Индукционные лампы: Индукционные лампы: принцип работы, окупаемость – устройство, виды, сфера применения + правила выбора

Индукционные лампы, сравнение ламп

Индукционная лампа

В последнее время на светотехническом рынке России стали активно продвигаться индукционные лампы. Поставщики сулят сказочные параметры и срок службы при ценах ниже, чем на светодиодные. В чем подвох?

Эта «новинка» (запатентованная Николой Тесла ещё в 1891г) является разновидностью ртутных ламп низкого давления без электродов. Ионизация и свечение газа происходит благодаря ВЧ-полю, генерируемому обмоткой, которая может охватывать колбу или охвачена колбой сложной формы (оставаясь всё равно в атмосферном воздухе).

Отсутствие нитей накала исключает возможность их перегорания и катодного потемнения, снижается нагрев колбы, а значит – и скорость деградации люминофора. Цельное – без каких-либо электродов – стекло обеспечивает герметичность на неограниченный срок. Однако и слабые стороны у таких конструкций очень существенны. Во-первых, им присущи все недостатки ламп низкого давления: сложная схема питания, чувствительность к низким температурам, ультрафиолетовое излучение, рваный спектр, хрупкость и т.д. Но главное, газ в колбе представляет собой, по сути, короткозамкнутый виток, образуя с обмоткой генератора своего рода трансформатор. Потери такого трансформатора складываются из расхода энергии на перемагничивание сердечников катушек (ферромагнитные свойства которых не могут быть блестящими из-за требований термостойкости – высокой точки Кюри) и радиоизлучения самих катушек (вследствие не бесконечной магнитной проницаемости сердечников) и газового витка, ток в котором невелик, но и магнитная экранировка практически отсутствует. И это излучение может иметь мощность нескольких ватт в диапазоне единиц-десятков мегагерц. Производители анонсируют частоту от сотен килогерц до единиц мегагерц, но почти прямоугольная форма колебаний обогащает спектр значительно более высокочастотными гармониками. Это заставляет задуматься о допустимости использования таких светильников в быту, в помещениях с низкими потолками, для местного освещения и в других местах, подразумевающих близкое расположение людей.

Для объективной оценки и сравнения характеристик различных источников света их удобнее всего свести в таблицу, которых опубликовано множество. Однако в большинстве из них данные берутся из источников не просто устаревших, а устаревших в разной степени для разных типов ламп. Это совершенно недопустимо, учитывая буквально ежемесячный прогресс в светотехнических технологиях, особенно – полупроводниковых. Цифры данной таблицы скорректированы на декабрь 2012г по каталогам Cree, Philips и Osram, а также по заключениям независимых экспертиз ЗАО «Оптоган» и служб ЦСМ Москвы и Новосибирска.

Принцип работы Накаливания Газоразрядные Твердотельные
Тип светильника Обычные Галогенные Низкого давления Высокого давления Натриевые Индукционные Светодиодные
Светоотдача, лм/вт 10-15 15-30 70-85 90 100-200 80-110 80-180
Индекс цвето­передачи, Ra 80 95 70-90 40-60 25 80-90 70-90
Срок службы, час 1000 3000 6000-9000 7000 20000 100000 100000
Цветовая температура, °К 2000-2800 2300-3200 2300-4900 2300-2900 2300-2900 2700-6500 2700-6500
Рабочая температура, °С -45/+100 -45/+100 -15/+50 -40/+40 -60/+40 -35/+50 -60/45
Время включения мгновенно мгновенно 0-30 секунд 7-10 минут 10 минут 0,1-3 минуты мгновенно
Схема питания нет нет средняя средняя средняя сложная простая
Механическая прочность низкая высокая низкая средняя средняя низкая очень высокая
Экология безопасна безопасна ртуть ртуть ртуть амальг. ртути безопасна
Диммирование возможно возможно возможно нет нет возможно возможно
Горячий перезапуск * есть есть есть нет нет есть есть
Побочные излучения есть есть есть есть есть есть нет
Прочие недостатки всё сказано светоотда­чей и сроком службы чувствитель­ность к перепадам напряжения и загрязне­нию, сильный нагрев утилизация, мерцание при снижении эмиссии, повышенная деградация при высоких температурах утилизация утилизация цена, 
утилизация, чувствитель­ность к перепадам напряжения, температуры
цена

*Горячий перезапуск – возможность включения сразу после выключения.

Подробно характеристики светодиодных ламп, не столь очевидные, как срок службы или прочность, описаны в статьях «Сравнение светодиодов», «Эффективность светодиодов».

Вообще в таблице приведены параметры КАЧЕСТВЕННЫХ изделий наилучших производителей. Причём безотносительно к другим характеристикам. Многие рекламные ходы, как и реальные физические свойства противоречивы. Например, максимальная (в указанном интервале) светоотдача достигается у всех люминесцентных источников света лишь при минимальных индексах цветопередачи. А моментальное включение индукционных ламп (в том числе и на морозе) возможно, но при условии повышенного пускового тока (следовательно – и стоимости генератора) и наличия достаточного количества паров ртути в свободном состоянии. Когда же ртуть находится в виде менее экологически опасной амальгамы, номинальная светоотдача достигается лишь при нагревании рабочего объёма газа до 60°С. Реальное количество амальгамы в лампе может быть выяснено только путём проведения экспертизы конкретного изделия, поскольку в рекламе фигурируют цифры от 0,25 мг до 25 мг.

Кроме того, речь не идёт о сравнении товаров одной ценовой категории, поскольку индукционные лампы (уже из-за самого устройства) НЕ МОГУТ стоить столько же, сколько светодиодные аналогичной мощности. Стеклодувные и вакуумные технологии, строгое выдерживание химического состава люминофора и равномерное его нанесение, многовитковая обмотка на теплостойком феррите, достаточно мощный ВЧ-генератор – всё это значительно дороже LED-ламп, на 90% состоящих из пластика и алюминия. Даже транспортировка стекла требует дополнительных затрат. Другими словами, если индукционная лампа стоит меньше светодиодной, это скорее всего достигнуто применением самых низкопробных материалов и упрощенных технологий. И характеристики её (в первую очередь – срок службы) скорее всего не достигнут паспортных.

Также в таблице не учтен коэффициент пульсаций (поскольку он зависит только от схемы питания, а не от физического принципа источника света) и разнообразие размеров и форм светильников. Если LED-технологии позволяют создавать и узконаправленные лучи с яркостью большей, чем у видимого с земли солнечного диска, и равномерно подсвеченные поля любой площади и конфигурации, то форма индукционной лампы ограничена принципом работы и чаще всего предлагается только четырёх видов. Это груша с внутренним индуктором (подобная лампе накаливания), кольцо, четырёхугольник (сплюснутое кольцо) и «перстень» – несимметричное кольцо с одной обмоткой (популярная модель Venus). И два-три размера каждого варианта в соответствии с номинальной мощностью. И это весь ассортимент китайской и подобной продукции!

У таких же монстров светотехники, как General Electric и Philips, который даже отказался от развития этого направления – всего по одной модели индукционных ламп, у OSRAM – две. И это на фоне десятков и сотен моделей ламп других типов.

Чем объясняется такая осторожность крупнейших производителей в отношении к столь «прогрессивным» технологиям? Да тем, что уважающие себя фирмы обеспечивают гарантийный ремонт своей продукции в течение паспортного срока службы. А когда речь идёт про 100000 часов (11 лет), сложно гарантировать работу электронных компонентов схемы генератора, если даже сама излучающая колба и не потеряет своих свойств. Ведь генерация достаточно мощных высокочастотных импульсов прямоугольной формы при индуктивной нагрузке – один из самых тяжелых режимов для любых полупроводников.

В принципе, конечно, возможно создание схем, сохраняющих работоспособность десятки лет, но по стоимости они совершенно не смогут конкурировать со светодиодными, устройства питания которых значительно проще и могут вообще не содержать активных элементов. Кроме надёжности и долговечности это обеспечивает LED-лампам меньшее рассеивание тепла на элементах схемы и отсутствие каких-либо звуков, радиопомех и вредных для человека излучений.

А вот азиатские производители не стесняются анонсировать срок службы индукционных светильников даже в 150000 часов при гарантии на 5 лет. О продолжительности же существования самих этих фирм и их солидности говорит хотя бы то, что им некогда даже отредактировать машинный перевод на сайтах:

Реклама индукционных ламп

В таблице ниже указаны стоимость и параметры различных индукционных ламп известных производителей. Расчетные величины стоимости люмена указаны исходя только из стоимости лампы, стоимость люмена за год указана исходя из указанного производителем срока службы. Поскольку эффективность ламп сравнима, затраты на электроэнергию можно не учитывать. Стоимость же замены в каждом применении индивидуальна. Все параметры взяты из заявленных производителем характеристик и нуждаются в независимой сравнительной экспертизе.

Наименование Мощность, W Световой поток, lm Эффективность, lm/W стоимость, руб цена за люмен срок службы, ч стоимость люмена в год
Osram EL Concentra R80 23 1500 65 1000 0,67 15000 0,40
Osram EL Longlife 20 1250 63 800 0,64 15000 0,37
Osram Endura 150 12000 80 8500 0,7 60000 0,10
Philips Master QL 165 12000 73 4000 0,33 60000 0,05
GE Genura 23 1100 48 900 0,82 15000 0,50

Стоимость указана без учета стоимости светильника, что в случае сменных ламп с цоколем E27 или E14 оправдано. Мощные же лампы, несмотря на то, что продаются в виде сменных, пригодны для установки только в специальный светильник и по большому счету должны рассматриваться в составе светильника, что увеличит стоимость примерно в 2 раза:

Наименование Мощность, W Световой поток, lm Эффективность, lm/W стоимость, руб цена за люмен срок службы, ч стоимость люмена в год
Светильник ЛПП 200-250 и лампа Osram Endura 150 12000 80 13000 1,1 60000 0,16
Светильник JET ENDURA 150 12000 80 30000 2,5 60000 0,36

Отвечающий за качество своей продукции производитель позиционирует индукционные лампы в основном для промышленного и уличного освещения, где стоимость замены ламп составляет значительную долю затрат на эксплуатацию. Именно для ламп такого типа, имеющих большую мощность, стоимость люмена с учетом затрат на лампу, обслуживание и электроэнергию вызывает интерес. Для компактных ламп, производитель указывает невысокий срок службы, определяемый долговечностью схемы питания, тем самым стоимость люмена становится неприемлемой.

Для корректного сравнения приведем аналогичные параметры сменных светодиодных ламп этих же производителей и светильников, использующих светодиоды «хороших» производителей с гарантированным сроком службы (таблица в стадии заполнения):

Наименование Мощность, W Световой поток, lm Эффективность, lm/W стоимость, руб цена за люмен срок службы, ч стоимость люмена в год
Osram GU10-9LED-220V 5 400 80 950 2,4 35000 0,6
Osram LUXIA LED 7     1600   50000  
Osram PARATHOM 12 650 55 2500 3,85    
Philips MASTER LED 16     4500      
Philips Econic Dimm 7 350 50 1500 4,28 25000 1,5
GE HI-SPOT RefLED 10     2900      
Светильник Ledel L-Office 100 светодиоды Osram Duris E5 55 5050 92 4600 0,91 60000 0,13
Светильник «Квадр Оптима» светодиоды Cree 32 3000 94 2700 0,9 50000 0,16
Светильник Philips Highway OPK362 * 173 13800 80 51000 3,7 50000 0,65

* Уличный светильник в исполнении IP66, изготовлен компанией Philips. Компания Philips — единственная из известных производителей предлагает весь спектр светотехнических изделий от светодиодов до декоративных и уличных светильников.

Сменные светодиодные лампы выпускаются известными производителями в основном невысокой мощности и явно позиционируются для местного и внутреннего освещения. Светодиодные лампы для производственных помещений, офисов и уличные лампы трудно сравнивать с другими типами, поскольку чаще всего светодиодные излучатели являются частью конструкции светильника, в любом случае и светодиодные и индукционные светильники имеют столь значительную стоимость, что целесоообразность их установки опеределяется не стоимостью самого светильника, а его безопасностью и качеством света.

Сегодня светодиодные лампы небольшой мощности при близком индексе цветоперед

Индукционные лампы плюсы и минусы

Одним из видов ламп, имеющих высокую энергетическую эффективность, является индукционная лампа. Она относится к категории газоразрядных источников искусственного света. Основа свечения – электрический разряд в газе, насыщенном парами ртути. Газ выбирают из группы инертных, т, е. имеющих пониженную химическую активность – криптон, аргон и пр.

Ртуть в индукционной лампе используется не в свободном виде, а в связанной форме – в виде амальгамы. То есть твердого или жидкого сплава ртути с каким-либо металлом. При нагревании амальгамы выделяются пары свободной ртути, а после охлаждения газа пары опять образуют твердую пленку.

При возникновении электрического разряда в газе образуется мощный поток ультрафиолетового (УФ) излучения и слабое видимое свечение. Многокомпонентный люминофор, нанесенный на внутреннюю поверхность колбы, преобразует УФ излучение в видимый свет. Компоненты подбираются так, чтобы получить световую триаду основных цветов – красный, зеленый, синий, т. е. RGB. Эти цветные потоки света перемешиваются и дают белый свет. Количественным подбором состава компонентов люминофора достигают нужного оттенка или цветовой температуры свечения. Обычно используют температуру в Кельвинах (K) следующего ряда: 6500, 5000, 4100 и 3500K.

Генератор высокой частоты, вызывающий разряд, питается от внутреннего источника 12 или 24 В. Сеть переменного тока может иметь напряжение 110, 127, 220/230 или 380 В. Изменением частоты генератора и тока проходящего через индукторную катушку управляют режимом работы индукционной лампы.

Для повышения электромагнитной совместимости с другими электронными устройствами индуктор оснащают ферромагнитными экранами и кольцевыми сердечниками из специальной керамики с ферромагнитными свойствами.

От традиционной люминесцентной лампы (ЛЛ) ее индукционные аналоги отличаются отсутствием пусковых нитей накаливания нагреваемых катодов. Другие характеристики индукционной лампы аналогичны лампам люминесцентным.

Плюсы и минусы индукционных ламп.

К плюсам относят:

  • расположение пусковой части за пределами баллона лампы;
  • равномерность теплового нагрева колбы;
  • металл электродов не оседает на колбе;
  • ресурс достигает 100 – 120 тыс. часов, что больше, чем у некоторых светодиодов;
  • энергоэффективность на уровне ЛЛ;
  • мощность от десятков до сотен ватт;
  • форма и цоколь ламп с внутренним индуктором соответствует лампе накаливания;
  • спектр многокомпонентного люминофора близок к солнечному;
  • яркость меняется обычным простым диммером;
  • деградация в 2 – 3 раза меньше, чем у светодиодов и пр.

Минусы индукционных ламп:

  • большая сложность по сравнению с ЛЛ;
  • возможность помех электронному оборудованию;
  • опасность выделения ртути амальгамой, например, при неправильной утилизации.

Ознакомьтесь с новинками интернет-магазина Светомания.

Индукционная лампа — Википедия

Материал из Википедии — свободной энциклопедии

Индукционный разряд в парах ртути в трубке 200×Ø36 мм со средней мощностью 1-5 кВт с частотой 1-15 кГц при низких (сверху) и больших (снизу) давлениях

Индукционная лампа — безэлектродная газоразрядная лампа, в которой первичным источником света служит плазма, возникающая в результате ионизации газа высокочастотным магнитным полем. Для создания магнитного поля баллон с газом лампы размещают рядом с катушкой индуктивности. Отсутствие прямого контакта электродов с газовой плазмой позволяет назвать лампу безэлектродной. Отсутствие металлических электродов внутри баллона с газом значительно увеличивает срок службы и улучшает стабильность параметров.

Принцип работы

Лампа ВКСШ-10000, 10 кВт, СССР, 1975 г.

Индукционная лампа состоит из:

  • газоразрядной трубки, внутренняя поверхность которой может быть покрыта люминофором для получения видимого света;
  • катушки (первичной обмотки трансформатора), у которой полость лампы является вторичным витком;
  • электронного генератора высокочастотного тока для запитки катушки;
  • для уменьшения рассеяния высокочастотного магнитного поля (что улучшает электромагнитную совместимость, увеличивает эффективность) может снабжаться ферромагнитными экранами и/или сердечниками.

Различают два типа конструкции индукционных ламп по способу размещения электронного устройства:

  • Индукционная лампа с внешним генератором (электронное устройство и лампа являются разнесёнными устройствами).
  • Индукционная лампа со встроенным генератором (конструктивно генератор и лампа скомпонованы в одном корпусе).

Электронный генератор вырабатывает высокочастотный ток, протекающий по обмотке накачки лампы. Вторичная «обмотка» трансформатора короткозамкнутая, это ионизированный газ трубки. При достижении напряженности электрического поля в газе, достаточной для электрического пробоя, газ превращается в низкотемпературную плазму. Так как плазма хорошо проводит электрический ток, в газовой полости лампы начинает выделяться энергия от протекания электрического тока и поддерживается устойчивый плазменный шнур.

Возбуждённые электрическим разрядом атомы газа, наполняющего полость лампы, излучают фотоны с длинами волн, характерными для атомов наполняющего лампу газа (эмиссионные линии спектра). Обычно эти лампы наполняют смесью аргона с парами ртути, аргон добавляют для облегчения зажигания лампы при низких температурах, когда давление паров ртути недостаточно для возникновения газового разряда, но в лампах для имитации воздействия солнечного излучения (например серий ФБ и ВКсШ) наполнение состоит из таких инертных газов как ксенон-аргон-криптон-неон. Атомы ртути в газовом разряде ярко излучают в эмиссионных линиях в невидимой глазом ультрафиолетовой части спектра. Если необходимо, ультрафиолетовое излучение атомов ртути преобразуется в видимое излучение посредством люминофора, нанесённого на внутреннюю поверхность стеклянной трубки лампы. Такие лампы можно отнести к люминесцентным лампам.

Многие лампы с внешними электродами не имеют люминофорного покрытия и излучают наружу только тот свет, который излучается ионизированным газом (плазмой). Такие лампы относятся к газосветным лампам.

Основное преимущество ламп с внешними электродами над газоразрядными лампами с электродами — длительный срок службы и высокая стабильность параметров. Это вызвано тем, что внутри лампы нет металлических деталей, способных разрушаться под ударами ионов и электронов и изменять состав газовой среды.

Характеристики

  • Заявляемый производителями срок службы: 60 000—150 000 часов (опытные данные отсутствуют). Благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных электродных люминесцентных ламп. Но у высокочастотных ламп серий ФБ и ВКсШ срок службы 50-150 часом (скорее всего такой небольшой срок службы связан с тем, что эти лампы обладают огромной мощностью при небольших размерах, из-за этого внутренний кварцевый патрубок быстро деградирует и рассыпается при нагрузке на него).
  • Номинальная светоотдача: более 80 лм/Вт и при увеличении мощности лампы увеличивается световой поток, при этом снижается срок службы за счет повышенной эксплуатационной нагрузки. Так например лампа 300 Вт выдаёт 90 Лм/Вт.
  • Производители заявляют высокий уровень светового потока после длительного использования. К примеру, после 60 000 часов наработки уровень светового потока по расчетам должен составлять свыше 70 % от первоначального (60000 часов=13 лет использования в 12 часовом режиме).
  • Мгновенное включение/выключение (отсутствует время ожидания между переключениями, что является хорошим преимуществом перед большинством газоразрядных ламп (ртутной лампой ДРЛ, натриевой лампой ДНаТ и металлогалогенной лампой ДРИ), для которых требуется время для выхода на рабочий режим и время остывания 5—15 минут после внезапного отключения электросети).
  • Неограниченное количество циклов включения/выключения.
  • Цветопередача люминесцентных безэлектродных индукционных ламп аналогична цветопередаче обычных ртутных газоразрядных ламп с люминофором, так как они обычно наполнены тем же рабочим газом и используют те же люминофоры (специальные лампы серий ФБ и ВКсШ за счет своего специфического наполнения применяются в качестве мощного источника имитирующего мощное солнечное излучение, и как источник УФ-излучения для наблюдения сроков деградации различных пластических масс).
  • Так же как и люминесцентные лампы, требуют специальной утилизации из-за присутствия ртутных соединений и электронных компонентов.

Применение

Благодаря высокой стабильности параметров безэлектродные ртутные газоразрядные лампы применяются в качестве прецизионных источников ультрафиолетового излучения, например, в спектрометрии.

Индукционный принцип возбуждения газа используется в накачке газовых лазеров.

Индукционные лампы применяются для наружного и внутреннего освещения, особенно в местах, где требуется хорошее освещение с высокой светоотдачей, длительным сроком службы: улицы, магистрали, тоннели, промышленные и складские помещения, производственные цеха, автостоянки, стадионы. Ввиду присутствия высокочастотных электромагнитных излучений не рекомендуется установка в аэропорты, железнодорожные станции, автозаправочные станции[источник не указан 1777 дней].

Данные, полученные Фрэнсисом Рубинштейном из отдела строительных технологий, Национальной лаборатории им. Лоуренса в Беркли, Калифорния, позволяют перевести данные, полученные при измерении светового потока традиционным измерительным прибором (Lm) в визуально эффективные люмены (PLm). Просто умножив показания люксметра на соответствующий коэффициент, получаются значения видимой освещенности.

Таблица коэффициентов пересчета показаний светового потока в Lm (люменах) в визуально эффективные люмены (PLm)[источник не указан 2029 дней]
Тип источника света S/P коэффициент
Лампа на светодиодах CREE X-PG 5000 К 2,34
Индукционная лампа 6500 К 2,22
Галогенная лампа 1,5
Металлогалогенная лампа 1,49
Лампа накаливания 1,41
Люминесцентная лампа 4200 К 1
Ртутная лампа высокого давления 0,8
Натриевая низкого давления 0,35

Коэффициент S/P — это отношение измерений люкс метра скорректированного по цветовой кривой дневного света, к измерениям люкс метра настроенного по кривой ночного зрения.

См. также

Литература

  • Индукционные лампы — новое энергоэффективное решение в уличном освещении // Журнал «Pro электричество» № 1/32 январь-март 2010 г.

Индукционные лампы освещения: принцип работы, устройство

Помимо привычных ламп накаливания, а также светодиодных и люминесцентных ламп существуют и другие источники освещения.

Индукционные лампыИндукционные лампыИндукционные лампы

Устройство индукционной лампы

Индукционные лампы представляют собой колбу, заполненную смесью аргона с парами ртути, и со стенками, покрытыми люминофором. Устройство похоже на люминесцентные лампы. Только в отличии от люминесцентных ламп, индукционные являются безэлектродными. Колба индукционной лампы физически отделена и независима от электрической части, которая представляет собой индукционную катушку. Индукционная катушка закрепляется рядом со стенками колбы и при включении лампы индуцирует (вызывает) высокочастотное магнитное поле в полость колбы, которая становится вторичным витком катушки.
УстройствоУстройство

Принцип работы индукционной лампы

Запитывается индукционная катушка от балласта, который представлен генератором высокочастотного тока. При индуцировании магнитного поля в полость колбы происходит ионизация газа, находящегося в колбе, что производит к образованию плазменной дуги. Энергия плазмы поглощается люминофором, нанесенным на стенки колбы, и он начинает излучать видимый глазу свет.
Как видно принцип работы тот же, что и в обычных люминесцентных лампах, но благодаря отсутствию внутри колбы электродов, которые являются слабым звеном системы, значительно повышается срок службы лампы.
Впрочем, существуют индукционные лампы с колбой без покрытия люминофором. В таких лампах видимый свет, исходящий наружу, излучается ионизированным газом, закаченным в колбу. Но такие лампы, относящиеся к газосветным, а не к газоразрядным, обычно используют как декоративные или для световой рекламы, а не как лампы освещения.

Устройство индукционной лампыУстройство индукционной лампыУстройство индукционной лампы

Индукционные виды ламп для освещения помещений имеют заявляемый производителями срок службы – 60 000 – 150 000 часов.
В основном индукционные лампы, применяемые именно для освещения помещений, являются разновидностью газоразрядных люминесцентных ламп.
Индукционные лампы, также как и люминесцентные, требуют специальной утилизации из-за находящихся внутри них ядовитых паров ртути.

Индукционные лампы для растений своими руками

Для обеспечения максимально благоприятного «климата» в теплице большую роль играет освещение. В ходе многочисленных экспериментов и серьезных научных изысканий были разработаны индукционные лампы для растений, которые очень точно имитируют солнечное освещение. Светильники этого типа предоставляют растениям «световое обеспечение» необходимого спектра и насыщенности. С их помощью в теплице точно моделируются суточные и сезонные циклы, что способствует повышению урожайности и позволяет снизить расходы на обслуживание тепличного хозяйства.

В настоящей статье пойдет речь о видах индукционных ламп для теплиц, их преимуществах и недостатках, правилах выбора и вариантах их применения.

Что такое индукционный светильник

Индукционный светильник является, по своей конструкции, модернизированной люминесцентной лампой. Главное отличие состоит в отсутствии электродов и наличии индукционной катушки.

Конструкция индукционного светильника

Конструкция индукционной люминесцентной лампы включает в себя следующие элементы:

  • газоразрядную трубку, внутренняя поверхность которой покрыта люминофором;
  • индукционную катушку с магнитным кольцом, которое смонтировано вокруг газоразрядной трубки;
  • генератор высокочастотного тока (электронный балласт), который может быть вмонтирован в корпус лампы или устанавливаться отдельно.

Виды индукционных ламп для теплиц

Современная промышленность производит индукционные лампы для теплиц, следующих видов:

  • ТИЛгп – это универсальный светильник для теплиц. Сбалансированный спектр его освещения подойдет любым растениям в период их роста и созревания плодов. Соотношение красного и синего спектра в таких лампах составляет 40% и 49%. Общий выход полезного для растений света 95,8%.
  • ТИЛгп (фл)+кл – модификация универсального светильника. Дополнительное управление позволяет вносить соответствующие изменения в суммарный спектр, создавая эффект восхода и заката солнца.
  • ТИЛвг – соотношение красного и синего спектра 31/59. Вегетативное выращивание и проращивание растений лучше будет протекать под светом такой лампы. Общий выход полезного для растений света 96,5%.
  • ТИЛфл – такой тип освещения идеален для растений в период созревания плодов. Красный спектр 50%. Общий выход полезного для растений света 96,5%.

Преимущества и недостатки

Главным преимуществом этого типа источников света является то, что излучаемый ими световой поток, по своим основным характеристикам, максимально близок к солнечному свету.

Зависимость активности растений от длины световой волны

Кроме этого, использование индукционных светильников для освещения теплиц имеет целый ряд других преимуществ, среди которых особого внимания заслуживают следующие;

  • Высокий коэффициент цветопередачи Ra > 80.
  • Низкая рабочая температура. Колбы этих светильников нагреваются до температуры 50-70 °C, что позволяет, значительно сократив расстояние между светильником и растениями, увеличить интенсивность освещения, не причиняя вреда растениям. Кроме этого, использование такого освещения способствует улучшению контроля влажности и, как следствие, снижает потребность в поливе растений.
  • Длительный срок службы. Ресурс источников света индукционного типа достигает 100000 часов. ТИЛ может эффективно функционировать на протяжении 15-20 лет. Производители ТИЛ, как правило, предоставляют не менее пяти лет гарантии на свою продукцию.
  • Невосприимчивость к перепадам температур. ТИЛ одинаково эффективно функционирует в диапазоне от -35 до +40-50 °C.

Экономичность. Применение ТИЛ позволяет экономить электроэнергию. Например, замена натриевого газоразрядного светильника ДНАТ 600W на ТИЛ 300W дает 56% прямой экономии расходов на электроэнергию. По сравнению со светодиодными светильниками, ТИЛ позволяет сэкономить около 40% затрат.

  • Простота монтажа и эксплуатации. Для того чтобы снять или установить устройство своими руками не требуется специальных навыков и знаний.
  • Безопасность. Источник света находится в герметичной стеклянной трубке. Утечка исключена. Невысокая рабочая температура не представляет опасности ни для людей, ни для растений.

Называя недостатки индукционных светильников, можно упомянуть их высокую стоимость. Но, рассматривая покупку такой лампы как «долгосрочную инвестицию», следует признать, что средства, потраченные на приобретение этих устройств, быстро окупаются.

Как правильно выбрать лампу

Определив все достоинства и недостатки индукционного освещения, можно приступать к подбору светильников для вашей теплицы.

Для начала надо четко определить задачи, которые ставятся перед теплицей и цели, которых вы желаете достичь в результате ее эксплуатации.

Универсальные светильники (ТИЛгп, ТИЛгп (фл)+кл) –широкий спектр излучения и возможность диммирования (изменения интенсивности излучения) позволяют использовать эти лампы на протяжении всего жизненного цикла растений.

Для выращивания рассады использование универсальных источников света нецелесообразно, в первую очередь, с экономической точки зрения. Универсальные светильники стоят не дешево.

Существуют узкоспециализированные индукционные лампы, предназначенные для определенных этапов развития растений. Их стоимость в несколько раз меньше универсальных. Использование таких ламп принесет вам не малую экономию средств.

Для этапа проращивания целесообразно использовать источники света типа ТИЛвг, иний спектр которых составляет 59%. Индукционные светильники ТИЛфл, в которых количество красного спектра равно 50%, «уместны» на этапе цветения и формирования (завязывания) плода.

Светильник эффективен для досветки рассады перед высадкой в грунт

Установка и распределение в теплице

Выполняя монтаж индукционного освещения в теплице своими руками необходимо учитывать, что в отличие от светильников других типов, даже таких хорошо известных и привычных как люминесцентные, индукционная лампа не создает мощного теплового потока, электрический балласт и газоразрядная трубка не выделяют много тепла. Эта важная особенность индукционных источников света позволяет сократить расстояние до минимума и устанавливать их в непосредственной близости от растений или поверхности почвы.

Применение индукционных ламп разных типов позволяет проектировать и устанавливать раздельное освещение каждого участка теплицы. К примеру, монтируя порядное освещение, можно не опасаться, что будет нанесен ущерб интенсивности освещения или накладывания световых потоков от других ламп. Конструктивные особенности ТИЛ и их уникальные технические характеристики делают их эксплуатацию очень удобной. Вместе с такими лампами можно применять различные приспособления, что сделает систему освещения теплицы более гибкой.

Чтобы направить максимальное количество света в нужный сектор, можно использовать специальные экраны, которые имеют различную форму и позволяют фокусировать световой поток на нужном участке.

Как правило, такие экраны комплектуются «крылышками», плоскостями с легко изменяемыми углами разворота. Такие конструкции позволяют корректировать направление светового потока, тем самым, создавая сектора с разной освещенностью. Например, с помощью параболического отражателя можно равномерно распределить свет по всей высоте растения.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Таблица сравнения индукционных ламп с другими популярными лампами

Параметры сравнения

Светильник с индукционной лампой 80 Вт

Ламповый светильник с лампой ДРЛ-250

Ламповый светильник с лампой ДНаТ-150

Светодиодный светильник 90 Вт

Срок службы источника света (светоизлучающего элемента), час

До 100 000

До 10 000

До 10 000

До 100 000

Потребление электроэнергии, Вт

75-85

до 280

до 180

85-95

Пусковой ток, А

0,25

4,5

3,0

0,6

Потребляемый ток,А

0,35-0,4

2,1-2,2

1,8-2

0,6

Нагрузка на электросети

Низкая

Большие пусковые токи в момент разогрева, время разогрева до 15 минут

Большие пусковые токи в момент разогрева, время разогрева до 15 минут

Низкая

Виброустойчивость

Высокая

Низкая

Низкая

Высокая

Устойчивость к перепадам напряжения, В

110-270

180-250

Не устойчив

140-270

Нагрев источника света

До 80 ˚С

До 200 ˚С

200 ˚С-300˚С

До 110 ˚С (охлаждение обязательно)

Коэффициент пульсации %

0,4

7,3

5,9

0,7

Контрастность и цветопередача

Высокая > 80Ra

Низкая 25 Ra

Низкая 42 Ra

Высокая > 70Ra

Экологическая безопасность лампы

До 25 мг. амальгамы (в 4 раза меньше, чем в ДРЛ)

Лампа содержит до 100 мг. паров ртути

Лампа содержит натриево-ртутную амальгаму и ксенон

безопасен

Степень защиты

IP 65

IP 54

IP 54

IP 67

Вес светильника,кг

Максимальный 6

10-12 (без лампы)

10-12 (без лампы)

Максимальный 12

Время пуска источника света

Максимально 0,2 секунды (70-80%) от номинальной мощности

От 3 до 15 минут (период разогревания ламп)

От 3 до 15 минут (период разогревания ламп)

Максимально 0,5 секунды

Температурные режимы работы во время эксплуатации ˚С

От -40 до +40

От -40 до + 40(при низких температурах запуск систем затруднен)

От -40 до + 40(при низких температурах запуск систем затруднен)

От -55 до +40

COS ϕ

0,97-0,99

0,74-0,9

0,74-0,9

0,84-0,95

Перезапуск после перепада U

мгновенно

После остывания лампы

После остывания лампы

мгновенно

Цветовая температура

2700(жёлтый) 5000 (белый)

6500 (бело-голубой)

3800 К

2000 К

5500 К

Потеря светового потока

15% после 60 000 час

30-50% после 3 000 час

20-40% после 5 000 час

25% после 50 000час

Экономия электроэнергии

В 3.3 раза относительно ДРЛ;

В 2 раза относительно люминесцентной лампы

0

0

1,5-3 раза

Видимый световой поток

9600

11500

14500

 

Индукционные лампы — Энергосбережение, энергосберегающие технологии, Портал энергосберегающих технологий. © 2009

Предлагаем новое поколение энергосберегающих ламп – индукционных. Индукционные лампы применяются для освещения улиц, промышленных помещений, туннелей, теплиц, в общем полностью заменяют традиционные источники освещения. В отличии от других производителей, в индукционных лампах от ИПК Развитие в качестве инертного газа используется не аргон, а более дорогой и качественный для свечения газ — криптон. В предлагаемых нашей компанией индукционных лампах отличительной особенностью является применение уникальной технологии смешивания порошкового фосфора. Данная технология обеспечивает наилучшую однородность и толщину порошка фосфора во внутренних трубках. К поставке предлагаются индукционные лампы следующих температур:2700К, 3500К, 4000К, 5000К, 6500К. Серийно изготавливаются лампы с цветовой температурой 5000К, остальные – под заказ.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ЛАМП

 

Вы можете приобретать индукционные лампы и инсталлировать их в подходящие для Ваших задач корпуса светильников. 

Принцип работы индукционного освещенияЛампа: Балласт:

Индукционная лампа состоит из трёх основных частей: газоразрядной трубки, внутренняя поверхность которой покрыта люминофором, магнитного кольца или стержня (феррита) с индукционной катушкой, электронного балласта (генератора высокочастотного тока). Возможны два типа конструкции индукционных ламп по виду индукции:
Внешняя индукция: магнитное кольцо расположено вокруг трубки.
Внутренняя индукция: магнитный стержень расположен внутри колбы.

Два типа конструкции индукционных ламп по способу размещения электронного балласта:
Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).
Индукционная лампа с встроенным балластом (электронный балласт и лампа находятся в одном корпусе).

В традиционных технологиях освещения, используются электроды или нити с целью получения электрического тока внутри лампы. Эти нити или электроды со временем выгорают, что требует замены лампы. В индукционном освещении используются передовые технологии для производства высококачественного света от лампы, с ресурсом работы до 100 000 часов. Полностью герметичная колба без волокон и электродов, в которой электронный балласт вырабатывает высокочастотный ток, протекающий по индукционной катушке на магнитном кольце или стержне. Электромагнит и индукционная катушка создают газовый разряд в высокочастотном электромагнитном поле, и под воздействием ультрафиолетового излучения разряда происходит свечение люминофора. Конструктивно и по принципу работы лампа напоминает трансформатор, где имеется первичная обмотка с высокочастотным током и вторичная обмотка, которая представляет собой газовый разряд, происходящий в стеклянной трубке.


Почему у индукционной лампы такой большой срок службы?

В традиционной технологии освещения, места, где провода для электродов, нитей накаливания проходят через оболочку (стенки) лампы, подвергаются термическим напряжениям в связи с нагревом и охлаждением лампы. Со временем это приводит к появлению микротрещин, через которые могут попадать атмосферные газы, загрязняющие корпус лампы. Кроме того, нити или электроды нагреваются при прохождении электрического тока, что приводит к их испарению с течением времени. Например: черные кольца часто видны вокруг концов люминесцентных ламп, появившихся в связи с конденсацией испаренного металла из нитей. Индукционные лампы полностью изолированы и не имеют нитей или электродов.


Как индукционные лампы экономят энергию и деньги?

Индукционные лампы имеют высокую преобразовательную энергоэффективность (от 60 до 90 люменов на ватт потребляемой мощности (Lm / W)). Это означает, что большая часть электроэнергии превращается в свет. Кроме того, в индукционных лампах используются электронные балласты, которые на 95% — 98% эффективней (только 2% — 5% теряется в виде тепла), по сравнению с типичными электромагнитными балластами, которые эффективны только на 75% и 85% (15% — 25% мощности теряется). Индукционные лампы позволяют сэкономить 35% — 60% электроэнергии, по сравнению с традиционной технологией, за счет повышенной светоотдачи и меньшей потери энергии на электронном балласте! Некоторые дополнительные приспособления могут обеспечить экономию энергии до 75% по сравнению с обычными светильниками.

С заявленным сроком службы индукционных ламп (100 000 ч), затраты на обслуживание можно сократить, поскольку лампы не нужно менять так часто, как обычные.


Представляют ли индукционные лампы угрозу окружающей среде?

Индукционные лампы являются наиболее экологически чистыми технологиями освещения среди доступных на сегодняшний день. Они экономят электроэнергию, что в свою очередь уменьшает выбросы в атмосферу СО2 и др.
Что представляет собой индукционная лампа

Индукционная лампа — это электрический источник света, принцип работы которого основан на электромагнитной индукции и газовом разряде для генерации видимого света. Основным отличием от существующих газоразрядных ламп является безэлектродная конструкция — отсутствие термокатодов и нитей накала, что значительно увеличивает срок службы.


Какие существуют типы индукционных ламп?

Существует два типа конструкции индукционных ламп по способу размещения электронного балласта:

1. Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).

2. Индукционная лампа со встроенным балластом (электронный балласт и лампа находятся в одном корпусе).


Есть ли различия между лампами с внешним и внутренним индуктором

Кроме формы, основные различия в эффективности и в продолжительности жизни. Внешний индуктор лампы имеет более высокий КПД преобразования (производит больше света при одинаковой мощности) чем внутренний тип индуктора, и имеет более длительный срок службы в диапазоне 90 000 -100 000 часов. Внутренний индуктор лампы имеет более низкий КПД преобразования, чем внешний индуктор (производит меньше света при одинаковой мощности), и имеют срок службы в диапазоне 60 000-75 000 часов. Индукционные лампы с внешним индуктором имеют то преимущество, что тепло, выделяемое катушкой, легко рассеивается в воздухе конвекцией. Конструкция с внешним индуктором подходит для более мощных ламп, имеющих прямоугольную или кольцевую форму. В лампах с внутренним индуктором тепло, производимое катушкой, выходит в полость лампы и выводится излучением через стеклянные стенки колбы и теплопередачей через цоколь. Лампы с внутренним индуктором имеют более короткий срок службы из-за высоких рабочих температур. Лампа с внутренним индуктором более похожа на стандартную лампочку, чем лампа с внешним индуктором. Иногда это может быть полезным.


Есть ли соответствующие светильники / конструкции, необходимые для индукционной лампы?

В большинстве случаев, да. Индукционные лампы должны быть установлены в соответствующие светильники, которые имеют соответствующие термические свойства и обеспечивают корректную работу. Некоторые существующие светильники могут быть успешно модернизированы.


Создает ли помехи индукционное освещение в работе электронных устройств и оборудования связи (производства RFI)?

Почти все современные лампы индукции соответствуют FCC международными стандартам. Сотовые телефоны и другие мобильные устройства не будут иметь перебоев в работе. Продукция сертифицирована и не производит помех более чем компьютер или микроволновая печь. Индукционное освещение соответствует FCC стандарту и не влияет на использование двусторонней радиосвязи сотовых телефонов.

Индукционные лампы могут вызвать помехи с некоторыми очень чувствительным лабораторным и медицинским оборудованием. Если индукционное освещение будет использоваться в таких помещениях, необходимо соблюдать принятые правила для обеспечения надежного заземления и было бы также целесообразно провести испытания образца индукционного светильника для определения чувствительности оборудования к помехам.


Зависит ли работа индукционной лампы от температуры окружающей среды?

Индукционные лампы имеют стабильную работу в очень широком диапазоне температур от -35 ºС до +50 ºС при этом время на разогрев от 1 до 2 минут.


Как реагируют индукционные лампы к горячему повторному включению?

Индукционные лампы включаются мгновенно и сразу производят от 75% до 80% от полной мощности. Достаточно от 90 до 180 секунд, чтобы достигнуть 100% светового потока в зависимости от модели. Этап подогрева едва заметен для человеческого глаза. Если есть кратковременное прерывание в сети — то особенность индукционной лампы восстанавливать полную мощность светового потока обратно сразу же после восстановления питания.


Влияет ли положение (ориентации) или вибрации на индукционное освещение?

Эффективность индукции лампы не влияет на рабочее положение (ориентация). Кроме того колебания также не влияют на работу индукционных ламп, поскольку они не имеют электродов или нитей. Поэтому они широко используются на мостах, в тоннелях и на наружных вывесках с надежностью и долговечностью.


Будут ли продукты или материалы, повреждены или утеряны при индукционном освещении?

Количество ультрафиолетового света, генерируемого в индукционных лампах ниже, чем в типичных люминесцентных трубках. А для дополнительных чувствительных материалов, можно использовать индукционные светильники со стеклянными линзами, которые будут блокировать все УФ — эмиссии.


Можно ли устанавливать балласт удаленно от самой индукционной лампы?

Электронный балласт вообще может быть установлен на расстоянии до 4 метров от лампы при условии, что проводка между лампой и дросселем заключена в заземленной металлической трубе.


Могут ли индукционные светильники использоваться на открытом воздухе?

Вообще говоря, любая арматура степени защиты IP54 и выше можно использовать на улице или в сырых местах.


Где можно использовать индукционные лампы?

Индукционные лампы применяются для наружного и внутреннего освещения, особенно в местах, где требуется хорошее освещение с высокой светоотдачей и цветопередачей и длительным сроком службы: улицы, магистрали, туннели, промышленные и складские помещения, производственные цеха, аэропорты, стадионы, железнодорожные станции, автозаправочные станции, автостоянки, подсветка зданий, торговые помещения, супермаркеты, выставочные залы, павильоны, учебные заведения. Светотехническое оборудование на индукционных лампах позволяет обеспечить комфортное освещение помещений и территорий благодаря приближенному к солнечному спектру и отсутствию мерцаний, имея при этом высокую энергетическую эффективность.


Можно ли считать индукционное освещение безопасным?

Индукционное освещение предлагаемое в рамках NAFTA и ЕС рынков в целом прошли строгий UL, и CE тестирование, и предназначено для использования в различных странах. При правильной установке квалифицированным персоналом индукционные лампы являются безопасными, эффективными, энергосберегающими и являются хорошей альтернативой традиционной технологии освещения.

Проще говоря, просто удаляете старые, неэффективные, светильники и заменяете их на энергосберегающие индукционные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *