Импульсная помеха | Gauss Instruments
Импульсная помеха представляет собой кратковременный, амплитудой свыше 4000–6000 В, скачок напряжения в сети. Такая электромагнитная помеха может быть в виде как одиночного импульса, так и их последовательности или пачки.
Источники возникновения импульсных помех
Различают следующие источники импульсных помех:
- природные;
- техногенные.
Природные источники импульсных помех. Основным примером возникновения импульсных помех в данном случае являются удары молний рядом с кабелями либо линиями электропередачи.
При этом причинение вреда возможно даже на расстоянии до 20 км от них.
Техногенные источники импульсных помех. К ним главным образом относятся коммутационные процессы в моменты включения/выключения сетевого напряжения, а также аварии на подстанциях.
Импульсные помехи чаще всего имеют техногенный характер, что связано с большим числом пользователей, изношенностью сетей и др.
Защита от импульсных помех
Импульсные помехи – это наиболее распространенная проблема сетей электропитания, ведь такого рода сбои отмечаются почти во всех электросетях.
Прежде всего они наносят вред микросхемам электронных устройств (компьютеров, бытовой техники и т.п.). Для защиты техники от скачков напряжения распространено подключение ее к сети через сетевые фильтры.
Блоки питания электрических приборов, как правило, на импульсные помехи не рассчитаны, а потому не могут гарантировать требуемую защиту.
Импульсный шум
Импульсы, составляющие импульсные помехи, имеют произвольную длительность и амплитуду, а также следуют один за одним через случайные временные промежутки.
Отличие импульсного шума от непрерывного заключается в следующем: в нем длительность импульсов гораздо меньше, чем промежутки между ними. Потому каждый новый импульс при появлении рассматривается в качестве независимого события.
При прохождении такого шума через полосовую цепь происходит размытие импульсов, то есть их расширение и слияние в непрерывный шум.
Основная трудность в локализации импульсных помех объясняется их непостоянством во времени. И не каждое диагностическое оборудование может оказаться полезным, ведь оно может использовать для анализа лишь часть спектра, а также иметь порог статических помех, при превышении которого событие будет фиксироваться как импульсная помеха. В данном случае как импульсные шумы будут приниматься радиопомехи и иные стационарные шумы, «перевалившие» за этот порог.
Рекомендуемое оборудование
Семейство приборов TDEMI представляет собой совершенно новую измерительную систему, обеспечивающую анализ различных сигналов в режиме реального времени и позволяющих выполнять высококачественные измерения параметров излучения в режиме реального времени.
Приборы TDEMI способны выполнять автоматические измерения в соответствии со стандартами CISPR 16-2-1 и CISPR 16-2-2 как синусоидальных помех, так и любых импульсных сигналов, так как измерительные параметры указанного оборудования соответствуют требованиям CISPR 16-1-1 в части измерения параметров ЭМС.
Подавление помех от импульсных источников питания
Разное
Главная Радиолюбителю Разное
Импульсные блоки питания в большинстве случаев создают основную электромагнитную «пелену» помех в полосе частот 1…100 МГц, т. е. во всех КВ-диапазонах и в начале УКВ. Дело осложняется и тем, что число таких блоков исчисляется сегодня десятками в одном жилище (компьютеры, мониторы, освещение, различные зарядные устройства и т. п.) и сотнями в одном доме — в ближней зоне КВ-антенны любительской радиостанции.
Даже если предположить идеальный случай — соответствие нормам на паразитное излучение всех близлежащих блоков питания, то сумма нескольких десятков паразитных полей явно будет выше нормы. И в своём КВ-приёмнике вы услышите массу паразитных сигналов, которые, по нерушимому закону «падающего бутерброда», окажутся на частоте DX. В реальности же среди десятков окружающих вас импульсных блоков питания найдутся и те, в которых фильтрация помех сделана плохо, а то и вовсе отсутствует. Один такой блок может закрыть возможность приёма во всей полосе КВ в радиусе десятков метров. Поэтому важно знать, как подавлять паразитное излучение кабелей импульсного блока питания, чтобы правильно дорабатывать существующие устройства и выбирать новые.
На рис. 1 приведена упрощённая схема импульсного блока питания. Точнее, узел преобразования напряжения показан предельно упрощённо, а вот цепи подавления помех, наоборот, полностью. И общий случай питания — от трёхпроводной (с отдельным проводом электротехнического заземления) розетки.
Рис. 1. Схема импульсного блока питания
Дроссели L1 и L2 подавляют синфазные помехи, идущие от блока питания и подключённого к нему устройства (например, трансивера с антенной) в сетевой провод и далее в линии электропитания. Обмотки дросселя L1 обычно имеют индуктивность около 30 мГн. Это основные элементы подавления помех в питающей сети. Поэтому они должны быть качественными и обладать высоким импедансом во всей подавляемой полосе, начиная от частоты переключения транзистора блока питания (десятки-сотни килогерц) до нескольких мегагерц.
А в ответственных случаях (чувствительные приёмники и их антенны рядом) — до десятков-сотен мегагерц. Один дроссель это сделать не может. Поэтому в таких случаях последовательно с L1 и L2 включают такие же дроссели, но с индуктивностью в 50…500 раз меньшей, чем указано на рис. 1. Эти дополнительные дроссели должны иметь высокую собственную резонансную частоту, чтобы эффективно подавлять верхние частоты требуемой полосы.
Конденсатор С1 подавляет низкочастотные дифференциальные помехи, идущие от блока питания в сеть. Высокочастотные синфазные помехи подавляют керамические конденсаторы малой ёмкости С2 и С3, включённые параллельно С1.
Но это не единственная функция С2 и С3. Они также замыкают синфазную составляющую импульсов переключения на корпус устройства.
Разберёмся с этим подробнее. На стоке силового транзистора присутствуют прямоугольные импульсы с размахом около 300 В (выпрямленное и отфильтрованное напряжение сети) с частотой несколько десятков-сотен килогерц. Фронты этих импульсов короткие (меньше микросекунды). Во время этих фронтов ключевой транзистор находится в активном режиме и греется, поэтому фронты стараются сделать короче. Но это расширяет полосу создаваемых помех. И всё равно в мощных блоках питания транзистор нагревается. Для охлаждения его закрепляют на теплоотводе, в качестве которого в некоторых случаях используют металлический корпус блока питания (про экранирование не забываем). Транзистор изолируют от корпуса прокладкой. Ёмкость стока на корпус может достигать нескольких десятков пикофарад.
А теперь посмотрим, что у нас получилось: транзисторный генератор прямоугольных импульсов с размахом 300 В через конденсатор в несколько десятков пикофарад (конструктивный между стоком охлаждаемого транзистора и корпусом устройства на рис. 1 показан штриховыми линиями) подключён к корпусам и блока питания, и питаемого им устройства. Мы считаем, что это корпус с нулевым потенциалом, а на самом деле там протекает большой ВЧ-ток через конструктивную ёмкость теплоотвода. Это приведёт к появлению большого синфазного тока (а значит, и помех) на корпусах всех устройств, подключённых к нашему источнику питания.
Чтобы такого не было, установлены конденсаторы C2 и С3. Фронты импульсов со стока транзистора, просочившиеся через конструктивную ёмкость теплоотвода, через эти конденсаторы и диоды моста (точнее, через диод, открытый в данный момент) замыкаются на исток транзистора. Этот путь для них оказывается проще, чем синфазно растекаться по корпусам.
Но проблемы с высоковольтными короткими фронтами импульсов на стоке силового транзистора не заканчиваются с установкой конденсаторов С2 и С3. Есть ещё одна паразитная ёмкость — между обмотками трансформатора (тоже показана на рис. 1 штриховыми линиями). Через неё импульсы тока поступают в выходную цепь блока питания. Сразу в оба провода, т. е. как синфазная помеха. Конденсатор С4 замыкает эти токи на исток транзистора, создавая им более лёгкий путь для протекания.
Конденсаторы С2-С4 оказываются включёнными между безопасными для человека цепями (выходами и корпусом источника) и силовой сетью 230 В. Для обеспечения безопасности людей номинальное напряжение этих конденсаторов делают очень высоким (несколько киловольт), а их конструкцию такой, чтобы в случае аварии они обрывались, а не замыкались. Конденсаторы, устанавливаемые на месте С2-С4, выпускаются как отдельный тип и называются Y-конденсаторами. Конденсаторы с маркировкой Y1 рассчитаны на импульсы напряжения до 8 кВ, Y2 — до 5 кВ.
С точки зрения подавления помех, ёмкость конденсаторов С2-С4 желательно иметь побольше. Но надо иметь в виду, что при двухпроводной сети (или обрыве провода заземления в трёхпроводной) выходы и корпус источника через конденсаторы С2-С4 оказываются соединёнными с сетевым фазным проводом. Поэтому их суммарная ёмкость должна выбираться так, чтобы ток частотой 50 Гц на корпус не превышал 0,5 мА (неприятно, но не смертельно). С учётом возможного максимального напряжения в сети, разброса, температурных уходов и старения получается не более 5000 пФ.
Рассмотрим теперь ошибки, допускаемые в фильтрации помех импульсных источников.
Иногда, для экономии, ставят только один из двух конденсаторов С2 или С3. Идея, на первый взгляд, кажется разумной: всё равно ведь они соединены параллельно через большую ёмкость конденсатора С1. Но на высоких частотах конденсаторы большой ёмкости совсем не являются коротким замыканием, а имеют заметный индуктивный импеданс. Поэтому такая экономия может привести к тому, что на десятках мегагерц (выше резонансной частоты С1, которая окажется невелика, поскольку это конденсатор большой ёмкости) заметно снизится подавление синфазного тока, протекающего на корпус.
Встречается отсутствие конденсатора С4 — или производитель решает, что можно С4 не устанавливать, так как в его трансформаторе ёмкость мала, или пытливый потребитель выкусывает, чтобы от источника не пощипывало током утечки 50 Гц через этот конденсатор. Внешними цепями эта проблема не лечится (хотя хороший внешний развязывающий дроссель по выходным цепям снижает остроту проблемы), надо ставить С4 на его законное место.
Отсутствие С2, С3 может быть допустимо, но только если выполняются все три следующих условия сразу: сеть двухпроводная, корпус блока питания не имеет контакта с корпусами питаемых устройств (пластмассовый, например), силовой транзистор установлен не на теплоотводе-корпусе. Если хотя бы одно из условий нарушено, С2 и С3 должны быть.
Установка перемычек вместо основного развязывающего дросселя L1 редко, но всё же встречается в дешёвых источниках плохих производителей. Экономят, видимо. Лечится это установкой нормального дросселя. В крайнем случае такой дроссель можно сделать, намотав сетевой шнур на большом ферритовом магнитопроводе.
Перемычка вместо L2 встречается, увы, часто, даже у приличных производителей. Видимо, полагают, что раз в двухпроводной сети этот дроссель не нужен (а там он действительно не требуется, току некуда течь), то без него можно обойтись и в трёхпроводной. Увы, нет, поскольку это открывает прямую дорогу в сеть для синфазных помех (и помех из сети на корпус). Исправляется установкой L2 в разрыв провода между разъёмом сети и платой. На худой конец допустим внешний дроссель на сетевом шнуре.
В завершение рассмотрим частую ошибку, которая относится не только к импульсным, но и ко всем блокам питания. Нередко слева (по рис. 1) от L1 устанавливают дополнительные конденсаторы, как показано на рис. 2. Они должны блокировать чужие помехи, идущие из сети в источник питания. Конденсатор С1 блокирует дифференциальные помехи и нам не мешает. А вот конденсаторы С2 и С3, замыкающие синфазные помехи в сетевых проводах на земляной провод, могут стать причиной соединения по ВЧ корпуса устройства и силовых (фазы и нуля) проводов сети. Это произойдёт, если среднюю точку С2 и С3 соединить с корпусом устройства, как показано штриховой линией красного цвета на рис. 2. Делать так нельзя (хотя печально, часто именно так и подключают). ВЧ синфазные помехи из сети пойдут через С2 и С3 на корпус устройства. И назад: синфазные токи устройства (например, трансивера с антенной) потекут в сеть. Правильное подключение средней точки С2 и С3 должно быть только к выводу заземления трёхпроводной розетки, но не к корпусу устройства, т. е. к левому выводу дросселя L2, как показано линией зелёного цвета на рис. 2.
Рис. 2. Схема блока питания
Если используется двухпроводная питающая сеть, то проверьте, нет ли в вашем блоке питания конденсаторов с проводов сети на корпус устройства. И если есть, удалите их, так как это прямая дорога для ВЧ синфазных токов из сети в ваше устройство и назад.
А если сеть трёхпроводная, то установите дроссель L2 между корпусом своего устройства и землёй сети (он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С2, С3 по рис. 2) переместите на землю сети.
Сетевой фильтр, показанный на рис. 2 с конденсаторами С1-С3, является общим случаем для питания любых устройств, генерирующих радиочастотные помехи, например КВ-передатчиков.
Автор: Игорь Гочарко (DL2KQ), г. Бонн, Германия
Дата публикации: 16.07.2017
Мнения читателей
- Перець / 16.03.2019 — 10:57
Нічого не запутано.На мал.1 С2 і С3 знаходяться після дросселя L1. А на мал.2 C2 і C3 знаходяться до дросселя L1. Тому і точка заземлення різна. P.S. Прізвище автора статті — Гончаренко, а не Гочарко. - Андрей / 15.05.2018 — 02:55
Запутанно как-то, на рис.1 С2,С3 идут на корпус прибора, а на рис.2 они идут землю. Как правильно?
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
О борьбе с импульсными помехами. Пример подавления помех в источниках питания переменного тока
проникает в канал приема и ее частотный спектр частично или полностью перекрывает его полосу.Информация приводимая в данной статье не потеряла актуальности и по сей день так как количество помех в крупных городах растет, а количество хорошей приемной аппаратуры имеется не у всех. Это позволит модернизировать самодельные аппараты и увеличить их помехозащищенность.
В последние годы усилия радиолюбителей — конструкторов связной техники были направлены главным образом на решение проблемы увеличения динамического диапазона ВЧ части приемной аппаратуры. Иными словами, рассматривалась ситуация, когда мощная помеха расположена вне полосы пропускания. Но часто приходится сталкиваться с тем, что помеха
В первом случае методы борьбы с этой помехой сводятся к сужению полосы пропускания до такой степени, чтобы действие помехи было ослаблено. Во втором — многое зависит от того, какая это помеха. Для коротковолновиков, проживающих в городах, неприятности зачастую доставляют помехи не от любительских радиостанций, а импульсные периодические, от системы зажигания двигателей внутреннего сгорания, тиристорного привода электродвигателей, неоновой рекламы, всевозможной промышленной и бытовой электроники, да и просто от неисправностей в электрических цепях.
Эффективным средством борьбы с такого рода помехами являются подавители импульсных помех (ПИП), называющиеся в иностранной радиолюбительской литературе Noise blanker. Принцип действия таких подавителей прост: на период действия импульсной помехи они закрывают тракт приема.
К сожалению, эффект от их применения в современных приемниках с узкополосными кварцевыми фильтрами невелик. Основная причина этого состоит в том, что аппараты имели широкую полосу пропускания, и АЧХ из тракта ПЧ была с пологими скатами, в современных же — полоса пропускания находится в пределах от 2,2 до 3 кГц в режиме SSB и 500…600 Гц в режиме CW, а
Это и привело к тому, что были разработаны подавители импульсных помех, размыкающие сигнальный тракт до фильтра основной селекции. Их преимущества настолько очевидны, что ПИП стал обязательным узлом современного KB трансивера. Необходимость его установки диктовала даже определенное
Импульсный сигнал помехи, поступивший на вход подавителя помех, усиливается в узле А2, а затем детектируется импульсным детектором U2. Регулировка порога срабатывания детектора позволяет оптимизировать работу подавителя. Остроконечные импульсы с выхода узла U2 включают формирователь прямоугольных импульсов G1, управляющих работой ключевого каскада S1, находящегося в сигнальном тракте приемного устройства. На рис. 2 показана одна из первых опубликованных схем ПИП .

Собственно подавитель импульсных помех выполнен на транзисторах VT2-VT4 и диодах VD1-VD3. Каскад на VT2 является усилителем ПЧ. На диоде VD1 собран импульсный детектор. Каскад на транзисторе VT3 вместе с диодами VD2, VD3 формирует прямоугольные импульсы, которые управляют электронным ключом на транзисторе VT4.
Прохождение в сигнальном тракте в данном случае прерывается из-за того, что выход каскада на транзисторе VT1 (усилитель ПЧ) во время срабатывания ПИП оказывается замкнутым (по высокой частоте) на общий провод.
При всей простоте узел, собранный по схеме на рис. 2, работает хорошо. Изменив данные колебательного контура, этот ПИП можно применять в приемниках с промежуточной частотой от 0,5 до 9 МГц.
Транзисторы, указанные на схеме, можно заменить на любые из серий КП306 (VT1, VT2) и КПЗ0З (VT3, VT4). Вместо диодов 1N9I4 можно применить любые из серии КД522, вместо 1N34A из серии Д311.
Каскад, в котором происходит прерывание сигнала, является важным элементом ПИП и во многом определяет качество его работы. Затухание сигнала при прохождении через этот каскад не должно превышать 3 дБ и в то же время, когда сигнальный тракт размыкается — достигать 80 дБ и более. Кроме того, управляющие коммутацией импульсы, которые поступают на этот каскад, имеют амплитуду несколько вольт и не должны проникать в сигнальный тракт, |де уровень полезного сигнала может исчисляться микровольтами. К этому необходимо еще добавить следующее: так как ПИП устанавливают до фильтра основной се лекции, он должен выдерживать сигналы большого уровня, не вызывать нелинейных эффектов.

Эту проблему удачно решил G3PDM
[l]. Разработанный им для подавителя помех ключевой каскад (рис. 3), выполнен на полевом транзисторе VT1. Сопротивление между его истоком и стоком, в зависимости от приложенного к затвору управляющего напряжения, меняется от 100 Ом до нескольких мегаом. Коммутирующие импульсы здесь могут проникать в сигнальный тракт через емкость затвор — исток (ее значение 5…30 п
Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600…700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1… 1 мкс) и амплитудой до 3…5А и более. Поэтому ИБП служит источником интенсивных помех, спектр которых простирается от 16…20 кГц до десятков мегагерц. Эти помехи распространяются в питающую сеть переменного тока и в нагрузку блока питания, создавая интерференционные полосы на экранах телевизоров, мониторов, снижая отношение сигнал-шум в трактах записи-воспроизведения видеозаписывающей аппаратуры и т.д. Величина этих паразитных сигналов зависит от частоты преобразования, качества входных и выходных фильтрующих цепей, а на частотах свыше 1 МГц — от конструкции и монтажной схемы преобразователя. Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники. Однако, импульсные блоки питания, независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи. Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей. Рис.1 Возникновение несимметричной помехи Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора RL, сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя). Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1… 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС. Рис.2 Возникновение паразитной помехи Симметричная помеха возникает следующим образом. В преобразователе ключевой транзистор, как правило, устанавливается таким образом, чтобы обеспечивался хороший тепловой контакт между его корпусом и шасси БП (радиатором). С целью обеспечения максимальной теплопередачи толщина электрической изоляции между коллектором или стоком ключевого транзистора и шасси делается как можно меньше. В результате между стоком или коллектором транзистора и шасси образуется паразитная емкость Ср (рис.2). Когда транзисторный ключ замыкается или размыкается, возникает ток помехи, протекающий от переключателя через паразитную емкость Ср, RL и С, а затем через заземление обратно к шасси. Этот ток довольно мал, поскольку паразитная емкость невелика (ее типичное значение меньше 10 пф). В то же время, используемый в преобразователе LC фильтр совершенно неэффективен против этого вида тока помехи, поскольку он протекает не через фильтр, а в обход его. Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного. Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи. В качестве дополнительных мер подавления помех в импульсных БП применяются следующие: уменьшение паразитных емкостных связей между цепями первичного (сетевого) напряжения и вторичными цепями; выбор оптимальных режимов переключения транзисторов и диодов, предотвращающих резкие перепады напряжения; сокращение площади контуров, охватываемых цепями, по которым протекают большие импульсные токи. Важное значение имеет конструкция импульсного трансформатора ИБП. Первичную обмотку, как правило, разбивают на две равные секции, одна из которых наматывается в первых слоях катушки, а другая — в последних. Таким образом, все остальные области располагаются между этими секциями. Кроме того, первичные и вторичные обмотки обычно разделяются внутренним экраном. Достаточно эффективным является применение общего экрана в виде короткозамкнутого витка из медной фольги, охватывающего импульсный трансформатор. Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов. Рис.3 Типовая схема сетевого фильтра и выпрямителя Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5…С8, установленные параллельно диодам Д1…Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике. |
3 Импульсные помехи и способы снижения их влияния
Полагаем, что импульсная помеха (ИП) аддитивна, а радиотракт — линейный. Считаем его состоящим из последовательно включенных колебательных контуров. Воздействие импульсной помехи на первый колебательный контур ВЦ (рис.3.3) можно рассматривать как электрический удар, приводящий к заряду конденсатора контура, с последующим разрядом его и возникновением колебательного процесса с частотой собственных колебаний ω0. На колебательный контур УРЧ воздействует уже гармоническое затухающее колебание. Чем выше добротность колебательного контура ВЦ, тем уже его полоса пропускания и тем медленнее затухает колебание.
В основе методов борьбы с ИП лежат методы частотной и временной селекции, а также рассмотренные ранее, с учетом специфики ИП.
Временная селекция основана на блокировании принимаемой реализации при появлении в канале помехи.
Амплитудная селекция при использовании устройств с неглубоким ограничением предполагает построение тракта УПЧ по схеме ШОР (рис.11.3)
ШУ- широкополосный усилитель,
АО — амплитудный ограничитель,
РУ – решающее устройство
Рис.3
Уровень ограничения U ог выбирается выше пикового суммарного напряжения сигнала и шума, поэтому при отсутствии помех РПрУ работает в режиме линейного усиления. При воздействии ИП должен автоматически измениться порог решающего устройства U ог = U m0 , где U m0 — максимальный выброс суммарного напряжения, т.е. следящее устройство должно успевать реагировать на изменения U m0 и не срабатывать при действии помех.
Другой способ амплитудной селекции ИП с глубоким ограничением в тракте УПЧ – применение схемы ШОУ (рис.11.4).
ШУ – широкополосный усилитель,
АО – амплитудный ограничитель,
УУ – узкополосный усилитель
Рис.4
В системе ШОУ частотная селекция ИП осуществляется фильтром, а амплитудная — ограничителем. Чем шире полоса ШУ, тем меньше длительность отклика ИП и тем меньшей мощностью будет обладать ИП на выходе АО (происходит ограничение сверху). После прохождения через узкополосную систему УУ нарастание отклика ИП происходит до значений меньших, чем порог ограничения снизу (на выходе УУ). Это позволяет избавиться от ИП или существенно уменьшить ее влияние.
Среди других способов борьбы с ИП в профессиональных РПрУ используется квазиоптимальная фильтрация, когда ширина полосы пропускания радиотракта, реализованного с применением простейших фильтров (например, одиночных колебательных контуров) выбирается оптимальной с точки зрения максимального отношения сигнал/шум.
Из радикальных способов борьбы с ИП может также использоваться метод подавления ИП, когда на основе известных спектральных свойств ИП, в момент появления ИП на входе в дополнительном канале формируется импульс, противофазный входной ИП. После сложения сигнала, содержащего помеху, из основного канала и, сформированной ИП, в решающем устройстве, ИП может быть полностью скомпенсирована.
Характеристики аддитивных помех. Сосредоточенные помехи. Импульсные помехи
Характеристики аддитивных помех
Сосредоточенные помехи
Сосредоточенными по спектру помехами называют помехи в виде синусоидального колебания, модулированного по одному или нескольким параметрам (амплитуде, частоте, фазе). Основная часть мощности таких помех сосредоточена в относительно узкой полосе частот, как правило, меньшей, чем полоса пропускания РПрУ.
Сосредоточенные помехи создаются сигналами посторонних радиостанций, а также излучениями генераторов высокой частоты различного назначения (промышленными или медицинскими). Действию сосредоточенных помех особенно подвержены каналы в диапазоне мириаметровых, километровых, гектометровых и декаметровых волн.
Это обстоятельство является следствием условий распространения радиоволн, в результате которых излучения радиопередатчиков создают заметные напряженности поля на значительных расстояниях.
При большом числе станций эти излучения складываются и образуют помеху, близкую по своим свойствам к флуктуационной.
В ряде случаев на вход РПрУ поступают отдельные сосредоточенные помехи, которые резко выделяются на общем шумовом фоне и имеют мощности, соизмеримые с полезным сигналом. Такие помехи представляют собой квазигармонические колебания (т. е. синусоидальные колебания с медленно изменяющимися амплитудами и фазами). В частном случае это может быть и синусоидальное колебание с постоянными амплитудой и фазой.
Uc(t) + UП(t)= Ucsinwct+ UПsin(wc+W)t= USsin[wct+q(t)]
US = Uc
q(t) = arctg
Cинусоидальная помеха изменяет сигнал как по амплитуде, так и по фазе.
При воздействии сигнала
uc= Uc sinwct
и помехи
UПsin(wc+W)t
суммарное колебание
| |||
где US = Uc,
q(t) = arctg
Из (1) следует, что синусоидальная помеха изменяет сигнал, как по амплитуде, так и по фазе.
Статистические свойства сосредоточенных помех описываются их распределением по частоте и по уровню. Во многих случаях можно считать распределение по частоте равномерным, а распределение уровня (квадрата амплитуд) отдельных помех во времени – логарифмически-нормальным.
р(UП) =
р(UП) =
р(f) – равномерн.
Импульсные помехи
Импульсная помеха представляет собой регулярную, а чаще хаотическую последовательность кратковременных импульсов, длительность которых меньше, а интервал следования больше длительности переходных процессов в тракте РПрУ.
К таким помехам относятся многие виды атмосферных и индустриальных помех.
Одиночный импульс помехи uП(t) можно представить в форме интеграла Фурье
uП(t) = ,
где S(jw) – спектральная плотность комплексной амплитуды.
Из определения импульсной помехи следует, что импульсная помеха на входе приемника обладает более широким спектром, чем полоса пропускания РПрУ.
Типичной формой импульсных помех является апериодическая помеха, изменяющаяся по экспоненциальному закону
![]() |
uП(t) = UП e—at при t³0,
uП(t) = 0 при t< 0.
Спектральная плотность такой помехи определяется интегралом Фурье
S(jw) =
Модуль спектральной плотности амплитуды и ее фаза
S(w) =
j(w) =arctg.
р(UП) =
Распределение числа импульсов помехи во времени можно считать близким к распределению Пуассона
р(k) =
где n – средняя частота следования импульсов.
р(k) – вероятность появления k импульсов за время Т.
График спектра
![]() |
Из графика видно, что апериодическая помеха наиболее интенсивна в области низких частот.
Вероятностные характеристики импульсной помехи должны включать в себя распределения максимальных амплитуд, фазы, длительности и частоты следования.
В силу произвольности появления импульсов распределение фазового угла будет равномерным на интервале (0-2p).
Распределение амплитуд импульсной помехи удовлетворительно описывается логарифмически нормальным законом распределения
р(UП) =
где .
Некоторые вопросы по выбору стабилизатора.
Что представляет собой сетевой фильтр?
Сетевой фильтр условно можно разделить на две части, размещенные на одной плате: это блок ограничителей напряжения и электрический фильтр. Блок ограничителей напряжения состоит из варисторов, включенных между линиями фаза-ноль, фаза-земля, ноль-земля и электрического фильтра, состоящего из конденсаторов, либо конденсаторов и катушек индуктивности. Варисторы — это активное сопротивление, величина которого зависит от напряжения. Начиная с определенного уровня входного напряжения (пороговое значение) величина сопротивления варистора начинает уменьшаться. Она становится тем меньше, чем больше входное напряжение. Варисторы подсоединены параллельно нагрузке и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.
Электрический фильтр состоит из конденсатора (ёмкостной фильтр), или конденсаторов и катушки индуктивности (индуктивно-ёмкостной), соединенных по Т или П-образной схеме. Параметры электрического фильтра подбираются так, что амплитуда выходного сигнала в определенном диапазоне частот намного меньше его амплитуды на входе. Таким образом, варисторы рассеивают энергию импульсной помехи в виде тепла, а электрический фильтр подавляет ВЧ-помеху, возникающую при переходных процессах. Взаимодействие ограничителей напряжения и электрического фильтра позволяет добиться максимального эффекта при подавлении всех видов помех.
Что является источником импульсной и ВЧ-помехи?
Источники возникновения импульсной помехи можно разделить на два класса — природные и техногенные. Природный источник — это молниевый разряд вблизи наружной проводки.
Техногенные источники намного разнообразней — это результат включения или отключения большого числа потребителей, аварии на подстанциях и т.д. Эта проблема особенно актуальна для промышленных зон и центральных районов крупных городов. По данным зарубежных исследований импульсная помеха амплитудой до 6000 В, по крайней мере раз в год, случается в каждой электрической сети. Подобные исследования в России не проводились, но можно с большой уверенностью сказать, что для среднестатистической российской электросети этот показатель будет намного выше.
Источники возникновения ВЧ-помехи те же, что и импульсной помехи. К ним можно добавить бытовые приборы: электродрели, кофемолки, электробритвы, холодильники и т.д. Полностью устранить влияние ВЧ-помехи невозможно, т.к. она передается как по проводам, так и по эфиру.
Что такое импульсная и высокочастотная помеха?
Импульсная помеха — это кратковременное (10-6 — 10-9 с) повышение амплитуды напряжения до 4-6 тысяч вольт. Блоки питания электронных устройств не рассчитаны на то, чтобы обеспечить необходимую защиту. Самыми уязвимыми элементами являются микросхемы, которые присутствуют во многих бытовых приборах ТВ, аудио-видео аппаратуре и, конечно же, компьютерах. Международная электротехническая комиссия ввела специальный стандарт для имитации импульсных помех: наносекундных (МЭК 801-4) микросекундных (МЭК 801-5).
Высокочастотная помеха (ВЧ-помеха) — неопределенный по времени и амплитуде сигнал в диапазоне 100 Гц — 30 Мгц, который искажает параметры входного напряжения (220В / 50Гц). Высокочастотная помеха негативно влияет на работу ТВ, аудио-систем, мониторов и всего оборудования. Иногда ВЧ-помеху называют «радиопомеха».
Чем отличается модифицированный синус от настоящего?
Одной из важнейших характеристик UPS и инверторов является форма напряжения на выходе (для UPS в режиме работы от батареи). В недорогих моделях выходное напряжение имеет форму специальных прямоугольных импульсов, которые часто называют модифицированным синусом. На экране осциллографа они выглядят следующим образом
Длительность и скважность импульсов подобраны так, что действующее и амплитудное значения напряжения на выходе и его частота в точности такие же, как и в сети с синусодальной формой напряжения, осциллограмма которого выглядит следующим образом
Для питания оборудования с импульсными блоками питания модифицированный синус ничем не хуже настоящего, а для питания устройст в трансформаторными блоками питания необходим UPS или инвертор с синусоидальным выходным напряжением, который обычно стоит дороже.
Для корректного измерения напряжения модифицированной синусоиды необходимо применять вольтметры измеряющие среднеквадратическое значение напряжения (RMS). Большинство недорогих любительских вольтметров и мультиметров этой возможностью не обладает. Поэтому попытки измерить напряжение на выходе UPS или инвертора такими приборами дают значение сильно отличающееся от 220 Вольт.
Какую мощность потребляет монитор компьютера?
Мощность потребления современных мониторов CRT:
15″ 70-100Вт
17″ 90-110Вт
19″ 100-150Вт
22″ 110-180Вт
Мощность потребления современных мониторов LCD:
15″ — 25-45Вт
17″ — 35-50Вт
19″ — 40-60Вт
За последние несколько лет разработчикам удалось существенно снизить потребление мониторов CRT, например монитор с CRT 19″ производства 1998 года может потреблять до 500Вт.
Чем отличается трехфазный стабилизатор от трех однофазных?
Трехфазные стабилизаторы марки «Штиль» отличаются наличием специального блока, который при отключении одной из фаз отключает все остальные. Это сделано для предотвращения выхода из строя трехфазных нагрузок, например, электродвигателей. Трехфазные стабилизаторы СТС обеспечивают стабилизацию как фазных, так и линейных напряжений.
В паспорте стабилизатора напряжения указано, что он работает в диапазоне входных напряжений 220 В +25%. Что будет, если напряжение выйдет за эти пределы, как в верхнюю так и в нижнюю стороны?
Если Вы приобрели стабилизатор R110 — R3000, то при понижении напряжения ниже 165В выходное напряжение падает пропорционально входному, т.е. он перестает стабилизировать. Но при этом выходное напряжение будет оставаться примерно на 25% выше входного. При повышении напряжения выше 275В выходное напряжение растет, оставаясь на 15-17% ниже входного, до перегорания предохранителя. Модели от R-6000 и выше снабжены системой автоматического отключения нагрузки при выходе напряжения за пределы установленных значений (значения указаны в паспорте на каждую модель).
Нужен ли мне сетевой фильтр, если я приобрел стабилизатор напряжения?
В подавляющем большинстве случаев не нужен. Сетевой фильтр защищает Ваше оборудование от высокочастотных и импульсных помех в сети. На входе стабилизатора напряжения стоит автотрансформатор, который обладая большой индуктивностью является достаточно эффективным фильтром высокочастотных и импульсных помех. К сожалению, уровень подавления ВЧ помех стабилизатором не нормирован, но в наших планах имеется проведение исследования стабилизаторов напряжения серии R по этому параметру в одной из авторитетных независимых лабораторий.
У меня периодически отключают напряжение на короткое время. Поможет ли мне стабилизатор напряжения для питания моего оборудования?
Нет, Вам необходимо использовать источник бесперебойного пинания (UPS) для Вашего оборудования.
Источник бесперебойного питания моего компьютера (я использую BACK UPS) постоянно переключается на батареи и обратно. Опасно ли это для него и моего компьютера?
Источники бесперебойного питания типа офф-лайн или как их иногда называют Back UPS настроены на переключение на батареи при падении напряжения в сети 196-198В. В некоторых UPS имеется возможность изменить это значение. Если у Вас в сети напряжение пониженное и близко к порогу переключения UPS на батареи и немного меняется с течением времени (довольно распространенная ситуация в вечерние часы), то Ваш UPS будет часто переключаться на батареи. Для большинства UPS такой режим работы достаточно тяжел и его батареи могут разрядиться (особенно если они уже не новые и потеряли часть емкости). Во-первых, вероятность выхода из строя Вашего UPS достаточно велика и во-вторых он может неожиданно отключиться из-за разряда батареи. Рекомендуем перед UPS включить стабилизатор напряжения. Это обеспечит Вашему UPS (и Вашему компьютеру тоже) долгую и надежную работу. Второй вариант — это замена Back UPS на Line-interactive UPS, который имеет встроенный простейший стабилизатор напряжения и переключается на батареи при напряжении ниже 175В.
Для асинхронных двигателей (который используется в Вашем насосе) характерен так называемый пусковой ток, котрый в 2-3 раза превышает номинальный. Хотя наши стабилизаторы и допускают кратковременную перегрузку, но Вам необходим запас по мощности. Поэтому Вам необходимо приобрести стабилизатор не менее чем на 1200 ВА (R-1200).