенсивности излучения. Вареный горошек в инфракрасном свете сохраняет больше аскорбиновой кислоты и вкуса, чем кипяченый в горячей воде.Инфракрасное излучение можно использовать для эффективного подавления ферментов. Время кипячения ломтиков моркови в инфракрасном диапазоне составляет 10–15 минут, по сравнению с методами кипячения паром и горячей водой, для которых требуется время 5–10 минут (). Это может быть связано с постепенным повышением температуры продукта в результате периодического инфракрасного нагрева и движения воздуха по поверхности продукта. Это привело к стабильности температуры продукта и улучшило качество, где количество витамина С было выше по сравнению с методами с паром и горячей водой [67].

Принципиальная схема системы ИК-бланширования ( a ) и гибридной сушки ( b ) [67].

3.2.8. Инфракрасные печи и выпечка

Выпечка хлеба — это сложный процесс, который включает в себя сочетание физических, химических и биохимических изменений в пищевых продуктах, таких как желатинизация крахмала, денатурация белка, выделение углекислого газа из-за добавления дрожжей, испарение воды, выпечка корки. образование и коричневые реакции в результате тепломассопереноса через продукт и пространство внутри печи.Тепло передается тесту за счет излучения, конвекции и теплопроводности. Пей [68] классифицирует традиционный хлеб на четыре этапа: белый хлеб с хрустящей корочкой, передача тепла изнутри на корку, приготовление или желатинизация и подрумянивание. Альтернативной технологией для традиционного хлеба является коротковолновое инфракрасное излучение [68,69,70].

В 1950 году Гинзбург использовал инфракрасное излучение в качестве печи для выпечки хлеба. В то время этот метод не был разработан из-за отсутствия информации об этой технологии. В 1970 году исследователи использовали инфракрасное излучение как средство нагрева пищи, особенно для жарки мясных продуктов [10,71].Затем этот прием был применен для выпечки хлеба [72]. Инфракрасный хлеб для печенья был применен Уэйдом [70], и было обнаружено, что существует широкий диапазон печенья, которое можно выпекать с инфракрасной длиной волны 1,2 мкм и для чего требуется вдвое меньше времени по сравнению с традиционным методом.

Преимущество использования инфракрасного нагрева в духовке для выпечки хлеба заключается в быстрой передаче тепла хлебу. Свойство хлеба обеспечивает хорошую пропитку до 2–3 мм и скорость нагрева. Причина, по которой инфракрасные печи лучше обычных духовок, заключается в том, что этот метод более эффективен для нагрева поверхностей и центральных частей пищи за короткое время выпечки из-за эффективной передачи тепла поверхности.Это приводит к более высокому содержанию воды в центре блюда во время выпечки. Таким образом, срок хранения продукта будет лучше и дольше [16].

Heist и Cremer [73] изучали влияние инфракрасного хлеба на сенсорные качества и потребление энергии пирожных, сделанных из белой, беленой и небелой муки, и сравнили его с традиционной духовкой. Ли [74] слился между микроволновой печью и галогенной лампой. Девяносто процентов энергии излучения в пределах длины волны было менее 1 мкм и использовалось в качестве источника инфракрасного излучения.Два из них использовались выше и два снизу, чтобы не было помех между ними в микроволновой печи, и этот метод обеспечивает большую однородность приготовления. В этой конструкции было два механизма: микроволновая печь быстро нагревает пищу, а инфракрасное излучение активирует реакции дубления и хрустящей корочки, и этот метод устраняет проблему плохого качества выпечки с использованием микроволновой печи [75]. Микроволновая печь имеет галогенные лампы, излучающие инфракрасные лучи, которые разделены на две части: одна часть расположена вверху, а другая — вниз, а для гомогенизации имеется вращающееся основание.Галогенные лампы находятся на расстоянии 15 см от обжигаемого материала, в то время как другие галогенные лампы помещаются под вращающуюся пластину (). Результаты эксперимента заключаются в том, что размер торта увеличивался с увеличением времени выпекания, а цвет и твердость торта были такими же, как в обычной печи [76].

Комбинированный духовой шкаф с ИК-СВЧ. ( 1 ) Верхние галогенные лампы, ( 2 ) нижние галогенные лампы, ( 3 ) микроволны, ( 4 ) поворотный стол [76].

3.2.9. Инфракрасный и соки

Aghajanzadeh et al. [18] разработали систему инфракрасного нагрева для сока лайма, как показано на рис. Он состоит из камеры инфракрасного нагрева мощностью 1500 Вт. Расстояние между источником инфракрасного излучения и поверхностью сока составляет 8,5 см, а система оснащена системой контроля температуры. Кроме того, система оснащена системой перемешивания образца каждые 15 с для равномерного нагрева. показывает, что время, необходимое для достижения температуры, было меньше при использовании инфракрасного излучения по сравнению с обычным нагревом.Это положительно влияет на питательные качества сока и снижает потребление энергии и цвет сока. Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77]. Температура и время нагревания существенно влияют на потерю аскорбиновой кислоты из сока. Аскорбиновая кислота восстанавливается при любой тепловой обработке, будь то инфракрасное или обычное нагревание, и процесс разрушения аскорбиновой кислоты следует кинетике реакции в процессе производства сока с большим коэффициентом корреляции [18].Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77].

Принципиальная схема инфракрасного обогревателя для производства лимонного сока. (1) Нагревательная камера, (2) лампа с инфракрасным излучателем, (3) чаша с соком, (4) термостат, (5) двойной термостат [18].

Температура сока меняется со временем ( a ) при обычном нагреве, ( b ) инфракрасном нагреве [18].

Удерживаемое количество аскорбиновой кислоты было выше при использовании инфракрасного нагрева по сравнению с обычным нагревом, что указывает на то, что инфракрасный нагрев более эффективен для сохранения сока во время производства [18].

3.2.10. Инфракрасная сушка фруктов и овощей

В последние годы технология инфракрасной сушки была успешно применена к фруктам и овощам, таким как сушка картофеля [78,79], сладкий картофель [80], лук [81,82] и яблоки [7] , 83]. Сушка водорослей, овощей, рыбных хлопьев и макаронных изделий также исследовалась с использованием инфракрасных туннельных сушилок [84]. Bejar et al. [27] показали, что температура инфракрасной сушки не оказывает значительного влияния на поверхность, толщину и размер апельсиновой корки.Он не дает усадки, когда содержание влаги в нем падает до 0,1 кг воды / кг сухого вещества. Однако очень простое сжатие происходит при повышении температуры от 40 до 70 ° C. Толщина усадки была больше при 70 ° C и ниже при 40 ° C. Объем усадки был ниже при 60 ° C и выше при 50 ° C из-за толщины усадки. Усадка апельсиновых корок, высушенных инфракрасным излучением, была результатом испарения количества влаги.

Bejar et al. [27] также изучали влияние температуры инфракрасной сушки на цветовые характеристики апельсиновой корки (L *, a *, b *, C и ΔE).Были значительные различия в цвете высушенной апельсиновой корки по сравнению со свежими образцами. Инфракрасная сушка оказала значительное влияние на a и b, поскольку значения a, b и c уменьшились. Температуры 50–60 оказывали значительное влияние на c, а температура 70 ° C не оказывала значительного влияния. Значение b быстро уменьшалось при 40, 50 и 60 ° C, а при 70 ° C значительного эффекта не наблюдалось. Значение L было значительно увеличено с помощью инфракрасной сушки. Изменение цвета было результатом разложения флавоноидов и каротиноидов, которые отвечали за оранжевый и желтый цвет корок [85].Наименьшее значение ΔE получается при самой высокой температуре. Инфракрасная обработка была применена к сушке двух сортов клубники. Для определения оптимальных условий инфракрасной сушки использовались два фактора. Время инфракрасного излучения сорта Camarosa составляло 508, 280 и 246 минут, в то время как время инфракрасного излучения фестивальных сортов составляло 536, 304 и 290 минут при температурах сушки 60, 70 и 80 ° C соответственно. Результаты показали, что время инфракрасного излучения полностью зависит от температуры сушки.Время высыхания сорта Cama-rosa было больше, чем у сорта фестивального.

3.2.11. Стоимость инфракрасного обогрева

An et al. [86] сообщили о стоимости использования инфракрасного обогрева по сравнению с воздухонагревателем, работающим на дизельном топливе, для выращивания клубники. Средняя ночная температура воздуха составила 6,6 ° C при обработке инфракрасным обогревателем и 7,1 ° C при обработке воздухонагревателем. Результаты показали, что стоимость обогрева при использовании системы воздухонагревателя составляла 537,35 доллара из расчета на 543 литра не облагаемого налогом дизельного топлива, в то время как стоимость использования инфракрасной системы составляла 203 доллара.05 за счет потребления 5685 кВтч электроэнергии. Таким образом, система инфракрасного обогрева смогла сэкономить примерно 62,2% затрат на отопление. Была подсчитана стоимость различных режимов обогрева и резюмировано, что основная стоимость инфракрасной сушки приходилась на радиаторы. Это исследование также продемонстрировало значительную взаимосвязь между стоимостью различных типов излучателей [87].

Всесторонний обзор применения инфракрасного обогрева в пищевой промышленности

Энергосбережение является одним из факторов, определяющих полезность и успех работы любого предприятия пищевой промышленности.Тепло передается за счет теплопроводности, конвекции и излучения. Цель нагрева пищи — продлить срок хранения и улучшить вкус пищи [2]. Температура — это мера теплового движения на молекулярном уровне. Когда температура материала увеличивается, молекулярное движение получает больше энергии, а когда она увеличивается, это вызывает физические и химические изменения в нагретом материале. При обычном нагреве, который происходит за счет сгорания топлива или электрических обогревателей, тепло передается материалу извне за счет конвекции горячим воздухом или теплопроводности.Процесс передачи энергии от источника к пище зависит от типа приготовления. Например, в случае процесса выпечки энергия передается посредством конвекции, а жарка и кипячение — посредством теплопроводности. Энергия будет находиться очень близко к поверхности пищи, а затем постепенно нагревать пищу от горячей поверхности внутрь. Тепло передается пище только за счет теплопроводности, а это требует непрерывной обработки тепла. Высокая температура и время, необходимое для приготовления пищи, зависят от термических и технических свойств пищи [3].

Когда нагрев осуществляется излучением, тепло передается за счет конвекции и теплопроводности. Процесс жарки происходит за счет теплового излучения. Электромагнитное излучение вызывает тепловые движения молекул, но эффективность преобразования сильно зависит от частоты (энергии) излучения. Передаваемая излучением энергия на более коротких длинах волн, чем инфракрасный, вызывает электронно-химические изменения в молекулах, поглощающих излучение, такие как химическая связь, электронное возбуждение и рассеивание поглощенной энергии в виде меньшего количества тепла.Эффективность преобразования поглощенной энергии в тепло высока на высоких длинах волн инфракрасного излучения, поэтому электромагнитное излучение, создаваемое инфракрасным излучением, углубляет пищу на несколько миллиметров. Инфракрасное излучение поглощается органическими веществами на разных частотах, которые соответствуют переносу внутренних молекул между уровнями энергии. Этот переход в диапазоне инфракрасной энергии выражается во вращательном движении и колебательном (растягивающем) движении внутренних атомных связей.Частоты вращения колеблются от 1011 до 1013 Гц с длиной волны 30 мкм -1 мм. Передача энергии при разделении жидкостей очень мала, поэтому поглощение инфракрасного излучения является непрерывным. Инфракрасные полосы поглощения, связанные с нагреванием пищи, показаны на.

показывает, что существует сильное поглощение из-за продольных колебаний. Поглощение материала излучением не делает его насыщенным инфракрасным излучением, поскольку молекулы, возбужденные колебательным движением, непрерывно теряют энергию в случайных направлениях в результате столкновений между молекулами, которые передают энергию окружающей среде в виде нагревать.Длины волн в диапазоне 1,4–5 мкм считаются более эффективными при приготовлении пищи из-за их способности проникать через слой пара, окружающий пищу, а также внутрь нее на глубину нескольких миллиметров. Большая часть инфракрасного излучения поглощается тонким слоем органических веществ и воды, поэтому нагревание происходит поверхностно. Процесс инфракрасного нагрева происходит быстрее, потому что энергия передается от источника тепла к пище одновременно. Следовательно, нет необходимости в другом способе передачи энергии, например, использовании горячего воздуха.Тепло от инфракрасного нагрева образуется на поверхности материала, обработанного инфракрасным излучением, поэтому внутренняя часть материала нагревается за счет связи между молекулами пищи, таким образом, температура изменяется от поверхности к центру. Воздух, соприкасающийся с поверхностью пищи, нагревается косвенно, но он не такой горячий, как при нагревании за счет конвекции и теплопроводности. Диапазоны поглощения инфракрасного излучения компонентами пищи показаны на рисунке, который показывает, что компоненты пищи мешают друг другу в поглощении различных инфракрасных спектров.Вода в основном влияет на поглощение падающего излучения на всех длинах волн, тогда как поглощение белков инфракрасным излучением происходит на длинах волн 3–4 и 6–9 мкм. Поглощение жиров происходит при длинах волн 3–4, 6 и 9–10 мкм, а сахаров — 3 и 7–10 мкм. Пучки водопоглощения составляют 3, 4,7, 6 и 15,3 мкм [13]. Кроме того, когда толщина пищи увеличивается, абсорбция увеличивается.

3.1. Инфракрасный нагрев при сушке пищевых продуктов

Инфракрасные волны с длиной волны от 2,5 до 200 мкм часто используются в процессах сушки пищевых продуктов.Вода сильно поглощается инфракрасной энергией на длинах волн 3, 6, 12 и 15 мкм [36,37]. Керамические нагреватели часто используются для процессов сушки, поскольку их излучение составляет до 3 мкм. Причина, по которой вода сильно поглощает инфракрасное излучение, заключается в наличии связей O-H в воде, поэтому она начинает циркулировать с той же частотой излучения. Процесс преобразования инфракрасного излучения в циркулирующую энергию вызывает испарение воды. Когда инфракрасное излучение попадает на поверхность, его часть поглощается, отражается и передается.Если проницаемость слишком мала, материал отражает или поглощает инфракрасное излучение в зависимости от природы излучения и свойств поверхности материала, и это называется излучательной способностью (ε).

Энергия, обезвоживающая пищу, — это лучистая энергия. Источником инфракрасного излучения, используемым при сушке пищевых продуктов, являются инфракрасные лампы и керамические обогреватели, работающие на электричестве или газе. Инфракрасным лучам не нужна среда для передачи энергии излучения от источника на поверхность пищи. Это отличная особенность, так как считается, что пища поглощает инфракрасное излучение и высыхает непосредственно.Следовательно, чтобы повысить эффективность сушки, поглощение и рассеивание падающего излучения должно быть ниже, а пища должна содержать воду. Источник инфракрасного излучения должен находиться в закрытом помещении, а его поверхность должна иметь высокую отражающую способность с целью максимизации множественных отражений и повышения энергоэффективности [9]. Инфракрасное поглощение в пище зависит от белков, жиров, углеводов и воды. Направление падающего излучения, свойства поверхности пищи и спектральная структура также определяют поглощение инфракрасного излучения.Одним из определяющих факторов использования инфракрасного излучения в продуктах питания является неоднородность его формы и размера, поэтому интенсивность излучения, падающего на материал, различается от одного места к другому. показано преобразование ИК-пены на рисовых зернах в различные компоненты [38]. Стенки и дно плиты должны быть покрыты алюминиевой фольгой, чтобы уменьшить потери тепла и отражать падающие на них лучи и быть радиоактивными стенками. Увеличение отраженного и испускаемого излучения, теплопередача за счет конвекции и теплоты испарения различаются в зависимости от характеристик поверхности и состояния воды в рисе [36,38].

Энергетический баланс тонкого слоя грубого риса, подвергшегося воздействию ИК-излучения.

Собственное колебание молекулы воды бывает в двух случаях, а именно: симметричное растягивающее колебание и симметричное деформационное колебание. Инфракрасная энергия относительно этих частот эффективно поглощается телом. Следовательно, пища эффективно поглощает инфракрасное излучение на длинах волн более 2,5 мкм за счет изменения вибрационного состояния механизма вибрации, которое вызывает повышение ее температуры (нагревание) [39].Ричардсон [40] отметил, что существуют две основные вибрации: растяжение и изгиб, расширение означает увеличение или уменьшение расстояния между атомами, а изгиб означает движение атомов. Когда инфракрасное излучение поражает молекулы, энергия поглощается, и вибрация изменяется.

Лаохаванич и Вонгпичет [41] заявили, что кривая сушки риса на длине волны 2,7 мкм является функцией времени сушки при начальном содержании влаги 0,22, 0,27, 0,32 и 0,37 в расчете на твердую массу db, при содержании влаги 0 .37 является функцией времени высыхания при длинах волн 2,47, 2,58 и 2,7 мкм. Влагосодержание экспоненциально уменьшается со временем сушки, а также показывает, что существует значительное влияние длины волны на скорость сушки риса. Скорость сушки увеличивается с увеличением длины волны инфракрасного излучения. Время высыхания уменьшается с увеличением длины волны.

Комбинирование инфракрасного излучения и горячего воздуха более эффективно, чем если бы оно использовалось по отдельности, в результате их совместного действия. Афзал и др. [11] обнаружили, что при использовании инфракрасного излучения и горячего воздуха для сушки ячменя потребление энергии снижается при сохранении хорошего качества ячменя.Использование инфракрасного излучения с горячим воздухом снижает общую потребность в энергии на 245% по сравнению с одним только горячим воздухом.

3.2. Влияние инфракрасного излучения на антиоксиданты в продуктах питания

3.2.1. Общее содержание фенолов

Фенольные соединения — это антиоксиданты, извлекаемые из растений [42]. Они обладают способностью отдавать водород или электроны, а также делать свободные радикалы более стабильными [43,44]. Наружные кожуры растений содержат большое количество фенольных соединений с целью защиты их внутренних частей.показывает влияние инфракрасного излучения при различных температурах на общее содержание фенола в апельсиновой цедре и апельсиновых листьях. Свежая апельсиновая цедра имеет более высокое содержание фенолов по сравнению с листьями. Инфракрасное излучение оказывает значительное влияние на содержание общих фенолов в кожуре и листьях. Компоненты растительных клеток в осушающих материалах прилипают друг к другу, и, таким образом, возможность экстракции биоактивных соединений растворителем будет более сложной [45]. При инфракрасной обработке при высоких температурах (60 и 70 ° C) в течение короткого периода времени общее содержание фенолов в кожуре и листьях было выше, поскольку фенольные соединения сопротивляются термическому разрушению, как показано на рис.Длительное время сушки при низких температурах (40 и 50 ° C) приводит к разрушению некоторых фенолов [46]. Anagnostopoulou et al. (2006) обнаружили, что общее количество фенолов в апельсиновых корках, высушенных инфракрасным излучением, было выше, чем в цедрах, высушенных горячим воздухом [12]. Инфракрасные лучи могут реактивировать низкомолекулярные антиоксиданты, потому что нагревание материалов не повреждает лежащие под ними молекулы нагретой поверхности, а также способствует передаче тепла к центру нагретого материала [47]. Эффективность фенольного содержания увеличивалась после воздействия на рисовую шелуху FIR [48,49].Ли и др. [50] обнаружили, что воздействие инфракрасного излучения на рисовую шелуху в течение двух часов увеличивает содержание фенольных соединений. Когда рисовая шелуха подвергается воздействию инфракрасного излучения, ковалентно связанные фенольные соединения, обладающие антиоксидантной активностью, высвобождаются и активируются.

Влияние инфракрасной температуры на общее количество фенолов апельсиновой корки и листьев.

Ли и др. [2] показали, что общее содержание фенола в водном экстракте скорлупы арахиса значительно увеличивалось при увеличении времени инфракрасного воздействия и времени термической обработки ().Общее количество фенолов увеличивается с 72,9 мкМ для стандартной обработки (0) до 141,6 мкМ для инфракрасного излучения и 90,3 мкМ для обычного нагревания при 150 ° C в течение 60 мин. Таким образом, инфракрасный FIR более эффективен для увеличения содержания фенола в скорлупе арахиса по сравнению с традиционной термообработкой. Инфракрасное излучение является биологически активным [51], и тепло равномерно передается к центру вещества, не разрушая молекулы, образующие поверхность [47]. Инфракрасное излучение может иметь доступ к ковалентным связям и высвобождать антиоксиданты [47, 48].С другой стороны, простая тепловая обработка увеличила содержание фенола в обезжиренном кунжуте, а также в кожуре цитрусовых [52]. Это показывает, что ассоциация фенольных соединений в растениях различается в зависимости от типа растения. Эффективные производственные этапы высвобождения антиоксидантов из разных растений могут быть разными.

Таблица 2

Влияние ДИК-излучения и термообработки на общее содержание фенолов в водной вытяжке из шелухи арахиса [2].

Параметры Исходный Инфракрасный (стандартный) Вт Инфракрасный диапазон (предварительно обработанный 5% карбонатом калия и 0.5% оливкового масла в течение 2 минут)
62 88 125 62 88 125
TPC (мг GA / 100 г сухого вещества)263,15 a 181,6 e 134,35 d 221,24 b 155,41 d 191,32 c 192,41 c г сухого вещества) 4.23 a 0,99 f 1,98 c 3,23 b 1,51 d 2,70 b 2,55 c 9070,3
c 9022.2. Удаление свободных радикалов

При воздействии на водный экстракт шелухи арахиса FIR в течение 60 минут процент улавливания свободных радикалов увеличился с 2,34% до 48,33%. Напротив, простая термообработка увеличилась до 23,69%. Увеличение зависит от времени воздействия как инфракрасного, так и обычного нагрева [48,51].

Эффективность антиоксидантов была выше при использовании инфракрасного излучения с начальной обработкой (предварительная обработка 5% карбонатом калия и 0,5% оливковым маслом в течение 2 минут при 20 ° C) по сравнению со стандартной обработкой (только инфракрасное излучение) при 62 и 88 Вт. ().Антиоксидантная эффективность стандартной обработки при 125 Вт была выше, чем у инфракрасной обработки при начальной обработке. Следовательно, чтобы повысить эффективность антиоксидантов, способность инфракрасного излучения во время сушки должна быть уменьшена [53].

Таблица 3

Общие фенолы и антиоксидантная эффективность инфракрасной сушеной мармелада [53].

Обработки Время (мин)
0 5 10 15 20 40 60
FIR-излучение 72.9 e 79,3 de 88,6 d 99,4 cx 107,8 cx 124,1 bx 141,6 ax 79,8 b 79,5 b 78,6 по 78,5 по 86,7 ay 90,3 ay

Значение пероксида

Значение пероксида быстро увеличивается, когда только инфракрасное излучение и инфракрасное излучение с горячим воздухом обрабатываются вместе в результате более высоких температур. Значение перекиси через три месяца составило 1,59, 12,10 и 36,07 мэкв / кг при температурах 130, 140 и 150 ° C соответственно ().Инфракрасный обжиг при 150 ° C дает значительное увеличение пероксидного числа и более высокую скорость окисления, чем другие виды обработки. Причина в том, что инфракрасные лучи быстро проникают в миндаль и заставляют жир перемещаться на поверхность, подверженную воздействию высокой температуры, что вызывает быстрое окисление. Лучшими условиями для обжаривания миндаля и обеспечения того, чтобы перекисное число миндаля находилось в допустимых пределах 5 мэкв / кг, являются совместное использование инфракрасного и горячего воздуха и горячего воздуха только при температуре 130–150 ° C и использование инфракрасного излучения. облучение при 130 ° C продлевает срок хранения с четырех до пяти месяцев при 37 ° C, в то время как обжиг горячим воздухом продлевает срок хранения еще дольше [54].Инфракрасная обжарка орехов кешью улучшает окислительную стабильность их масла [55]. Это может быть результатом образования продуктов реакции Милларда, обладающих антиоксидантным действием.

Изменение перекисного числа обжаренного миндаля с ИК и ИК с горячим воздухом во время хранения при 37 ° C [54].

3.2.4. Токоферол (витамин E)

Tuncel et al. [56] показали, что содержание γ- и δ-токоферола в семенах льна (лен не содержит α- и β-токоферолы) в свежих и жареных инфракрасных семенах было 146.57–193,14 и 2,91–3,23 мг / 100 г соответственно. Влияние инфракрасного излучения на δ-токоферол было незначительным, в то время как количество γ-токоферола было высоким по сравнению со свежим. Причиной получения наибольшего содержания γ-токоферола при инфракрасном нагреве был разрыв стенок клеток при термической обработке, что привело к усиленному извлечению токоферола из масла. Рим и др. [57] продемонстрировали, что воздействие инфракрасных лучей на скорлупу арахиса дает наивысшую антиоксидантную эффективность по сравнению с традиционной обработкой нагреванием.Антиоксидантная эффективность увеличивается с увеличением времени воздействия инфракрасного излучения. Кроме того, Seok et al. [58] показали, что при термической обработке винограда с использованием инфракрасного излучения повышается уровень антиоксидантов и фенольных соединений.

3.2.5. Влияние инфракрасного излучения на микроорганизмы

Инфракрасное излучение можно использовать для подавления бактерий, спор, дрожжей и плесени в жидких и твердых пищевых продуктах. Эффективность ингибирования инфракрасного излучения зависит от количества инфракрасной энергии, температуры пищи, длины волны, ширины волны, глубины корма, типа микроорганизма, содержания влаги и типа пищевого материала.Увеличение мощности инфракрасного источника, необходимого для обогрева, дает больше энергии. Следовательно, общая энергия, поглощаемая микроорганизмами, увеличивается и, таким образом, усиливается подавление микробов.

Hamanaka et al. [29] использовали инфракрасное излучение для стерилизации поверхности зерна пшеницы и обнаружили, что температура поверхности пшеницы быстро повышается, когда инфракрасное излучение падает на нее без необходимости в проводниках. При мощности излучения 0,5, 1, 1,5 и 2 кВт температура внутри устройства составляла 45, 65, 95 и 120 ° C.В результате содержание микробов составило 0,83, 1,14, 1,18 и 1,90 КОЕ / г после 60 с воздействия инфракрасного нагрева. Молин и Остлунд [59] изучали влияние инфракрасной температуры на ингибирование микроорганизмов. Значения D Basillus subtilis составляли 26, 6,6, 9,3 и 3,2 с при 120, 140, 160 и 180 ° C, соответственно, в то время как значение z составляло 23 ° C. Небольшое время обработки при высоких температурах было достаточным для уничтожения патогенных микроорганизмов. Логарифмические числа E.coli уменьшилось до 0,76, 0,90 и 0,98 КОЕ / г через 2 мин воздействия инфракрасного излучения [60].

Jun и Irudayaraj [61] использовали инфракрасное излучение в диапазоне длин волн 5,88–6,66 мкм, используя оптические полосовые фильтры низких частот для подавления Aspergillus niger и Fusarium proliferatum в кукурузной муке. Определенная длина волны денатурирует белок в микроорганизмах и приводит к увеличению ингибирования на 40% по сравнению с использованием инфракрасного излучения без определения конкретной длины волны.Если длина волны была определена и не указана, уменьшение логарифмических чисел A. niger составило 2,3 и 1,8 КОЕ / г, соответственно, после пяти минут воздействия инфракрасного излучения. Напротив, логарифмические числа F. proliferatum составляли 1,95 и 1,4 КОЕ / г, соответственно, при воздействии инфракрасного излучения. Причина заключалась в том, что поглощение энергии врожденными спорами было больше на выбранной длине волны и, следовательно, приводило к более высокому уровню смертности [61].

3.2.6. Механизм инфракрасной и микробной инактивации

Термическое ингибирование работает путем повреждения ДНК, РНК, рибосом, клеточного покрытия и белков в бактериальных клетках. Sawai et al. [62] изучали механизм действия микробиологического ингибитора инфракрасного излучения против бактерий E. coli при солевой фосфатной лихорадке. Полученные результаты позволяют предположить, что частично поврежденные клетки станут более чувствительными к антибиотикам, оказывающим угнетающее действие на поврежденную часть клетки.РНК, белки и клеточные стенки более уязвимы для инфракрасного нагрева, чем для кондуктивного нагрева. Порядок величины инфракрасного повреждения следующий:

Белок> РНК> Клеточная стенка> ДНК

Использование инфракрасного нагрева при 3,22 кВт / м 2 в течение 8 минут привело к снижению на 1,8, 1,9, 2,7 и 3,2 log E. coli , когда агар был богат налидиксом, пенициллином (PCG), рифампицином (RFG) и хлорамфениколом (CP). Однако скорость восстановления E. coli составляла 1.8 log без использования каких-либо вышеупомянутых антибиотиков. Это означает, что действие ингибирующих факторов привело к снижению на 0,1, 0,9 и 1,4 log за счет PCG, RFP и CP соответственно. Глубина проникновения инфракрасного излучения мала. Температура поверхности пищевых материалов быстро увеличивается, и тепло передается пище за счет теплопроводности.

Теплопроводность твердых продуктов ниже, чем у жидких. В случае жидких пищевых продуктов передача тепла происходит за счет конвекции с использованием инфракрасного нагрева, что увеличивает микробную смертность [2].Hamanaka et al. [28] изучали эффективность ингибирования B. subtilis , обработанного тремя инфракрасными нагревателями с разной длиной волны (950, 1100 и 1150 нм). Результаты показали, что подавление патогенных микроорганизмов на длине волны 950 нм было выше, чем на других длинах волн при той же температуре. Десятичное время при активности воды 0,7 и длинах волн 950, 1100 и 1150 нм составляло 4, 12 и 22 мин соответственно. Полученные результаты показали, что эффективность ингибирования зависит от спектра излучения, как показано на.Влияние инфракрасного излучения на подавление микробов уменьшалось с увеличением глубины кормления, поскольку глубина проникновения инфракрасного излучения мала, поэтому инфракрасное излучение можно использовать только для стерилизации поверхностей пищевых продуктов. Rosenthal et al. [63] показали, что инфракрасное нагревание эффективно снижает рост дрожжей и плесени на поверхности сыра при температуре 70 ° C в течение 5 минут, не влияя на качество сыра.

Связь между активностью воды и десятичным временем восстановления для спор B. subtilis с использованием инфракрасной обработки [28].

Инфракрасные лампы, используемые для инкубации яиц домашней птицы и борьбы с вредителями. Согласно Киркпатрику [64], инфракрасные лучи привели к уничтожению насекомых 99% Sitophilus oryzae и 93% Rhyzopertha dominica , а температура пшеницы во время обработки повысилась до 48,6 ° C.

3.2.7. Ингибирование ферментов с помощью инфракрасного излучения

Инфракрасное излучение можно эффективно использовать для подавления ферментов. Фермент липооксигеназа, ответственный за повреждение сои, ингибируется 95.5% с использованием инфракрасного излучения [15]. На липазу и α-амилазы сильно влияет инфракрасное излучение при температуре 30–40 ° C [64,65]. Активность липазы снижается на 60% после инфракрасной обработки в течение 6 минут, а после использования теплопроводности — на 70%. Ингибирование фермента полифенолоксидазы в обработанных картофельных чипсах с использованием инфракрасного нагрева начинается, когда температура в центре ломтика достигает 65 ° C, а ингибирование не может достигать 100% в центре ломтика. Это требует, чтобы первая область устройства обеспечивала более высокую пропускную способность, чтобы гарантировать подавление более высокой эффективности и уменьшить толщину чипов [62].

Yi et al. [66] обнаружили, что лучшей предварительной обработкой кубиков яблока было погружение на 5 минут в хлорид кальция и 0,5% аскорбиновую кислоту для подавления коричневой окраски. Инфракрасный нагрев с интенсивностью 5000 Вт / м 2 может подавлять ферментативные полифенолоксидазу и пероксидазу намного быстрее, чем интенсивность 3000 Вт / м². Ферменты полифенолоксидаза и пероксидаза обладали высокой термостойкостью, и процесс их ингибирования происходил в соответствии с моделями кинетики первого порядка и фракционной конверсией соответственно.Быстрое кипячение с использованием инфракрасной сушки характеризуется быстрым ингибированием сложных ферментов, вызывающих ухудшение качества, без потери или очень простой потери витаминов, ароматизаторов, красителей, углеводов и некоторых водорастворимых компонентов. Скорость реакции при инфракрасном сухом кипении очень низкая. Ингибирование фосфатазы в инфракрасных ломтиках яблока зависит от толщины чипа и интенсивности излучения. Вареный горошек в инфракрасном свете сохраняет больше аскорбиновой кислоты и вкуса, чем кипяченый в горячей воде.Инфракрасное излучение можно использовать для эффективного подавления ферментов. Время кипячения ломтиков моркови в инфракрасном диапазоне составляет 10–15 минут, по сравнению с методами кипячения паром и горячей водой, для которых требуется время 5–10 минут (). Это может быть связано с постепенным повышением температуры продукта в результате периодического инфракрасного нагрева и движения воздуха по поверхности продукта. Это привело к стабильности температуры продукта и улучшило качество, где количество витамина С было выше по сравнению с методами с паром и горячей водой [67].

Принципиальная схема системы ИК-бланширования ( a ) и гибридной сушки ( b ) [67].

3.2.8. Инфракрасные печи и выпечка

Выпечка хлеба — это сложный процесс, который включает в себя сочетание физических, химических и биохимических изменений в пищевых продуктах, таких как желатинизация крахмала, денатурация белка, выделение углекислого газа из-за добавления дрожжей, испарение воды, выпечка корки. образование и коричневые реакции в результате тепломассопереноса через продукт и пространство внутри печи.Тепло передается тесту за счет излучения, конвекции и теплопроводности. Пей [68] классифицирует традиционный хлеб на четыре этапа: белый хлеб с хрустящей корочкой, передача тепла изнутри на корку, приготовление или желатинизация и подрумянивание. Альтернативной технологией для традиционного хлеба является коротковолновое инфракрасное излучение [68,69,70].

В 1950 году Гинзбург использовал инфракрасное излучение в качестве печи для выпечки хлеба. В то время этот метод не был разработан из-за отсутствия информации об этой технологии. В 1970 году исследователи использовали инфракрасное излучение как средство нагрева пищи, особенно для жарки мясных продуктов [10,71].Затем этот прием был применен для выпечки хлеба [72]. Инфракрасный хлеб для печенья был применен Уэйдом [70], и было обнаружено, что существует широкий диапазон печенья, которое можно выпекать с инфракрасной длиной волны 1,2 мкм и для чего требуется вдвое меньше времени по сравнению с традиционным методом.

Преимущество использования инфракрасного нагрева в духовке для выпечки хлеба заключается в быстрой передаче тепла хлебу. Свойство хлеба обеспечивает хорошую пропитку до 2–3 мм и скорость нагрева. Причина, по которой инфракрасные печи лучше обычных духовок, заключается в том, что этот метод более эффективен для нагрева поверхностей и центральных частей пищи за короткое время выпечки из-за эффективной передачи тепла поверхности.Это приводит к более высокому содержанию воды в центре блюда во время выпечки. Таким образом, срок хранения продукта будет лучше и дольше [16].

Heist и Cremer [73] изучали влияние инфракрасного хлеба на сенсорные качества и потребление энергии пирожных, сделанных из белой, беленой и небелой муки, и сравнили его с традиционной духовкой. Ли [74] слился между микроволновой печью и галогенной лампой. Девяносто процентов энергии излучения в пределах длины волны было менее 1 мкм и использовалось в качестве источника инфракрасного излучения.Два из них использовались выше и два снизу, чтобы не было помех между ними в микроволновой печи, и этот метод обеспечивает большую однородность приготовления. В этой конструкции было два механизма: микроволновая печь быстро нагревает пищу, а инфракрасное излучение активирует реакции дубления и хрустящей корочки, и этот метод устраняет проблему плохого качества выпечки с использованием микроволновой печи [75]. Микроволновая печь имеет галогенные лампы, излучающие инфракрасные лучи, которые разделены на две части: одна часть расположена вверху, а другая — вниз, а для гомогенизации имеется вращающееся основание.Галогенные лампы находятся на расстоянии 15 см от обжигаемого материала, в то время как другие галогенные лампы помещаются под вращающуюся пластину (). Результаты эксперимента заключаются в том, что размер торта увеличивался с увеличением времени выпекания, а цвет и твердость торта были такими же, как в обычной печи [76].

Комбинированный духовой шкаф с ИК-СВЧ. ( 1 ) Верхние галогенные лампы, ( 2 ) нижние галогенные лампы, ( 3 ) микроволны, ( 4 ) поворотный стол [76].

3.2.9. Инфракрасный и соки

Aghajanzadeh et al. [18] разработали систему инфракрасного нагрева для сока лайма, как показано на рис. Он состоит из камеры инфракрасного нагрева мощностью 1500 Вт. Расстояние между источником инфракрасного излучения и поверхностью сока составляет 8,5 см, а система оснащена системой контроля температуры. Кроме того, система оснащена системой перемешивания образца каждые 15 с для равномерного нагрева. показывает, что время, необходимое для достижения температуры, было меньше при использовании инфракрасного излучения по сравнению с обычным нагревом.Это положительно влияет на питательные качества сока и снижает потребление энергии и цвет сока. Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77]. Температура и время нагревания существенно влияют на потерю аскорбиновой кислоты из сока. Аскорбиновая кислота восстанавливается при любой тепловой обработке, будь то инфракрасное или обычное нагревание, и процесс разрушения аскорбиновой кислоты следует кинетике реакции в процессе производства сока с большим коэффициентом корреляции [18].Когда температура производства увеличивается, значение D (время, необходимое для разрушения 90% аскорбиновой кислоты) уменьшается [32,77].

Принципиальная схема инфракрасного обогревателя для производства лимонного сока. (1) Нагревательная камера, (2) лампа с инфракрасным излучателем, (3) чаша с соком, (4) термостат, (5) двойной термостат [18].

Температура сока меняется со временем ( a ) при обычном нагреве, ( b ) инфракрасном нагреве [18].

Удерживаемое количество аскорбиновой кислоты было выше при использовании инфракрасного нагрева по сравнению с обычным нагревом, что указывает на то, что инфракрасный нагрев более эффективен для сохранения сока во время производства [18].

3.2.10. Инфракрасная сушка фруктов и овощей

В последние годы технология инфракрасной сушки была успешно применена к фруктам и овощам, таким как сушка картофеля [78,79], сладкий картофель [80], лук [81,82] и яблоки [7] , 83]. Сушка водорослей, овощей, рыбных хлопьев и макаронных изделий также исследовалась с использованием инфракрасных туннельных сушилок [84]. Bejar et al. [27] показали, что температура инфракрасной сушки не оказывает значительного влияния на поверхность, толщину и размер апельсиновой корки.Он не дает усадки, когда содержание влаги в нем падает до 0,1 кг воды / кг сухого вещества. Однако очень простое сжатие происходит при повышении температуры от 40 до 70 ° C. Толщина усадки была больше при 70 ° C и ниже при 40 ° C. Объем усадки был ниже при 60 ° C и выше при 50 ° C из-за толщины усадки. Усадка апельсиновых корок, высушенных инфракрасным излучением, была результатом испарения количества влаги.

Bejar et al. [27] также изучали влияние температуры инфракрасной сушки на цветовые характеристики апельсиновой корки (L *, a *, b *, C и ΔE).Были значительные различия в цвете высушенной апельсиновой корки по сравнению со свежими образцами. Инфракрасная сушка оказала значительное влияние на a и b, поскольку значения a, b и c уменьшились. Температуры 50–60 оказывали значительное влияние на c, а температура 70 ° C не оказывала значительного влияния. Значение b быстро уменьшалось при 40, 50 и 60 ° C, а при 70 ° C значительного эффекта не наблюдалось. Значение L было значительно увеличено с помощью инфракрасной сушки. Изменение цвета было результатом разложения флавоноидов и каротиноидов, которые отвечали за оранжевый и желтый цвет корок [85].Наименьшее значение ΔE получается при самой высокой температуре. Инфракрасная обработка была применена к сушке двух сортов клубники. Для определения оптимальных условий инфракрасной сушки использовались два фактора. Время инфракрасного излучения сорта Camarosa составляло 508, 280 и 246 минут, в то время как время инфракрасного излучения фестивальных сортов составляло 536, 304 и 290 минут при температурах сушки 60, 70 и 80 ° C соответственно. Результаты показали, что время инфракрасного излучения полностью зависит от температуры сушки.Время высыхания сорта Cama-rosa было больше, чем у сорта фестивального.

3.2.11. Стоимость инфракрасного обогрева

An et al. [86] сообщили о стоимости использования инфракрасного обогрева по сравнению с воздухонагревателем, работающим на дизельном топливе, для выращивания клубники. Средняя ночная температура воздуха составила 6,6 ° C при обработке инфракрасным обогревателем и 7,1 ° C при обработке воздухонагревателем. Результаты показали, что стоимость обогрева при использовании системы воздухонагревателя составляла 537,35 доллара из расчета на 543 литра не облагаемого налогом дизельного топлива, в то время как стоимость использования инфракрасной системы составляла 203 доллара.05 за счет потребления 5685 кВтч электроэнергии. Таким образом, система инфракрасного обогрева смогла сэкономить примерно 62,2% затрат на отопление. Была подсчитана стоимость различных режимов обогрева и резюмировано, что основная стоимость инфракрасной сушки приходилась на радиаторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2024 © Все права защищены.
Параметры Исходный Инфракрасный (стандартный) Вт Инфракрасный диапазон (предварительно обработанный 5% карбонатом калия и 0.5% оливкового масла в течение 2 минут)
62 88 125 62 88 125
TPC (мг GA / 100 г сухого вещества)263,15 a 181,6 e 134,35 d 221,24 b 155,41 d 191,32 c 192,41 c г сухого вещества) 4.23 a 0,99 f 1,98 c 3,23 b 1,51 d 2,70 b 2,55 c 9070,3