Импульсный блок питания что это такое – Импульсный блок питания — что это такое, принцип работы, виды и схемы простых и мощных импульсных блоков питания на 12, 24, 200 в на tl494, ir2153, uc3842, ремонт неисправностей, как проверить трансформатор, цена и где купить в Москве и СПб

Содержание

Как работает импульсный блок питания для чайников

Среди всех блоков питания можно выделить два основных типа:

  • линейные;
  • импульсные (инверторные) источники.

В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.

Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.

Основные отличия импульсных стабилизаторов.

Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.

При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов. Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.

Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Импульсный блок питания состоит из следующих элементов:

  • входной выпрямитель;
  • блок конденсаторов;
  • схема управления;
  • выходные ключи;
  • импульсный трансформатор;
  • вторичные (выходные) стабилизаторы и фильтры.

За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.

Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.

На ШИМ — контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.

Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.

Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.

Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.

Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.

ОБЛАСТИ ПРИМЕНЕНИЯ

Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.

Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.

Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.

Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.

ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ

Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.

Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.

Наиболее часто неисправности импульсных блоков питания вызываются:

  • выходом из строя диодов выпрямительного моста;
  • электролитических конденсаторов сглаживающего фильтра;
  • ключевых транзисторов.

Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.

Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.

Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.

Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов. Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.

Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.

Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.

Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.

При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.

Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Давно прошли времена, когда блоки питания на различное оборудование были трансформаторными. Многие молодые люди даже и не знают, как они выглядели. На сегодняшний день очень широкое распространение получил импульсный источник питания (или ИБП), и это не удивительно. Меньшая стоимость, отсутствие посторонних шумов при работе, более компактный размер и в то же время меньшее потребление электроэнергии вследствие более высокого коэффициента полезного действия — все эти преимущества в сумме и решили судьбу трансформаторных блоков, конечно, не в их пользу.

А все-таки, что такое импульсный блок питания? И каким же образом разработчикам удалось добиться подобного результата? Сейчас попробуем найти ответ на этот вопрос, разобраться в достоинствах (а может быть и недостатках) импульсного источника питания, а также понять схему и принцип работы подобного устройства.

Как работает импульсный блок питания

Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.

Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.

Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:

  • контроллер широтно-импульсного модулятора;
  • транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
  • импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.

При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.

Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.

Контроллер широтно-импульсной модуляции

Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.

Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.

Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.

Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц.

Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.

Транзисторный блок, или каскад силовых ключей

Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.

Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.

Импульсник, или блок без гальваники

Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.

Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.

Преимущества и недостатки ИБП

Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.

Основными и несомненными достоинствами импульсного блока питания являются:

  • более легкий вес;
  • высокий коэффициент полезного действия;
  • низкая цена;
  • широкий диапазон токов;
  • присутствие защиты от различных факторов.

Ну а теперь остановимся на каждом из пунктов подробнее.

Преимущества

  1. Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
  2. Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
  3. Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
  4. Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
  5. На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).

Недостатки

Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.

А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.

Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.

Подведем итог

Очень хотелось объяснить, что означает импульсный блок питания для чайников, но вопрос этот сложен, а потому получилось ближе к научному пояснению. Если обобщить изложенную информацию, то импульсные блоки питания действительно стали прорывом в своей области электроники. По сравнению с трансформаторными блоками, такие ИБП намного экономичнее, производительнее, меньше и легче. И что самое интересное — при всех своих преимуществах они еще и дешевле аналоговых.

Конечно, технологии не стоят на месте, прогрессируя с каждым годом. Возможно, что скоро появятся еще более высокотехнологичные зарядные устройства или блоки питания. Но на сегодняшний день ИБП являются верхом инженерной мысли, а потому они стоят нашего внимания.

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

что это такое и как он работает?

Давно прошли времена, когда блоки питания на различное оборудование были трансформаторными. Многие молодые люди даже и не знают, как они выглядели. На сегодняшний день очень широкое распространение получил импульсный источник питания (или ИБП), и это не удивительно. Меньшая стоимость, отсутствие посторонних шумов при работе, более компактный размер и в то же время меньшее потребление электроэнергии вследствие более высокого коэффициента полезного действия — все эти преимущества в сумме и решили судьбу трансформаторных блоков, конечно, не в их пользу.

А все-таки, что такое импульсный блок питания? И каким же образом разработчикам удалось добиться подобного результата? Сейчас попробуем найти ответ на этот вопрос, разобраться в достоинствах (а может быть и недостатках) импульсного источника питания, а также понять схему и принцип работы подобного устройства.

Как работает импульсный блок питания

Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.

Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.

Схемы включения каскадов силовых ключей

Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:

  • контроллер широтно-импульсного модулятора;
  • транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
  • импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.

При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.

Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.

Контроллер широтно-импульсной модуляции

Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.

Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.

Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.

Импульсы, создаваемые ШИМ

Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц.

Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.

Транзисторный блок, или каскад силовых ключей

Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.

Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.

Импульсник, или блок без гальваники

Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.

Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.

Импульсный блок питания без гальванической развязки

Преимущества и недостатки ИБП

Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.

Основными и несомненными достоинствами импульсного блока питания являются:

  • более легкий вес;
  • высокий коэффициент полезного действия;
  • низкая цена;
  • широкий диапазон токов;
  • присутствие защиты от различных факторов.

Ну а теперь остановимся на каждом из пунктов подробнее.

Преимущества

  1. Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
  2. Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
  3. Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
  4. Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
  5. На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).
Схема импульсного блока питания

Недостатки

Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.

А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.

Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.

Подведем итог

Очень хотелось объяснить, что означает импульсный блок питания для чайников, но вопрос этот сложен, а потому получилось ближе к научному пояснению. Если обобщить изложенную информацию, то импульсные блоки питания действительно стали прорывом в своей области электроники. По сравнению с трансформаторными блоками, такие ИБП намного экономичнее, производительнее, меньше и легче. И что самое интересное — при всех своих преимуществах они еще и дешевле аналоговых.

Конечно, технологии не стоят на месте, прогрессируя с каждым годом. Возможно, что скоро появятся еще более высокотехнологичные зарядные устройства или блоки питания. Но на сегодняшний день ИБП являются верхом инженерной мысли, а потому они стоят нашего внимания.

Похожие статьи:

Импульсный блок питания Википедия

И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме[1], то есть регулирующий элемент периодически открывается и закрывается.

Энергия первичного источника питания передаётся через регулирующий элемент определёнными порциями, заданными контуром регулирования так, чтобы стабильным было среднее значение выходного напряжения. Сглаживание пульсаций выходного напряжения происходит благодаря наличию элемента (или сочетания элементов), способного накапливать электрическую энергию и отдавать её в нагрузку.

Импульсный стабилизатор напряжения по сравнению с линейным стабилизатором имеет меньшие потери энергии на нагрев регулирующего элемента, что повышает КПД стабилизатора и позволяет применять регулирующий элемент меньшей мощности, а радиатор меньших размеров и веса.

Сравнение с линейным стабилизатором[ | ]

Преимущества:

  • высокий КПД, особенно при работе в большом диапазоне входных напряжений[2];
  • малые габариты и масса (высокая удельная мощность)[2];
  • принципиальная возможность гальванической развязки входных и выходных цепей, при работе от промышленной сети переменного тока не требуется использование имеющего большие габариты и вес трансформатора, рассчитанного на частоту 50/60 Гц[2].

Недостатки:

  • импульсные помехи во входных и выходных цепях[2] — как дифференциальные (противофазные), так и помехи общего вида (синфазные помехи)[3][4];
  • более высокая нестабильность выходного напряжения при изменении входного напряжения или тока нагрузки[2];
  • более длительные переходные процессы (большее время восстановления выходного напряжения после скачкообразного изменения входного напряжения или тока нагрузки)[2];
  • входное отрицательное дифференциальное сопротивление — входной ток увеличивается при уменьшении входного напряжения; если импеданс первичного источника напряжения (включая входные вспомогательные цепи самого импульсного преобразователя) выше отрицательного импеданса импульсного преобразователя, то возникают автоколебания с нарушением работоспособности и возможным повреждением стабилизатора[4]

Блок питания — это… Что такое Блок питания?

Блок питания

Промышленные БП Siemens SITOP Power 24 В постоянного тока в качестве вторичного источника электропитания средств автоматизации технологических процессов.

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменный ток сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданный постоянный ток.

Трансформаторные БП

Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

Габариты трансформатора

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

( 1 / n ) ~ f * S * B

где n — число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin ( f * t ), в производной f выносится за скобку), f — частота переменного напряжения, S — площадь сечения магнитопровода, B — индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = ( от 55 до 70 ) / S в см^2.

Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

Достоинства трансформаторных БП

  • Простота конструкции
  • Надёжность
  • Доступность элементной базы
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)

Недостатки трансформаторных БП

  • Большой вес и габариты, особенно при большой мощности
  • Металлоёмкость
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсные БП

Принципиальная схема простейшего однотактного импульсного БП

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
  • значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира — Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

Смотри также

Ссылки

Литература

  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 1181-1256. — ISBN 0-7897-3404-4

Отличия импульсного блока питания от обычного


Отличия импульсного блока питания от обычного-1Отличия импульсного блока питания от обычного-1

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования. p>

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра. Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.

Отличия источников питания-3Отличия источников питания-3
Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Достоинства трансформаторных блоков питания

● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.

Импульсные блоки питания

Отличия импульсного блока питания от обычного — импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот. В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока. Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.

Отличия импульсного блока питания от обычного — происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки. Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ — это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном. С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.

Отличия источников питания-4Отличия источников питания-4

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

Импульсный блок питания: характерные особенности :: SYL.ru

Импульсный блок питания представляет собой инверторную систему. В нем происходит выпрямление переменного входного напряжения. Далее постоянное напряжение, полученное в результате предыдущей операции, преобразуется в импульсы прямоугольной формы с повышенной частотой и определенной сжатостью либо в импульсы, подаваемые напрямую на выходной фильтр низких частот или на трансформатор.

Импульсный блок питания

Конструктивные особенности

Простой импульсный блок питания может включать в свой состав малогабаритные трансформаторы, что объясняется довольно просто: с ростом частоты эффективность работы трансформатора повышается, а требования к габаритам сердечника, необходимым для передачи соответствующей мощности, заметно уменьшаются. Чаще всего подобный сердечник выполняется из ферромагнитных сплавов, а для тех устройств, что работают с низкой частотой, применяется электротехническая сталь.

За счет чего прибор обеспечивает стабильность?

Импульсный блок питания функционирует так, что напряжение в нем стабилизируется за счет отрицательной обратной связи. С ее помощью можно осуществлять поддержку выходного напряжения на примерно одинаковом уровне, вне зависимости от величины его нагрузки и колебаний на входе. Обратная связь может быть организована одним из нескольких способов. Если используется импульсный блок питания с гальванической развязкой от сети, то самыми распространенными способами может стать использование связи при помощи одной из обмоток трансформатора на выходе либо посредством оптрона. Скважность импульсов на выходе ШИМ-контроллера изменяется в зависимости от того, какой величиной характеризуется сигнал обратной связи, а он зависит от выходного напряжения. Если нет необходимости в развязке, то чаще всего применяют простой делитель резистивного типа. Это позволяет блоку питания поддерживать выходное напряжение на стабильном уровне.

Простой импульсный блок питания

Достоинства

Импульсный блок питания обладает целым рядом достоинств, особенно если сравнивать его со стабилизаторами аналогичной мощности. Меньший вес достигается благодаря тому, что при повышении частоты уместно использовать трансформаторы малых размеров при условии, что их подаваемая мощность находится на том же уровне. У линейных стабилизаторов основная масса складывается за счет тяжелых мощных силовых трансформаторов с низкой частотой, а также крупных радиаторов силовых элементов, функционирующих в линейном режиме. Повышенная частота преобразования позволяет очень сильно уменьшить габариты фильтра выходного напряжения. Тут уместно устанавливать конденсаторы меньшей емкости, в сравнении с выпрямителями, функционирующими на промышленной частоте. Выпрямитель вполне может быть выполнен по довольно простой однополупериодной схеме, что полностью исключает риск увеличения пульсаций напряжения на выходе.

Производительность

Импульсный блок питания для усилителя

Импульсный блок питания характеризуется существенно более высоким коэффициентом полезного действия в сравнении со стабилизаторами благодаря тому, что в последних потери связаны с переходными процессами в те моменты, когда производится переключение основного элемента. Так как ключевые элементы находятся в одном из состояний, то есть они включены или выключены, речь идет о минимальных потерях электроэнергии.

Другие достоинства

Импульсные блоки питания стоят гораздо меньше, чем стабилизаторы, так в них используется унифицированная элементная база, а также ключевые транзисторы высокой мощности. Кроме того, здесь допускается использование силовых элементов меньшей мощности, так как они работают в ключевом режиме. Надежность блоков питания вполне сравнима с аналогичным параметром линейных стабилизаторов. В современной оргтехнике, вычислительной технике, а также бытовой электронике чаще всего используются именно импульсные блоки питания. А линейные на текущий момент времени сохранились только в некоторых областях:

— в качестве питающих элементов для слаботочных управляющих плат высококачественной бытовой техники: микроволновых печей, стиральных машин, котлов отопления и колонок;

— для управляющих устройств малой мощности сверхвысокой и высокой надежности, рассчитанной на длительную непрерывную эксплуатацию при полном отсутствии обслуживания либо при его затруднении (например, автоматизация процессов на производстве либо цифровые вольтметры в электрических щитах).

Особенности импульсных блоков питания

Импульсные блоки питания отличаются широким диапазоном питающей частоты и напряжения, которые недостижимы для аналогичного по стоимости линейного оборудования. На практике это говорит о возможности применения одного и того же прибора для цифровой электроники в разных уголках мира, где имеются значительные отличия по напряжению и частоте в розетках. В большинстве современных блоков питания имеется встроенная цепь защиты от разнородных непредвиденных ситуаций, к примеру, от отсутствия нагрузок на выходе либо короткого замыкания.

Недостатки

Импульсные блоки питания обладают и определенными недостатками в сравнении с линейными. Основная часть схемы прибора работает от сети без гальванической развязки, что существенно затрудняет ремонт подобных приспособлений. Импульсный блок питания для усилителя, как и для всей прочей аппаратуры, характеризуется тем, что создает высокочастотные помехи, что связано с сами принципом его работы. Часто приходится применять определенные методы помехоподавления, которые очень часто не приводят к полному их устранению. Именно поэтому импульсные блоки питания во многих случаях невозможно использовать для некоторой аппаратуры. Обычно у этих приспособлений имеется ограничение на минимальную нагрузку в плане мощности. Если этот параметр ниже необходимого, то может просто не произойти запуска блока, либо его параметры выходного напряжения не будут укладываться в допустимые отклонения.

Устройство импульсных блоков питания

Устройство

Можно перечислить основные узлы блока питания. Сетевой выпрямитель выполнен из двух дросселей ЭМП, фильтра помех и развязки статики, входного сетевого предохранителя и диодного моста, откуда и питается основная схема источника. Ядро первичной цепи состоит из накопительной фильтрующей емкости, ключевого силового транзистора, схемы обратной связи, импульсного трансформатора и оптопары. Во вторичной цепи источника питания выходное напряжение поступает с вторичной трансформаторной обмотки, выпрямительных диодов, фильтрующих конденсаторов, силовых дросселей.

ПО какому принципуработает импульсный блок питания

Принцип работы импульсных блоков питания

Сетевое напряжение поступает на выпрямитель, после чего происходит его сглаживание емкостным фильтром. С конденсатора фильтра происходит его перемещение на транзисторный коллектор, который играет роль ключа. Управляющее устройство отвечает за включение-выключение транзистора. Надежный запуск блока питания обеспечивается задающим генератором, выполненным на микросхеме. Ее питание осуществляется цепочкой резисторов. Работа оптопары регулируется ключевым транзистором и задающим генератором.

Импульсные блоки питания — устройство, применение, неисправности и ремонт

Импульсные блоки питания

Среди всех блоков питания можно выделить два основных типа:

  • линейные;
  • импульсные (инверторные) источники.

В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.

Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.

Основные отличия импульсных стабилизаторов.

Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.

При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов.

Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.

Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Импульсный блок питания состоит из следующих элементов:

  • входной выпрямитель;
  • блок конденсаторов;
  • схема управления;
  • выходные ключи;
  • импульсный трансформатор;
  • вторичные (выходные) стабилизаторы и фильтры.

За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.

Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.

На ШИМ — контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.

Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.

Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.

Часто производители бытовой техники вообще не предусматривают ремонт, выполняя корпус устройства неразборным или заливая печатную плату вместе с элементами специальным компаундом.

Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.

Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.

ОБЛАСТИ ПРИМЕНЕНИЯ

Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.

Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.

Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.

Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.

ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ

Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.

Длительная работа при пониженном входном напряжении вызывает перегрев и тепловой пробой ключевых транзисторов, поскольку, чем ниже напряжение на входе, тем больше время открытия ключей для получения нужного напряжения на выходе трансформатора.

Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.

Наиболее часто неисправности импульсных блоков питания вызываются:

  • выходом из строя диодов выпрямительного моста;
  • электролитических конденсаторов сглаживающего фильтра;
  • ключевых транзисторов.

Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.

Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.

Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.

Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов. Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.

В некоторых случаях конденсаторы могут вызывать срабатывание защиты. Внешне неисправные конденсаторы могут иметь вздутие на торцах корпуса. Такие элементы следует менять на исправные, не тратя время на их проверку.

Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.

Внимание!

Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.

Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.

Для исключения попадания электромагнитных помех в питающую сеть, на входе блока обычно ставят помехоподавляющий фильтр, элементы которого соединены непосредственно с экранирующим кожухом. Таким образом, кожух оказывается гальванически связан с проводами питающей сети.

При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.

Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *