Импульсный блок питания ремонт: Быстрый ремонт импульсного блока питания – Ремонт импульсного блока питания своими руками

Содержание

Установка для ремонта импульсных БП

Ремонт импульсных блоков питания имеет свои особенности. Одна из них заключается в том, что не всегда удаётся определить все неисправные детали. И тогда, при включении после ремонта, БП обычно выходит из строя окончательно. Предохранитель редко выручает.

Существует проверенный способ избежать неприятностей. Я собрал и давно пользуюсь несложной установкой для ремонта импульсных БП. Она предохраняет от выгорания элементы блока при неполной замене всех неисправных деталей и показывает работоспособность блока.

Установка состоит из следующих основных элементов.
Две сетевых вилки с негодных шнуров, старый патрон с лампочкой 230 В 60 Вт, цоколь E27, розетка, паркетная дощечка, изолента и крепёж.

Всё это я смонтировал согласно приведённой схеме. Общий вид показан на фотографиях.

Установка для ремонта импульсных БП

Установка для ремонта импульсных БП
Установка для ремонта импульсных БП
Принцип работы установки таков.
Проверяемый блок питания включается в розетку установки, после чего входная вилка установки кратковременно включается в сеть 220 В.
Если лампочка кратковременно вспыхнет, а затем будет гореть в пол накала или не гореть вовсе, можно попробовать включить блок в сеть напрямую.

Если лампа горит полным накалом – немедленно отключить от сети. Это говорит о том, что блок работает неправильно, не все неисправные элементы заменены. Лампочка в этом случае играет роль ограничителя тока, не позволяя выйти из строя основным элементам БП – диодному мосту, мощному высоковольтному транзистору и другим.

Вторая вилка – перемычка нужна для проверки работоспособности установки, в этом случае она включается в розетку установки. Лампа должна гореть полным накалом. Это нужно также, когда на установке проверяются лампочки с цоколем Е27. В настоящее время существует много типов ламп (например, светодиодные ), которые тестером не прозвонить. По определённым причинам короткозамкнутая вилка является неотъемлемой частью устройства и примотана изолентой.

Установка меня ни разу не подвела. Единственное, что надо учитывать, что к БП в момент такой проверки не должна быть подключена существенная нагрузка, иначе лампа начнёт мигать или гореть почти полным накалом.

На сборку установки у меня ушло около часа, а в течение месяца она мне помогла в ремонте автоматической стиральной машины, монитора и зарядного устройства для ноутбука. Установка для ремонта импульсных БП Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Диагностика импульсного блока питания. Часть I, используемые определения


Блок питания D-Link

 Введение.

Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.  

 

 Схемотехника.

Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.


Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.

Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.

  
Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.

Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.

 Терминология.

Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.


Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.

 


Структурная блок схема блока питания D-Link 5В*2А

Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.

 1.Входной фильтр

Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу — не занимается фильтрацией, но мы его отнесли к цепям входного фильтра

Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу — не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.

 2.Входной выпрямитель

Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)

 3.Высокочастотный трансформатор

T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка

 4. Грифлик.

Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.

 5. Выходной выпрямитель.

Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется. 

Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.

 6. Силовой ключ.

МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843

 7. Токовый датчик.

Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.

Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.

 8. Цепь запуска.

Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.

 9. Рабочее питание

T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.

 10.Пусковой конденсатор.

Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания.  Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.

 11. ШИМ.

U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.

 12. Драйвер силового ключа.

Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.

 13.  Внешние цепи генератора.

Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.

 14. Обратная связь.

Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)

Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.

неисправности ИБП на 12 вольт, их диагностирование и устранение

Импульсные блоки питанияВ современной бытовой электронике активно применяются блоки питания импульсного типа (ИБП). Они необходимы для выпрямления и понижения входного напряжения до заданной величины. Несмотря на довольно высокую надежность, ИБП могут выходить из строя. Если пользователь обладает определенными знаниями в области электроники, тогда он сможет провести ремонт импульсного блока питания на 12 вольт самостоятельно.

Принцип работы ИБП

Большинство питающих устройств основаны на типовых схемах и имеют похожие неисправности. Если у человека есть хотя бы базовые знания в области электроники, то он может попытаться восстановить ИБП своими руками. Так как некоторые детали источника питания находятся под напряжением, даже при первичном осмотре необходимо быть осторожным.

В высоковольтных ИБП для преобразования переменного напряжения в постоянное используются диодные мосты. Также в конструкции блока питания предусмотрен сглаживающий конденсатор. Так как высокое напряжение преобразуется в импульсное с частотой от 10 до 100 кГц, то появилась возможность отказаться от использования крупногабаритных понижающих низкочастотных трансформаторов. Вместо них сейчас применяются импульсные устройства, отличающиеся небольшими размерами.

Принцип работы ИБП

В низковольтных ИБП напряжение сначала снижается до необходимого значения, а затем выполняется его выпрямление, стабилизация и сглаживание. В результате удается получить тот показатель напряжения, который необходим для работы аппаратуры. Для повышения надежности устройств питания и получения стабильных параметров на выходе в их конструкции присутствуют различные управляющие схемотехнические решения.

Диагностирование неисправностей

Следует помнить, что не каждый блок питания может быть отремонтирован. Сегодня многие производители выпускают электронные устройства, в которых блоки подлежат комплектной замене. В них печатные платы нередко заливаются компаундным раствором. В такой ситуации даже профессионалы не берутся за восстановление ИБП.

Наиболее распространенные неисправности импульсных блоков питания чаще всего вызваны:

  • Диагностирование неисправностейпроблемами с работой высоковольтной части, возникающими из-за пробоя диодов или выхода из строя конденсатора;
  • пробоем транзистора, расположенного в высоковольтной части ИБП и предназначенного для формирования высокочастотных импульсов;
  • выходом из строя диодов, установленных в низковольтной секции;
  • выгоранием катушки дросселя фильтра, смонтированного на выходе.

Возможны и другие причины выхода из строя этого устройства, но обнаружить их можно только при использовании специальных приборов, например, осциллографа. В такой ситуации к мастеру, выполняющему ремонт устройства, предъявляются высокие требования. Если причина поломки ИБП не связана с четырьмя наиболее распространенными неисправностями, то стоит обратиться за помощью к профессионалу.

Проблемы с работой высоковольтной секции обнаружить довольно просто. Для их диагностики достаточно проверить напряжение после предохранителя. Если входное напряжение на низковольтной секции есть, а выходное отсутствует, то причину неисправности необходимо искать именно здесь.

Осмотр платы ИБП

При выходе из строя предохранителя нужно осмотреть плату. Сгоревший конденсатор можно определить по вздутию его корпуса. Чтобы проверить диодный мост, установленный в высоковольтной секции, необходимо выпаять каждый составляющий элемент, после чего исследовать устройство с помощью мультиметра.

Чтобы исключить возможность появления повторной неисправности после ремонта, нужно проверить все детали. Выполнив эти работы, можно переходить к проверке ИБП. Для выявления сгоревшего дросселя необходимо тестером проверить катушки всех элементов. Если подобрать требуемую деталь для замены не получается, тогда можно самостоятельно перемотать сгоревшую. Однако это довольно сложный процесс, поэтому порой проще купить новый блок питания.

Восстановление стандартных устройств

Чаще всего в домашних условиях предпринимаются попытки восстановить блоки питания телевизоров и компьютеров. Желательно предварительно найти схему конкретного устройства. Прежде всего это касается телевизоров с кинескопами, так как их ИБП выдают широкий диапазон напряжений. С десктопными ПК проще, ведь их питающие блоки изготовлены по типовой схеме.

Ремонт телевизора

О проблемах с блоком питания свидетельствует неработающий светодиод «спящего» режима. Сначала следует проверить работоспособность сетевого шнура. Если проблема обнаружена не была, тогда можно приступить к предварительным ремонтным работам:

  • Ремонт телевизораразборке ТВ и освобождению электронных печатных плат;
  • визуальному осмотру ИБП на наличие внешних неисправностей, например, вздутых конденсаторов;
  • проверке мест пайки (особое внимание здесь нужно уделить контактам импульсного трансформатора).

Если визуальный осмотр не дал положительных результатов, то последовательно проверяются предохранитель, диоды, конденсаторы и транзисторы. Установить работоспособность микросхем довольно сложно.

Среди основных неисправностей питающих блоков ТВ можно отметить:

  • Ремонт блоков питания ТВобрыв балластных резисторов;
  • выход из строя фильтрующего высоковольтного конденсатора;
  • пробой диодного моста;
  • неисправность конденсаторов фильтра вторичного напряжения.

Все эти детали, кроме диодов, можно проверить непосредственно на плате. После замены неисправных элементов вместо предохранителя подключается обычная лампа накаливания, и телевизор подключается к сети. Здесь возможны следующие варианты поведения восстановленного агрегата:

  1. Светодиод «спящего» режима включается, а лампа загорается и начинает затухать. Одновременно с этим на экране появляется растр. В этом случае необходимо проверить показатель напряжения строчной развертки. Если его значение оказалось повышенным, то причина может заключаться в неисправных конденсаторах или оптронных парах.
  2. Когда светодиод не загорается, растр на экране отсутствует, а лампа вспыхает и гаснет, то нерабочим является генератор импульсов. В такой ситуации нужно проверить напряжение на конденсаторе. Если его значение оказалось менее 280 В, тогда может быть пробит один из диодов моста либо вышел из строя конденсатор.
  3. Когда лампа горит ярко, нужно снова проверить все элементы ИБП.

Этот алгоритм действий позволит выявить основные неполадки питающего блока телевизора.

Десктопный компьютер

Следует помнить, что ремонт импульсных блоков питания с ШИМ-контроллером отличается сложностью, поэтому в некоторых ситуациях стоит просто заменить ИБП. Именно такие питающие устройства устанавливаются в современные десктопные ПК. О наличии проблемы свидетельствуют следующие признаки:

  • Компьютер не запускаетсякомпьютер не запускается;
  • не вращается кулер ИБП;
  • наблюдается многократный запуск питающего устройства.

Для проведения ремонтных работ необходимо извлечь из системного блока ИБП и снять с него кожух. Затем нужно с плат и деталей удалить пыль с помощью кисточки. После этого проводится визуальный осмотр элементов блока, затем к нему подключается нагрузка. Алгоритм дальнейших действий аналогичен ремонту телевизора.

Если из строя вышли транзисторы генератора импульса или ШИМ-контроллер, то стоит просто купить новый ИБП. Это довольно сложное устройство и ремонт импульсных блоков питания такого типа самостоятельно выполнить тяжело.

При проведении ремонтных работ необходимо соблюдать правила безопасности и проявить осторожность. Также стоит правильно оценить свои возможности, ведь порой лучше обратиться к профессионалам.

Ремонт импульсных блоков питания своими руками

Неисправности современных импульсных блоков питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Ремонт импульсных блоков питания 01

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети — это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта — это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте — это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

Простой импульсный блок питания

Простой импульсный блок питания

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Импульсный стабилизатор

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор.  В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Предохранитель импульсного блока питания

Предохранитель импульсного блока питания

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 — 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно. Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски. Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут. Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 — 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Схема трансформатора безопасности

Схема трансформатора безопасности

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.

Тоже интересные статьи

ЧАСТАЯ НЕИСПРАВНОСТЬ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию – работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и проверяем блок питания измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

неисправность импульсных блоков питания

А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

Плата импульсных блоков питания

Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости – вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

сгорел конденсатор БП

При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу…

Ремонт бытовых импульсных блоков питания

Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

   Ремонт электроники

Импульсные блоки питания | Ремонт, неисправности и диагностика

ОТЗЫВЫ ПОКУПАТЕЛЕЙ КУРСА

Владимир. г. Астрахань

Спасибо Вам Андрей огромное за этот курс. Очень познавательно, а самое главное — грамотно. Изучил материал на одном дыхании. Сам я занимаюсь ремонтом техники с 70-х годов. С импульсными блоками питания дела имел в 80-90-х годах, когда их начали ставить в советские телевизоры «Темп», «Спектр», «Рекорд» и другие… одним словом 3УСЦТ. Это были так называемые МП-3-3. Но с тех пор прошло достаточно много времени.
С 90-х годов я практически ничего не ремонтировал и не конструировал. Очень многое изменилось за 2 с половиной десятилетия в радиоэлектронике. Да еще и многое забылось, что скрывать….
Для меня Ваш видеокурс стал своего рода возвращением в прошлое. Я освежил старые знания и, конечно же, узнал много нового из ваших уроков. Помнится, еще в первых импульсных блоках питания только ШИМ, или как его раньше называли — блокинг-генератор, включал в себя дюжину каскадов на транзисторах, а сейчас всё запихали в корпус одной микросхемы.
Вы очень всё доходчиво и интересно рассказываете, что просто нельзя не изучить поданный Вами материал. Не у каждого специалиста своего дела получается так просто и ненавязчиво объяснять работу и устройство достаточно непростых вещей.
Удачи Вам в творчестве и жду новых курсов от Вас!
С уважением, Владимир

Анатолий. г. Хабаровск

Наконец-то появилось что-то интересное в интернете на тему электроники, а то на фоне всяких курсов по похуданию и успеху кажется, что люди и ничем другим не занимаются кроме как худеют и все вокруг такие успешные)))
Пару слов о себе: Живу в пригороде города Хабаровск. У меня своя мастерская по ремонту сотовых телефонов. Несут мне в ремонт всё подряд, и планшеты и ноутбуки и даже чайники. Увидев ваш курс по блокам питания, решил, что эти знания мне не помешают. Честно говоря, я всегда ремонты бп старался обойти стороной, да и не всегда их ремонт целесообразен.
Я, конечно же, сужу по своему профилю работы. Например, зарядное для сотового проще купить новое, чем ремонтировать старое. Или, к примеру, взять адаптер для ноутбука. Изучив ваш курс, я в корне поменял свою точку зрения относительно недорогих зарядок и адаптеров!
У меня стояла огромная коробка с дохлыми устройствами, и я даже не удосуживался в них заглянуть! Как оказалось, больше чем у половины такая пустяковая неисправность, о которой вы говорите в уроке про смешную неисправность, что даже говорить о ней всерьез не хочется.
В итоге, за 3 вечера я восстановил 45 зарядок, 30 блоков питания ноутов… Коробка с «трупами» воскресла наполовину!!! Остались ремонты посерьезнее, но по ходу дела и их победим уже не спеша! Ваш курс окупился у меня в первый же день, но главное не это, а то, что я стал уверенно браться за блоки питания, причём даже навороченные!!!
Спасибо вам огромное за вашу работу!!!

Светлана. г. Воронеж

Мы очень довольны вашими уроками.
Приобретали у вас курсы по микроволновкам, DVD проигрывателям и по блокам питания. У нас с мужем мастерская по ремонту рембыттехники.
Он чинит, а я веду бухгалтерию и решаю различные организационные вопросы.
Когда брали на работу радиомехаников — стажеров, то как раз понадобились ваши курсы в качестве обучающего пособия для них. Очень помогли вы нам тогда! Наши практиканты стали просто настоящими спецами пока мы с семьей находились на отдыхе. Ни одного возврата или жалобы от клиентов!
Сейчас решили принимать в ремонт телевизоры, будем заказывать ваш бестселлер «Ремонт ЖК телевизоров и мониторов» как для себя, так в перспективе и для обучения персонала.
Удачи вам, творческих успехов и огромное СПАСИБО!

Константин. г. Омск

Очень рад, что наткнулся на ваши курсы в интернете, Покупал курс «Ремонт DVD плееров» еще в 13-м году в подарок своему племяннику, так как он занимается электроникой и очень жаден на любую информацию касательно этой темы. Но если раньше это было его хобби, то после изучения вашего курса он стал ремонтировать бытовую технику сначала друзьям и родственникам за коробку конфет, а потом начал и по-настоящему зарабатывать.
Отдельное спасибо вам за курс по импульсникам. Этот курс я брал для себя, потому, как и сам стал интересоваться устройством и принципом работы радиоаппаратуры. Так сказать, мат часть, я штудирую по книгам и статьям в интернете, а вот практические моменты эффективнее кроме как через ваши видео уроки не изучить. Нагляднее и проще просто нет ничего в интернете. Я по теме ремонта всё пересмотрел в Ютубе. Конечно, есть толковые авторы, но информация у них настолько разрознена и непоследовательна, что порой больше запутаешься, нежели найдешь ответы на свои вопросы.
Курс «Импульсные блоки питания» более чем последователен, а ваши уроки доступны для усваивания даже для «особо одаренных» учеников. Просмотрел курс за три вечера и сразу попрактиковался. Оживил две зарядки для сотиков, отремонтировал давно запылившийся монитор, один из первых ЖК-шек «LG»
Сейчас взялся за сварочный инвертор. Блоки питания в сварочных инверторах стоят тоже импульсные и мало чем отличаются от того же адаптера ноутбука или блока питания домашнего кинотеатра. Те же ШИМ-контроллеры, оптопары и др. Немного попрактикуюсь на технике попроще и надо будет двигаться дальше. Буду заказывать курс «Ремонт ЖК телевизоров и мониторов» на пару с племянником. Он меня уже месяц подбивает сделать заказ.
Удачи вам Андрей на вашем поприще, и ждём от вас новых работ!

Андрей. г. Киров

Здравствуйте Андрей! Сидел себе спокойно ремонтировал технику и знать не знал о Вас и Ваших курсах. А ведь как оказалось Вы уже 5 лет пишите свои полезные курсы на тему ремонта электроники. Я покупал у вас курс «Импульсные блоки питания» чтобы закрыть вопросы с принципом работы ИБП. Спросите, а как же я занимаюсь ремонтом, не зная как работает БП?
А вот так и ремонтирую: поменял электролиты — не пошел… поменял оптопару — не пошел… поменял ШИМ — не пошел… Пока таким образом доберешься до резистора с уплывшим сопротивлением, переберешь всё подряд. И поверьте, я не один такой!
После просмотра курса у меня как будто сложился пазл в голове и я, так же как и Вы стал относиться к ремонту: «Зачем тебе схема, если ты НЕ знаешь принцип работы?» Я бы даже перефразировал — «Зачем тебе схема, если ты ЗНАЕШЬ принцип работы!» И действительно, когда ты знаешь как всё устроено, тебе не нужна никакая схема для того чтобы найти поломку.
По сути, все блоки питания похожи между собой, отличаются лишь мощностью и выходными напряжениями. Ваши уроки действительно меняют взгляд на многие вещи касательно диагностики электроники.
Большое Вам сенкью!
Ваш тёзка, Андрей Николаевич

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *