Импульсный мощный трансформатор – Расчет трансформатора для обратноходового импульсного источника питания (Flyback)

Содержание

Как работает импульсный трансформатор, чем оличается от обычного

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Импульсный трансформатор в чем основные отличие от обычного

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Основные отличия:

  1. Размер — импульсного трансформатора  обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов 

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.
Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

Импульсный трансформатор принцип работы

Принцип работы импульсных трансформаторов   заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

схема работы импульсного трансформатораВременная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е

(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L0/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещенияГрафик смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение е

t=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

График смещения

при этом:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

График смещения

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Um x tu=S x W1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

формула

Здесь:

  • L0 – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

принцип работы, виды и расчёт

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто  устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Импульсный трансформатор

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Импульсные трансформаторы

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

трансформатор питания импульсный

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

Схема подключения импульсного трансформатора

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.Конструкция тороидального импульсного трансформатора
  • Броневой.Конструкция импульсного трансформатора в броневом исполнении
  • Стержневой.Конструкция стержневого импульсного трансформатора
  • Бронестержневой.

Конструктивные особенности бронестержневого импульсного трансформатора

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Конструктивные особенности бронестержневого импульсного трансформатора

График смещения

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

расчет импульсного трансформатора

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Импульсный трансформатор — Википедия

Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Импульсные трансформаторы, предназначенные для трансформирования коротких импульсов с минимальными искажениями и работающие в режиме переходных процессов, находят применение в различных импульсных устройствах[1][2]. Импульсные трансформаторы позволяют изменить уровень и полярность формируемого импульса напряжения или тока, согласовать сопротивление генератора импульсов с сопротивлением нагрузки, отделить потенциалы источника и приёмника импульсов, получить на нескольких раздельных нагрузках импульсы от одного генератора, создать обратную связь в контурах схемы импульсного устройства. Импульсный трансформатор может быть также использован и как преобразовательный элемент, например дифференцирующий трансформатор.

Генерация мощных импульсов современных параметров невозможна без применения высоковольтных импульсных трансформаторов. Получаемая форма выходных импульсов во многом определяется свойствами ИТ, особенно при большом коэффициенте трансформации. Применение выходных повышающих ИТ позволяет резко сократить габариты, вес и стоимость генерирующих устройств[3], хотя и негативно влияет на форму квазипрямоугольных импульсов, увеличивая относительные длительности фронта, среза и неравномерность вершины. В связи с этим величина коэффициента трансформации современных выходных ИТ при длительности импульсов в единицы и десятки микросекунд возрастает до 10 — 20 и более.

Наибольшее распространение получили ИТ, трансформирующие импульсы, по форме близкие к прямоугольным, которые обладают крутым фронтом и постоянством напряжения вершины импульса, необходимыми для работы широкого класса нагрузок. Импульс прямоугольной формы должен быть трансформирован с малыми искажениями, длительность фронта импульса должна быть значительно меньше длительности импульса и переходные процессы при трансформации фронта и вершины импульса рассматриваются раздельно. Эквивалентные схемы ИТ при раздельном рассмотрении переходных процессов упрощаются и позволяют установить связь между параметрами эквивалентных схем и конструктивными параметрами ИТ и найти такие соотношения между ними, при которых удовлетворяются требования к длительности фронта и скосу вершины импульса[4]

Трансформация фронта импульса с малыми искажениями достигается при малых значениях индуктивности рассеяния и распределенной ёмкости трансформатора, которые уменьшаются с уменьшением числа витков обмоток и сечения магнитопровода ИТ. В то же время для трансформации вершины импульса с малым спадом следует стремиться к увеличению индуктивности намагничивания трансформатора, возрастающей с увеличением числа витков и сечения магнитопровода.

Удовлетворение одновременно нескольким поставленным требованиям при расчёте ИТ потребует нахождения компромиссного решения. Оно должно быть принято в зависимости от значимости того или иного поставленного требования.

Расчеты ИТ производятся на основе приближённой эквивалентной схемы с сосредоточенными параметрами. Индуктивный эффект и потери в проводах обмоток можно учитывать с помощью известной Т-образной эквивалентной схемы.

Эквивалентная Т-образная схема импульсного трансформатора

Параметры схемы:

Lμ{\displaystyle L_{\mu }} — индуктивность намагничивания трансформатора, учитывающая запасание энергии в основном потоке взаимной индукции магнитопровода при приложении напряжения к первичной обмотке. С потоком в сердечнике связан ток намагничивания, протекающий по первичной обмотке;

Ls1,Ls2{\displaystyle L_{s1},L_{s2}} — индуктивности рассеяния обмоток, учитывающие запасание энергии в потоках рассеяния, связанных с протеканием по обмоткам тока нагрузки;

R1,R2{\displaystyle R_{1},R_{2}} — активные сопротивления проводов обмоток, учитывающие потери при протекании по ним тока нагрузки;

RB{\displaystyle R_{B}} — эквивалентное сопротивление, учитывающие потери энергии в магнитопроводе на гистерезис и вихревые токи.

Наряду с запасанием энергии в магнитных полях, а также потерями в проводах обмоток в ИТ необходимо учитывать запасание энергии в электрических полях между обмоткой и магнитопроводом и между слоями обмоток. Учёт этой энергии производят введением трех ёмкостей, образующих П-образную структуру: C1{\displaystyle C_{1}} — ёмкость первичной обмотки, C2{\displaystyle C_{2}} — ёмкость вторичной обмотки, C1,2{\displaystyle C_{1,2}} — ёмкость между обмотками.

Получившаяся эквивалентная схема ИТ описывается уравнением высокого порядка, что затрудняет анализ в общем виде:

C_{{1,2}} Эквивалентная схема ИТ шестого порядка

Однако без внесения заметной погрешности можно упростить схему, если иметь в виду следующее:

1. Намагничивающий ток составляет обычно небольшую часть тока нагрузки и поэтому можно пренебречь его влиянием на поток рассеяния. Это позволяет перейти от Т-образной схемы из индуктивных ветвей к Г-образной схеме.

2. Так как электрическая энергия пропорциональна квадрату напряжения, то основная её часть запасается в обмотке высшего напряжения. Поэтому П-образная схема ёмкостных элементов замещается одной эквивалентной ёмкостью, подключенной параллельно обмотке высшего напряжения.

3. Число витков обмоток ИТ мало и, следовательно, можно пренебречь при расчётах наиболее важных электрических характеристик сопротивлением обмоток, полагая R1=R2=0{\displaystyle R_{1}=R_{2}=0}. Сопротивление обмоток учитывается при определении потерь.

В результате указанных упрощений, фронт анализируется на основе эквивалентной схемы 2-го порядка с сосредоточенными индуктивностью и ёмкостью, определяемыми из энергетических соображений:

R_{{1}}=R_{{2}}=0 Эквивалентная схема формирования фронта 2-го порядка

Она хотя и удобна для математического описания, но не отражает в полной мере процессы, происходящие при передаче импульса, так как при этом считается, что большая часть электрической энергии паразитной ёмкости запасается в обмотке высшего напряжения.

Между тем использование такой схемы недопустимо при соизмеримости приведенных ёмкостей обмоток, включающих в себя паразитные ёмкости нагрузки и генератора, так как нельзя отдать предпочтение ни одной из ёмкостей. Кроме того, при резком различии приведенных ёмкостей, когда, казалось бы, можно ограничиться одной из них, возможно формирование фронта с паразитными колебаниями, наложенными на самом фронте, а не на вершине. Такие колебания должны быть исключены, например, при импульсной модуляции мощных магнетронных генераторов. Но схема 2-го порядка не только не позволяет определить условия их появления, но даже исключает само их существование. В работах вышеупомянутых авторов такой вид искажения фронта прямоугольного импульса отсутствует. Поэтому надо как минимум учитывать разделение ёмкостей обмоток индуктивностью рассеяния. Следовательно, предпочтительнее рассматривать эквивалентную схему 3-го порядка, как это сделано в работе[5]:

R_{{1}}=R_{{2}}=0 Эквивалентная схема формирования фронта 3-го порядка

L{\displaystyle L} — индуктивность рассеяния;

R{\displaystyle R} — сопротивление обмоток, включающее приведенное сопротивление вторичной обмотки;

Ri{\displaystyle R_{i}} — сопротивление генератора импульсов;

C1{\displaystyle C_{1}} — эквивалентная ёмкость первичной обмотки, включающая выходную ёмкость генератора;

C2{\displaystyle C_{2}} — эквивалентная приведённая ёмкость вторичной обмотки включающая паразитную ёмкость нагрузки.

Все конструктивные схемы можно свести к четырём основным[2]:

  1. Стержневой
  2. Броневой
  3. Бронестержневой
  4. Тороидальный
  1. Матханов П. Н., Гоголицын Л. З. Расчет импульсных трансформаторов. — Энергия, 1980.
  2. 1 2 Вдовин С. С. Проектирование импульсных трансформаторов 2-е изд. перераб. и доп. — Энергоатомиздат. Ленингр. отд-ние, 1991. — 208 с. с. — ISBN 5-283-04484-X.
  3. Каштанов В. В., Сапрыгин А. В. Возможности снижения массы и габаритов мощных микро-миллисекундных импульсных модуляторов // Вопросы прикладной физики. — 1997. — Т. 3. — С. 75 – 78.
  4. Ицхоки Я. С. Импульсные устройства. — Сов.Радио, 1959. — 729 с.
  5. Каштанов В. В. Анализ фронта выходных импульсов трансформатора. — Радиотехника, 1995. — Т. 12. — С. 38 — 40.

что это такое и где его применяют

Импульсным трансформатором называется важная деталь, широко применяемая практически во всех радиоэлектронных приборах. Это телевизоры, мониторы компьютеров, все цифровые и аналоговые устройства. Трансформатор обеспечивает передачу импульсных сигналов. Вывод по сравнению с поданной на входе формой получается с минимальным искажением. В основном работают с прямоугольными импульсами.
В статье разобраны главные принципы работы импульсных трансформаторов, приведены характеристики и различия в их устройстве. В качестве бонуса в конце статье читатель найдет видео c наглядным разбором устройства и книгу Вдовина С. С. «Проектирование импульсных трансформаторов». Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Виды импульсных трансформаторов

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации.
Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.

Классификация импульсных трансформаторов

Классификация импульсных трансформаторов по виду сердечника и катушек.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

Что такое импульсный трансформатор и как его рассчитать

Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ.

Схема импульсных трансформаторов

Схема подключения импульсных трансформаторов.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Процессы трансформации импульсов

Одним из основных элементов импульсных источников питания является импульсный трансформатор. Особенность работы данного вида трансформатора заключается в том, что на вход подается периодическая последовательность импульсов одной полярности, содержащие постоянную составляющую тока.

Принцип действия импульсного преобразователя напряжения полностью идентичен работе любого другого трансформатора, то есть к обмотке первичной катушки индуктивности подается входное напряжение Uвх, которое в полном соответствии с законом электромагнитной индукции преобразовывается на обмотке вторичной катушки в напряжение выхода Uвых с измененными параметрами.

Коэффициент трансформации напряжения определяется соотношением витков намотки импульсного трансформатора для каждой катушки. Однако в отличие от обычных трансформаторов, работающих с синусоидальными гармониками стандартной частоты 50 Гц, на вход ИТ подаются импульсы длительность несколько десятков мкс, что соответствует частотам в пределах десятков кГц.

Электронный трансформатор

Простая схема электронного трансформатора.

Обычно это электромагнитные сигналы после выпрямления переменного сетевого тока по полумостовым, мостовым или другим схемам, используемым в электронных преобразователях напряжения.

 

 

Особенности конструкции

Сердечники импульсных преобразователей имеют тороидальную или Ш-образную форму. При выполнении намотки импульсного трансформатора своими руками мастера предпочитают кольцевую (тороидальную) конфигурацию магнитопровода, поскольку для него не нужно специально готовить каркас и приспособление под намотку. Для изготовления сердечников используются материалы с повышенной магнитной проницаемостью типа:

  • ферритов;
  • трансформаторной кремнистой стали;
  • пермаллоя.

Ферритовые кольцевые сердечники широко распространены, дешевы и доступны. Обозначение изделия выполняется по типу К Dxdxh, где К – сокращение от слова «кольцо», D, d и h – соответственно, размеры внешнего и внутреннего диаметров кольца, высоты кольца. Размеры обозначают в мм, например, К 28×16х9.
На ферритовом основании наматываются первичная и вторичная обмотки.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Ключевой особенностью конструкции является намотка первичной обмотки против часовой стрелки, вторичной – только по часовой. При изменении направления намоток мощность устройства значительно уменьшается. Обмотки наматываются с обеих сторон кольца, на внутренней стороне – с малым числом витков, на внешней – с большим количеством витков.

Для снижения индуктивности рассеивания считают необходимым наматывать двуслойно одну обмотку, а между ее слоями помещать другую обмотку. Иногда обмотки мотают двумя проводами одновременно, тогда провода витков одной обмотки располагаются между проводами витков другой.

Как проверить устройство

После сборки ИТ, его проверяют. Методик, как проверить собранный собственноручно или приобретенный импульсный трансформатор, предостаточно. Для проверки собирают схемы с использованием частотных генераторов, осциллографов, мультиметров и других приборов, которые не только подтверждают работоспособность ИТ.

Они выполняют его тестирование в различных частотных диапазонах. В импульсном трансформаторе не допускается разомкнутое состояние вторичной обмотки, такой режим относится к категории небезопасных режимов.

Проверка импульсного трансформатора

Как проверить импульсный трансформатор.

Также должны иметь минимальную индуктивность рассеивания, динамическую емкость и сопротивление; быть достаточно прочными механически.

Он должен обладать виброустойчивостью и выдерживать воздействие значительных электродинамических сил, возникающих как в нормальном режиме работы, так и, особенно, при коротких замыканиях цепи нагрузки.

Требования высокой электрической прочности и минимальной индуктивности рассеяния взаимно противоречивы. Так как для увеличения электрической прочности необходимо увеличивать толщину и изоляции, в то время как для уменьшения индуктивности рассеяния требуется уменьшать толщину.

Изоляция проводов и обмоток

Обмотки ИТ должны удовлетворять следующим основным требованиям: быть достаточно электрически прочными, изоляция обмоток должна выдерживать без повреждений длительное воздействие номинальных рабочих напряжений и кратковременное воздействие повышенных напряжений в возможных аварийных ситуациях.

Уменьшение емкости обмоток, в свою очередь, находится в противоречии с требованием минимальной индуктивности рассеяния. Однако в большинстве случаев уменьшение индуктивности рассеяния является более важной задачей, чем уменьшения емкости.

По этим причинам размеры изоляционных промежутков обычно доводят до возможного минимума, определяемого необходимой электрической прочностью обмоток. Уменьшить емкость стремятся применением изоляционных материалов с возможно меньшей диэлектрической проницаемостью, а также за счет конструктивных факторов.

Итак, главные требования к изоляционным материалам состоят в малой диэлектрической проницаемости и пригодности для режимов с высокой напряженностью электрического поля. При больших токах и длительности импульса применяют провода более экономичного прямоугольного сечения или тонкие и широкие медные шины из фольги, иногда из нескольких слоев, проложенных изоляцией.

Как правильно изолировать провода и обмотку

Лучшие материалы для устройства

Практика конструирования ИТ показала, что лучшими изоляционными материалами, наиболее полно удовлетворяющим перечисленным требованиям, являются трансформаторное масло, кабельная и трансформаторная бумага, пропитанная трансформаторным маслом, электрокартон, пленки из фторопласта, чередующиеся со слоями бумаги, органическое стекло.

В качестве несущих элементов конструкции – бумажно-бакелитовые трубки и цилиндры, сборные каркасы из органического стекла. Фторопластмассовые пленки следует применять лишь в таких ИТ, у которых температура обмоток может превышать 95ºС.

Недостаток пленок в том, что по ним в продольном направлении легко развивается поверхностный разряд. Органическое стекло широко применяется в ИТ вследствие высоких изоляционных свойств и возможности механической обработки.

При напряжениях 100 кВ целесообразна изоляция в виде чистого трансформаторного масла. В отличие от слоистой чисто масляная изоляция в высокой степени однородна по свойствам. Это позволяет в конструкциях с ослабленным краевым эффектом практически полностью использовать высокие электроизоляционные свойства трансформаторного масла.

Что такое импульсный трансформатор и как его рассчитать

Масляная изоляция имеет и другие важные достоинства. Трансформаторное масло обладает хорошей текучестью и может свободно конвектировать в пространстве между обмотками и МС. Следствием этого, а также высокой теплоемкости масла является хороший отвод теплоты от обмоток и МС.

Диэлектрическая проницаемость трансформаторного масла примерно в два раза меньше, чем у изоляционной бумаги и электрокартона. Это позволяет во столько же раз уменьшить емкость обмоток ИТ. Важным эксплутационным достоинством масляной изоляции является также ее восстанавливаемость после кратковременных аварийных состояний (единичный пробой или искрение).

Легко осуществима также и замена масла при регламентных работах. Таким образом, при большой мощности и напряжении масляная изоляция является наиболее целесообразным типом изоляции в ИТ. Однако ее применение возможно только в специально разработанных конструкциях, в которых, обеспечена свободная циркуляция масла и отсутствуют пути для распространения поверхностного разряда.

Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.

Конструкция обмотки

Обмотки ИТ отличаются относительно небольшим числом витков. Однако напряжения на обмотках обычно измеряются десятками и сотнями киловольт, вследствие чего напряжение, приходящиеся на один виток обмотки (витковое напряжение), может составлять единицы, а в мощных ИТ – даже десятки киловольт.

Поэтому при конструировании обмоток ИТ приходится уделять особое внимание межвитковой изоляции обмоток. Для обеспечения требуемой электрической прочности межвитковой изоляции в обмотках ИТ используют провода с усиленной изоляцией, в основном марок ПЭВ-2, ПБ, ПБУ. Провода круглого сечения ПЭВ-2 обычно применяют в ИТ малой и средней мощности, а также во вторичных обмотках мощных высоковольтных ИТ.

Провода прямоугольного сечения ПБ, ПБУ, способны выдерживать межобмоточное напряжение 10 кВ, применяют в первичных обмотках ИТ средней мощности и в обеих обмотках весьма мощных ИТ.
В целом, рассматривая обмотки мощных высоковольтных ИТ, необходимо отметить следующее. Принципиальная необходимость малоискаженной трансформации весьма коротких импульсов вынуждает конструировать ИТ с очень малой индуктивностью рассеяния и емкостью обмоток.

Следовательно, с минимальным размером обмоток, в частности с минимальными размерами изоляционных промежутков. Для лучшего понимания предмета рекомендуем посмотреть видеоролик о том, как разобрать импульсный трансформатор.

Как намотать тороидальный трансформатор

При помощи наждачной бумаги стачиваем острые грани. Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку. Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Как намотать импульсный трансформатор

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным. Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок. Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки. Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Самодельный челнок для намотки трансформатора

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05-0,1 мм. Наматываем начало обмотки так, чтобы надёжно закрепить место соединения. Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Намотка обмотки

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика). Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты.

Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно. На картинке вторичная обмотка, намотанная в четыре провода.

Заключение

Надеемся, теперь вам полностью понятен принцип работы трехфазных асинхронных двигателей. Для лучшего понимания вопроса предлагаем скачать книгу Вдовина С. С. “Проектирование-импульсных-трансформаторов”.

Вся самая новая информация по этой теме, а также по теме металлоискателей, размещена также в нашей группе в социальной сети «Вконтакте». Чтобы подписаться на групу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В нашей группе можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков.

В завершение объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.expertelektrik.ru

www.stoom.ru

www.topref.ru

www.sdelaitak24.ru

Правильная намотка импульсного трансформатора

Приветствую, Самоделкины!
Как известно трансформатор — основной элемент любого источника питания. Новички радиолюбители довольно часто задаются вопросом: как правильно произвести намотку трансформатора самостоятельно? Поэтому данная инструкция (автор: Роман, YouTube канал «Open Frime TV») полностью посвящена расчету и намотке импульсного трансформатора.

Итак, давайте начнем, но не с самого трансформатора, а со схемы управления. Зачастую случается так, что люди берут любой попавшийся под руку трансформатор и начинают на нем мотать свои обмотки, при этом не задумываясь об одной мелкой, но очень важной детали, которая называется зазор.

Существует 2 основных типа схемы управления трансформатором: однотактная и двухтактная.

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.


Мотать трансформатор автор решил для готовых проектов. Первый — блок на SG3525. Схема представлена ниже.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.


Благодаря автору данных программ, а их у него далеко не одна, количество самопальных блоков питания постоянно растет. Вы можете ознакомиться со всеми программами данного автора, но в примере мы разберем только две из них. Первая – это «Lite-CalcIT Расчет импульсного трансформатора двухтактного преобразователя» (Версия 4.1).

Вдаваться в подробности не будем, затронем только важные моменты. Первый — это выбор схемы преобразователя: пуш-пул, полумостовая или мостовая. Далее у нас строка выбора напряжения питания, его также необходимо указать, можно указывать или уже выпрямленное напряжение (постоянное) или просто сетевое (переменное). Ниже поле для ввода частоты преобразования. Обычно в своих проектах при расчете блоков питания автор устанавливает частоту в районе 40-50Гц, выше поднимать не нужно. Далее следует указать характеристики преобразователя. В соответствующих колонках указываем напряжение, мощность и провод, каким будет производиться намотка. Не забываем указать схему выпрямления и поставить галочку на «Использовать желаемые параметры».

Помимо этого, в программе присутствуют еще 2 важных поля для заполнения. Первое — это наличие или отсутствие стабилизации.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.


Большинство стандартных номиналов уже занесены в программу, тут остается только выбрать необходимый.
И вот, когда все поля заполнены, можно нажимать кнопку «Рассчитать».

В результате получаем данные для намотки нашего трансформатора, а именно количество витков первички и вторички совместно с количеством жил.

Необходимые расчеты произвели, можно приступать к обмотке.
Важный момент! Все обмотки мотаем в одну сторону, но начало и конец обмотки располагаем строго по схеме. Пример: допустим мы поставили начало обмотки тут (подробнее на изображении ниже), намотали необходимое количество витков и сделали вывод.


Давайте визуально представим, как течет ток. Допустим он течет так:

Тогда он потечёт по проводу в указанную сторону. А теперь мы просто поменяем начало и конец обмотки местами.

Хоть намотка и производилась справа, ток потечет в обратном направлении и это будет равносильно тому, что мы намотали обмотку влево. Таким образом по точкам на схеме можно легко проводить фазировку, главное при этом все обмотки мотать в одну сторону.

С примером разобрались, приступаем к реальной намотке. Начало обмотки у нас в этой точке (смотри изображение ниже), значит отсюда и будем мотать.


Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.


Таким образом повышается магнитная связь обмоток и уменьшается индуктивность рассеяния.

Между обмотками необходимо использовать изоляцию. Отлично подойдет вот такая из термоскотча.

А для самого последнего слоя изоляции можно использовать майларовую ленту для красоты.

Вторичная обмотка наматывается точно так же, как и первичная.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.


Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.


Вот с этого пина и начинаем мотать оставшуюся первичку, все также равномерно.

Вот тут уже отводить вверх конец провода не стоит, можно сразу завести его на положенное место.
Затем проводим такую же операцию для оставшихся выводов.

Когда основные обмотки закончили, можно приступать к намотке дополнительных, в данном случае это обмотка самозапита. С ней все точно также, начало и конец обозначены на печатной плате, изолируем и мотаем.

Верхний слой, как уже говорилось ранее, покрываем майларовой лентой. Вот, теперь трансформатор похож на промышленный образец.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


Указываем необходимые параметры: частоту, выходные напряжения и так далее, это не столь важно. Единственный момент, заслуживающий особого внимания — это зазор в сердечнике и индуктивность первичной обмотки. Эти параметры необходимо будет как можно точнее соблюсти.



На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

РадиоКот :: Расчёт импульсных трансформаторов

РадиоКот >Чердак >

Расчёт импульсных трансформаторов

 

 

Хочу рассказать о расчёте импульсных трансформаторов т.к. в сети очень много методик, но все они какие – то отдалённые и примерные с какими то непонятными коэффициентами, числами, откуда они взялись никто не описывает а приводит конечный результат в итоге результат получается с большим отклонением!!

Начнём с того, что мы захотели разработать некое устройство, посчитали необходимую требуемую мощность на выходе, допустим она равна 250 Вт, далее необходимо выбрать магнитопровод обеспечивающий заданую мощность.

Для этого существует реальная формула для оценки входной габаритной мощности магнитного элемента:

  • кф – коэффициент формы напряжения или тока: для синуса =1,11 для прямоугольника =1.
  • Кзс – коэффициент заполнения геометрического сечения магнитопровода материалом феромагнетика Кзс = 0,6 – 0,95 и даётся в справочной литературе на магнитный элемент.
  • Кок — коэффициент заполнения окна магнитопровода сечениями проводников, Кок =0,35.
  • n0 – коэффициент показывающий какую часть катушки занимает первичная обмотка, для трансформаторов n0 = 0,5.
  • Sc – сечение магнитопровода.
  • Sок – сечение окна магнитопровода.
  • J – плотность тока, при естественном охлаждении 3500000 А/м2, при принудительном 6000000 А/м2
  • В – рабочая индукция магнитопровода.
  • F — частота напряжения либо тока Гц.

И так по этой формуле мы оценим реальную габаритную мощность трансформатора и прикиним что можем выжать с этого сердечника!

Например:

Имеем трансформатор от компьютерного блока питания с параметрами.

Сечение магнитопровода Sс = 0,9 см2

Сечение окна Sок = 2,4 см2

Рабочая индукция В = 0,15 (ориентировочное значение)

Частота предпологаемой работы нашего устройства f = 50кГц.

 

Все величины в единицах СИ!!!!!!!!! Т.е. переводим всё в метры, амперы, герцы, и.т.д.

 

Получим:

Так сердечник оценили, идём дальше, теперь необходимо разобраться с витками и сечением провода.

Начнём с витков в первичной обмотки, для этого существует замечательная формула:

Все данные мы рассмотрели выше, кроме U1— это непосредственно напряжение на первичной обмотке.

Допустим строим полумостовой преобразователь, Еп = 24В, следовательно U1 = 12В т.к первичная обмотка будет подключена через ёмкостной делитель т.е 24/2.

Далее считаем.

Вторичная обмотка допустим имеет напряжение 50В.

 

Все значения округляем до целого числа!

Теперь посчитаем сечение проводников обмоток.

P1 – мощность необходимая нам на выходе и принятая ранее 250 Вт.

  • Вторичной: (потерями пренебрежём)

 

При намотке трансформатора не забываем про вытеснение тока на поверхность проводника в зависимости от частоты и производим расщепление проводника (литцендрант) или используем фольгу.

  • Формула для расчёта расщепленного проводника:

 

Теперь не трудно посчитать и диаметр провода и раскладку провода!

В этой статье я хотел коротко и доступно рассказать о расчёте импульсного трансформатора, с разъяснением основных коэффициентов, что откуда берётся.

Также не забываем, что для более качественного расчёта необходимо использовать справочные данные магнитного элемента.

В итоге хотелось сказать, что использую даную методику уже несколько лет для расчёта как низкочастотных так и ВЧ трансформаторов. 

 

Используемая литература:

Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. — Томск: ТУСУР 2006 — 154 с.

 

 

Файлы:
22

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Расчет и намотка импульсного трансформатора

Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.

Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.

Расчет импульсного трансформатора.

Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.

Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.

РАСЧЕТ_1РАСЧЕТ_1

Напряжение питания указываем постоянное.  Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.

РАСЧЕТ_2РАСЧЕТ_2

Тип контроллера указываем ir2153, частоту генерации 50кГц.

РАСЧЕТ_3РАСЧЕТ_3

Стабилизации выходов – нет.Принудительное охлаждение – нет.

РАСЧЕТ_5РАСЧЕТ_5

Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.

Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.

РАСЧЕТ_4РАСЧЕТ_4

Схема выпрямления – двухполярная со средней точкой.

РАСЧЕТ_6РАСЧЕТ_6

Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и  после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.

Напряжение1Напряжение1

Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.

РАСЧЕТ_7РАСЧЕТ_7

Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.

РАСЧЕТ_8РАСЧЕТ_8

Намотка импульсного трансформатора.

Итак, вот мое колечко с размерами 40-24-20 мм.

11

Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.

Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.

Пленка лавсановая для трансформатораПленка лавсановая для трансформатора 2222

Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.

5555 4444

 

Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.

В каком направлении мотать первичную обмоткуВ каком направлении мотать первичную обмотку

 

Намотка первичной обмоткиНамотка первичной обмотки DSC065841DSC065841

Выводы первичной обмотки скручиваем и залуживаем.

DSC065871DSC065871 DSC065961DSC065961

Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.

Намотка первичной обмоткиНамотка первичной обмотки DSC06598DSC06598

Следующим шагом вновь изолируем диэлектриком еще пару слоев.

DSC06610DSC06610

Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?

В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.

Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.

Как мотать вторичную обмоткуКак мотать вторичную обмотку

Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.

 Вторичная обмоткаВторичная обмотка

 

Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.

DSC06624DSC06624 DSC06622DSC06622

Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.

Две вторичных обмоткиДве вторичных обмотки

После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.

DSC06631DSC06631

В результате получили вот такой аккуратный бублик.

DSC06632DSC06632 DSC06646DSC06646

Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.

 Программа расчета импульсного трансформатора Lite-CalcIT СКАЧАТЬ

Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.


Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *