Импульсные перенапряжения в сети. Защита дома от импульсных перенапряжений
Многие процессы которые происходят у нас дома, мы даже не предполагаем о том, что это произошло по причине перенапряжения. У нас сгорел телевизор филипс, а мы грешим на фирму производителя, что нужно было покупать самсунг. А почему сгорел – даже не задумываемся.
Что такое импульсное перенапряжение?
Перенапряжением называется кратковременное увеличение напряжения в точке электросети сверх допустимого значения. После этого скачка, напряжение в сети восстанавливается до первоначального значения. Степень искажения напряжения при этом характеризуется показателем импульсного напряжения.
К примеру, у нас в квартиру поступает синусоидальное напряжение 220 В. В электросети могут возникнуть импульсные перенапряжения (причину их возникновения мы рассмотрим чуть позже), это когда возникает бросок перенапряжения, длительностью несколько миллисекунд но амплитуда (максимальное значение) может достигать до 10 тис.В.
Чем опасно импульсное перенапряжение для бытовых электроприборов?
Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.
Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.
Причины возникновения импульсного перенапряжения
Одна из причин возникновения импульсных перенапряжения это грозовые разряды (удар молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения потребителей с большой нагрузкой. При перекосе фаз в результате короткого замыкания в сети.
Защита дома от импульсных перенапряжений
Избавиться от импульсных перенапряжений — невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.
Такими устройствами защиты являются УЗИП — устройство защиты от импульсных перенапряжений.
Существует частичная и полная защита устройствами УЗИП.
При полной защите УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.
Понравилась статья — сохрани на стену!
Перенапряжение в сети: причины, виды, последствия
Перенапряжение — это импульсное, скачкообразное или колебательное превышение напряжения в линии электропитания относительно допуска по ГОСТу на качество электроснабжения (ГОСТ 32144-2013: Нормы качества электрической энергии в системах электроснабжения общего назначения). Приведем пример: однофазная домашняя сеть должна иметь номинальное напряжение 230 В с допустимым отклонением +/- 10% (надо учитывать, что по предыдущему ГОСТу номинал составлял 220 В и многая техника до сих пор рассчитана именно на это напряжение). Это действующее напряжение. Если его перевести в амплитудное, то получится 322 В. Когда возникает импульсное перенапряжение, то оно в худшем случае добавляется к амплитудному значению полуволны напряжения (50/60 Гц). Длится подобное явление чаще всего недолго – несколько миллисекунд (при длительности полуволны 10 мс), но за столь короткий промежуток времени могут произойти достаточно серьёзные и ущербные явления. В этой статье мы рассмотрим причины возникновения перенапряжений в сети, а также их виды и меры защиты.Чем опасно явление
Изоляция электрических кабелей и проводов, а также любых электроприборов способна выдержать только определенный уровень напряжения, указанный в эксплуатационных документах на них. Ниже приведена таблица, в которой приведены ориентировочные величины электрической прочности изоляции электропроводок и электрического оборудования.
Однако, в домашнем электрохозяйстве главное не это (изоляцию не заменить), а нарушения изоляции, вызванные механическими причинами (в том числе в результате крепления электропроводок со сдавливанием и скручиванием), климатическими (сырость, попадание воды) и сугубо хозяйственными (накопление пыли, грязи, насекомых и пр.). Так вот на все эти нарушения накладываются ещё и перенапряжения.
Всё это приводит, как показывают печальные случаи, к выходу из строя электрической проводки и электроприборов, к трагическим пожарам. Если в доме нарушена ещё и электрозащита (неисправна или загрублена при частых срабатываниях), то вероятность возгораний в результате перегрузки электропроводки или короткого замыкания резко возрастает. Если поврежденный электроприбор можно просто отключить от розетки и заменить исправным, то электропроводку быстро не заменить. На фото изображено повреждение изоляции в розетке, которое часто возникает из-за неплотного контакта и перегрева, или в результате грозового явления, которое может привести к перегрузке электропроводки и короткому замыканию.
Таким образом, перенапряжения в домашней электросети особенно опасны для старых электропроводок, которые не подвергаются профилактическому осмотру (вместе с розетками) и не обновляются, где небрежно обращаются с розетками, допуская их перегрев. Особо опасными в этом плане следует считать старые электропроводки в домах, часто подвергающихся грозовым явлениям и нашествию насекомых (деревенские и поселковые).
В результате перенапряжений может мгновенно выйти из строя и очень дорогая электронная техника, особенно телевизионная и компьютерная, в которой, как правило, нет защиты от этого. Посмотрите на этикетку около шнура питания, там чаще всего указано даже 250 В, в то время как действующий ГОСТ допускает и 253 В. Поэтому современный рынок и насыщен до предела всевозможными стабилизаторами и различными устройствами защиты от перенапряжений, происходит их совершенствование (полезно будет прочитать статью: https://samelectrik.ru/kak-predotvratit-poteri-ot-perenapryazhenij-v-domashnej-elektroseti-obzor-novoj-razrabotki.html).
Разновидности перенапряжения
Прежде всего следует отметить, что перенапряжение делится на четыре вида:
- атмосферное или грозовое;
- коммутационное;
- переходное;
- электростатическое.
Вкратце рассмотрим причины возникновения каждого из видов опасной ситуации.
Атмосферное
Этот вид относится к природным явлениям и считается самым опасным, так как вызывается особо мощными грозовыми разрядами. При таких разрядах импульсное перенапряжение может достичь (в зависимости от места попадания ветви молнии) нескольких десятков тысяч вольт за микро-доли секунды.
Молния может попадать напрямую в электросеть (воздушную линию) или в молниеотвод (молниеприемник). Перенапряжение может возникнуть и в результате попадания молнии вдали от электросети (в результате электромагнитного воздействия).
Импульсы могут быть различной формы и длительности. К примеру, ниже на рисунке указаны две типичные разновидности волны – 10/350 и 8/20.
Следует заметить, что при наличии молниеотвода, который защищает объект от полного разряда, большая часть тока импульса отводится в землю, а остальная распределяется каким-либо случайным образом в домашних электропроводках.
Коммутационное
Такое явление возникает, когда общая локальная сеть резко меняет свой стационарный режим работы. Это может иметь место в результате резкого включения или выключения мощного оборудования, а также при аварийных перегрузках. Возникает так называемый переходной процесс, который носит колебательный характер с высокой (до сотен килогерц) частотой. При этом перенапряжения могут быть очень высокими. Они определяются конкретными в данный момент характеристиками и параметрами сети, распределением нагрузок по фазам.
Например, при отключении мощного трансформатора вся энергия, находящаяся в нем в данный момент в виде магнитного насыщения, может привести к сильному перенапряжению в сети и стать причиной мгновенного повреждения электрооборудования.
Переходное
Подобное явление возникает в результате обрывов и повреждений в сетях. Например, из-за обрыва общего для потребителей нейтрального проводника в трехфазной сети, так называемый «обрыв нуля», напряжения в фазах распределяются в существенной зависимости от фазной нагрузки («перекос фаз»). Это характерно для трансформаторов, не оборудованных соответствующими компенсаторами.
Электростатическое
Такое явление возникает в сухом воздухе, в материалах хорошо сохраняющих электрический заряд. Разряд между материалами и электропроводкой может произойти совершенно неожиданно, мгновенно вызвав перенапряжение и повреждения подключенной к сети аппаратуре. Электростатические потенциалы невидимы и не ощущаемы человеком, хорошо ощущается лишь разряд (это испытывали многие).
Например, если носить диэлектрическую обувь, то при хождении по ковру человек заряжается до нескольких тысяч вольт. А если после этого прикоснуться к любой конструкции, которая обладает токопроводящими свойствами (например, батареи или корпусу компьютера), то возникнет электрический разряд, который длится несколько наносекунд. Такое электростатическое воздействие считается очень опасным для электронных деталей в любом электрооборудовании. При производстве электронной аппаратуры строго требуется надевать заземляющие браслеты и использовать многие другие защитные средства.
О том, как защитить себя от статического электричества, мы рассказывали в соответствующей статье на сайте!
Меры защиты
Электрическая сеть должна быть всегда надежной, соответствовать указанному выше ГОСТУ по качеству электроснабжения и иметь защитные устройства от возможных перенапряжений (особенно в зонах повышенной грозовой опасности). Полностью избежать импульсных перенапряжений невозможно, но можно уменьшить их величину до относительно безопасного уровня (современная аппаратура изготавливается с определенным запасом по напряжению).
Чтобы защитить электросеть и приборы в домашних условиях необходимо:
- установить защиту от молний (если вблизи нет таковой) – молниеприемник;
- установить УЗИП – специальное устройство защиты, которое снижает опасное импульсное напряжение;
- установить в щиток электропитания УЗО и реле напряжения.
Более подробно об устройствах защиты от перенапряжения мы рассказывали в соответствующей статье, с которой настоятельно рекомендуем ознакомиться!
Важно! Не знаете, кто возмещает ущерб, когда все-таки сгорели электроприборы? За качество напряжения в сети полностью ответственна энергосбытовая компания. Поэтому в первую очередь следует обратиться именно туда и написать заявление, где указываются причиненные убытки. Однако, перед этим следует обзавестись документами, доказывающими причины повреждений (акты со свидетелями, фото с датой съемки, контрольные замеры повышенных или пониженных напряжений путем вызова компетентного электрика со специальным прибором). Ссылаться надо и на указанные выше ГОСТы.
Вот мы и рассмотрели, что такое перенапряжение в сети, какие причины его возникновения и как защититься от данного явления в домашних условиях. Надеемся, вам пригодилась предоставленная информация!
Наверняка вы не знаете:
Перенапряжение | Заметки электрика
Здравствуйте, уважаемые гости и постоянные читатели сайта http://zametkielectrika.ru.
В своей статье про стабилизаторы напряжения для частного дома я затрагивал вопрос про основные показатели получаемой электрической энергии из сети, согласно ГОСТ 13109-97. Переходите по ссылке и знакомьтесь подробнее. Здесь лишь повторю, что к ним относятся отклонения напряжения, провалы напряжения и перенапряжения.
Для защиты электрооборудования от первых двух показателей я рекомендовал Вам устанавливать стабилизаторы напряжения. Вот наглядный пример о том, как правильно выбрать стабилизатор напряжения для своего дома.
А вот про защиту электрооборудования и электропроводки от перенапряжений я как то упустил из виду. Поэтому тема данной статьи будет посвящена видам перенапряжений и их опасностям.
Итак, приступим.
Что такое перенапряжение?
Для начала давайте определимся, что же такое перенапряжение.
Перенапряжение — это импульс или волна напряжения, которое накладывается на номинальное напряжение сети.
Вот так примерно это выглядит.
Например, напряжение однофазной сети у нас составляет 220 (В). Напоминаю Вам, что это действующее значение напряжения. Если перевести его в амплитудное, умножив действующее напряжение на √2, то получим 310 (В). Так вот во время импульсных перенапряжений амплитудное значение напряжения может достигать значения до нескольких тысяч вольт. Длительность таких импульсных перенапряжений не велика — всего несколько милисекунд (мсек).
Какую опасность несут в себе перенапряжения? Примеры
Изоляция электропроводки (кабелей и проводов) и различных электрических приборов может выдерживать определенный уровень напряжения. Вот примерная таблица электрической прочности изоляции некоторого электрооборудования.
По таблице видно, что изоляция у большинства проводников и приборов может выдерживать до 1000 (В). Как я уже говорил выше, во время перенапряжений амплитудное значение напряжения достигает значений до нескольких тысяч вольт.
Думаете к чему это приведет?
Это приведет к пробою изоляции, а следовательно, к выходу из строя электрических приборов, электропроводки и возникновению пожара.
Если электрический прибор будет выключен из розетки, то Вы его защитите от перенапряжений. А вот провода и кабельные линии электропроводки всегда находятся под напряжением (розетки, одноклавишные и двухклавишные выключатели) и совсем не защищены от импульсных перенапряжений.
Приведу наглядный пример, случившийся совсем недавно на даче моего знакомого.
При возникновении импульсного перенапряжения произошел пробой изоляции питающих проводов розетки, что привело к короткому замыканию.
Вот еще один пример пагубных последствий импульсных перенапряжений, который вывел из строя электронный однофазный счетчик электрической энергии «Энергомера» СЕ102.
А ведь мы иногда и не подразумеваем, что тот или иной электрический прибор вышел из строя по причине перенапряжения в сети, а ссылаемся на соответствующее качество производителя.
Причины возникновения и виды импульсных перенапряжений
Всего существует 3 вида импульсных перенапряжений:
- коммутационное
- грозовое (его еще называют атмосферным)
- электростатическое
Рассмотрим каждый вид отдельно.
1. Коммутационное перенапряжение
Коммутационные перенапряжения возникают при резком изменении установившегося режима работы электрической сети. Такое явление называют переходным процессом. Импульсы и волны при данном виде перенапряжений имеют высокую частоту: от десятков до сотен (кГц), а их значение достигает до нескольких тысяч вольт и в большей степени зависит от параметров электрической цепи (индуктивность, емкость), быстродействия коммутационных аппаратов и фазы тока во время коммутации.
Причины возникновения коммутационных перенапряжений:
Например, при отключении от электрической сети небольшого трансформатора мощностью всего 1 (кВА) может возникнуть импульсное коммутационное перенапряжение порядка 2000 (В), т.е. вся запасенная энергия в обмотках трансформатора выбрасывается в электрическую сеть, что пагубно может сказаться на работу электрооборудования.
Представьте себе какое перенапряжение возникнет при коммутации силового трансформатора мощностью 400 (кВА)?
2. Атмосферное (грозовое) перенапряжение
Атмосферные (грозовые) перенапряжения относятся к природным явлениям, вызванные грозовыми разрядами.
Грозовые разряды — это мощное импульсное перенапряжение в десятки тысяч вольт и длительностью не более 1 (мс).
По общей статистике 90% молний имеют ток разряда порядка 40-60 (кА). Чуть меньше 1% молний имеют ток разряда 100 (кА) и выше.
Существуют прямые попадания молний в электрическую сеть (воздушную линию) или в молниеприемник, и удаленные попадания молний на расстоянии до 1500 м, при котором возникают импульсные перенапряжения. Смотрите картинки ниже.
На картинках выше волна перенапряжения (импульс) подписана двумя надписями, либо 10/350, либо 8/20. Эти волны (импульсы) имеют определенную форму и длину волны.
Как видно по графику, импульс 10/350 наиболее опасен для защищаемого объекта, чем 8/20, т.к. он в десятки раз дольше воздействует на электрическую сеть.
Еще несколько слов хотел бы сказать про перераспределение энергии грозового разряда. Принято считать, что 50% от первоначального импульса перенапряжения, при условии, что у нас в доме выполнена система молниезащиты и имеется заземляющее устройство (система TN-C-S, TN-S, ТТ), отводится в землю, а остальные 50% перераспределяются равномерно между всеми проводниками электрической сети, в том числе трубами и бытовыми коммуникациями.
3. Электростатическое перенапряжение
Еще один вид, который мы рассмотрим — это электростатическое перенапряжение. Чаще всего оно возникает в сухих средах путем скапливания электростатических зарядов, которые в свою очередь создают сильное электростатическое поле. Это очень не предсказуемый вид перенапряжений.
Например, если походить по ковру в диэлектрической обуви, то мы сможем зарядиться до нескольких тысяч вольт. При касании любой проводящей конструкции (батарея, корпус компьютера) произойдет электрический разряд длительностью несколько наносекунд (нсек). Наиболее опасен данный вид перенапряжений для электронных деталей и компонентов электрических приборов и устройств.
Как защитить свой дом от перенапряжений?
Ну вот мы подошли к самому главному вопросу, как же защитить электрические приборы и электропроводку своего дома или квартиры от вышеперечисленных импульсных перенапряжений.
Скажу сразу, что полностью избавиться от импульсных перенапряжений не получится. Наша цель — это лишь снизить значения импульсных перенапряжений до значений, не угрожающих нашему оборудованию.
Дело в том, что даже при правильном монтаже системы молниезащиты 50% мощности импульсного разряда уходит в землю, а остальные 50% перераспределяются по сетям электропроводки и бытовыми коммуникациями дома. Поэтому для осуществления полной защиты от перенапряжений необходимо выполнить:
- повторное заземление PEN проводника на опоре ввода воздушной линии (ВЛ) в дом
- повторное заземление крюков и кронштейнов всех опор воздушной линии
- монтаж системы молниезащиты
- отдельный контур заземления для молниезащиты, который нужно соединить с основным контуром дома
- система уравнивания потенциалов (ОСУП, ДСУП)
- ступенчатая защита с помощью специальных устройств УЗИП (устройство защиты от импульсных перенапряжений)
Более подробно о каждом способе защиты я расскажу Вам в отдельных статьях. Чтобы не пропустить выход новых статей, пройдите процедуру подписки.
P.S. На этом пожалуй и все. Надеюсь Вы поняли, чем опасны импульсные перенапряжения и что в обязательном порядке необходимо от них защищаться?
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
импульсное перенапряжение — это… Что такое импульсное перенапряжение?
импульсное перенапряжение
В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:
- перенапряжение,
- временное перенапряжение,
- импульс напряжения,
- импульсная электромагнитная помеха,
- микросекундная импульсная помеха.
Мы в своей работе будем использовать термин «импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами.
В соответствии с классификацией электромагнитных помех [ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
[Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]
EN
surge
spike
Sharp high voltage increase (lasting up to 1mSec).
[http://www.upsonnet.com/UPS-Glossary/]
Параллельные тексты EN-RU
The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes — even lightning.
[APC]
Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
[Перевод Интент]
Surges are caused by nearby lightning activity and motor load switching
created by air conditioners, elevators, refrigerators, and so on.
[APC]
ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?
Основных источников импульсов перенапряжений — всего два.
1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
2. Атмосферный явления — разряды молнии во время грозы
ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?
Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления — это кондуктивный путь проникновения.
Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии — это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.
ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?
Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.
[http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]
Защита от импульсного перенапряжения. Ограничитель перенапряжения — его виды и возможности
Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.
Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.
Грозовые разряды — мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.
При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.
Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.
Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия «выбрасывается» в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.
Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.
Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.
Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.
Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.
Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная «мощность» первого примерно в 20 раз больше.
Существует четыре основных типа устройств защиты от импульсного перенапряжения:
1. Разрядник
Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.
При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.
Типовое напряжение срабатывания в для разрядников составляет 1,5 — 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN — рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).
2. Варистор
Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 — 560 В (для сети 220/380 В 50 Гц).
Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.
Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN — модуля для установки в силовые щиты.
3. Разделительный трансформатор
Эффективный ограничитель перенапряжения — силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.
Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.
4. Защитный диод
Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.
Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.
Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).
Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.
Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).
[http://www.higercom.ru/products/support/upimpuls.htm]
Чем опасно импульсное перенапряжение для бытовых электроприборов?
Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.
Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.
Причины возникновения импульсного перенапряжения.
Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.
Защита дома от импульсных перенапряжений
Избавиться от импульсных перенапряжений — невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.
Такими устройствами защиты являются УЗИП — устройство защиты от импульсных перенапряжений.
Существует частичная и полная защита устройствами УЗИП.
Частичная защита подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).
При полной защите УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.
[Источник]
8 Импульсные напряжения и временные перенапряжения » СтудИзба
Импульсные напряжения и временные перенапряжения
Рис. 1.4. Точки присоединения электрической сети общего назначения
Импульсные напряжения — это резкое изменение напряжения в точке электрической сети рис. 1.4, за которым следует восстановление напряжения до первоначального или близ кого к нему уровня за промежуток времени до нескольких миллисекунд (то есть меньше полупериода).
Импульсное напряжение характеризуют следующие величины:
— амплитуда импульса — максимальное мгновенное значение импульса напряжения;
— длительность импульса — интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня; часто длительность импульса оценивается по уровню 0,5 его амплитуды Dtимп0,5.
В электрическую сеть напряжением 220…380 В может проникать импульсное напряжение до 3…6 кВ. Наиболее чувствительны к импульсным напряжениям электронные и микропроцессорные элементы систем управления и защиты, компьютеры, серверы и компьютерные станции.
Основным способом защиты от импульсных напряжений является использование ограничителей перенапряжения (ОПН) на основе металлооксидных соединений.
Временное перенапряжение — это повышение напряжения в точке электрической сети выше 1,1·Uном продолжительностью более Юме, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.
Коэффициент временного перенапряжения КперU — величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.
Длительность временного перенапряжения DtперU — интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения.
Расчетные значения грозовых (табл. 1.3) и коммутационных импульсных напряжений (табл. 1.4) в точках присоединения электрической сети общего назначения (рис. 1.4) приведены для фазных номинальных напряжений сети и справедливы при условии, что распределительные устройства и линии электропередачи в электрических сетях энергоснабжающей организации и потребителей выполнены в соответствии с Правилами устройства электроустановок.
Формы грозовых импульсов, характерные для данных то чек, указаны на рис. 1.5-1.7 грозовых импульсных напряжений в электрической сети потребителя могут превышать указанные в табл. 1.3 значения за счет грозовых поражений в самой сети потребителя за счет отражений и преломлений грозовых импульсов в сети потребителя и частично — за счет разброса параметров грозовых импульсов.
Таблица 1.3 Грозовые импульсные напряжения, кВ
Место расположения точек присоединения | Варианты точек на рис. 1.4 | Номинальное напряжение сети, кВ | |||||||
6 | 10 | 35 | 110 | 220 | 330 | 500 | 750 | ||
Воздушная линия (ВЛ) | а, в б1 | 100 160 2000 | 125 | 325 | 800 | 1580 | 1890 | 2730 | 3570 |
Кабельная линия(КЛ) | г е2 д, ж3 | 100 | 125 | 325 | 800 | 1580 | — | — | — |
34 | 48 | 140 | 350 | 660 | — | — | — | ||
— | — | — | — | — | — | — | — | ||
Силовой трансформатор (ТР) | з, з’, и4 и’ | 60 | 80 | 200 | 480 | 750 | 1050 | 1550 | 1950 |
34 | 48 | 140 | 350 | 660 | — | — | — |
Примечания. 1 В варианте точек присоединения б в числителе указано импульсное напряжение на металлических и железобетонных опорах, в знаменателе — на деревянных опорах.
2 Грозовые импульсные напряжения в точке присоединения е со ответствуют случаю отсутствия воздушной линии электропередачи на стороне вторичного напряжения UH2 трансформатора Тр2 (рис. 1.4) и значениям напряжений обмоток Тр2 UH1,UH2, соответствующим двум номинальным напряжениям, расположенным рядом в шкале стандартных напряжений (например 35 и 10 кВ, 110 и 220 кВ и т.д.).
При других сочетаниях номинальных напряжений Тр2 (например 110 и 10 кВ, 35 и б кВ и т.д.) грозовые импульсные напряжения, проходящие через обмотки трансформатора, меньше указанных значений.
3 При наличии на распределительной подстанции типа РП-Б, РП-В (рис. 12.4) воздушных линий электропередачи значения грозовых импульсных напряжений в точках присоединения д, ж такое же, как в варианте точек присоединения г и в. При отсутствии на распредели тельной подстанции типа РГ1-Б, РП-В воздушных линий электропередачи грозовые импульсные напряжения в точках присоединения д и ж опре деляются значениями импульсных напряжений в начале кабельной линии (точки г и в), уменьшенными в соответствии с данными по затуханию грозовых импульсов в кабельных линиях в зависимости от длины линии.
4 Указанные в данной строке значения импульсных напряжений справедливы при условии расположения точек общего присоединения з, з, ,и на вводах силового трансформатора и наличии связи рассматриваемой обмотки с воздушной линией. При отсутствии связи (точка и’ на рис. 1.4) импульсные напряжения соответствуют точке присоединения е.
Таблица 1.4 — Значения коммутационных импульсных напряжений при их длительности на уровне 0,5 амплитуды импульса, равной 1000-5000 мкс
Номинальное напряжение сети, кВ | 0,38 | 3 | 6 | 10 | 20 | 35 | 110 | 220 |
Коммутационное импульсное напряжение, кВ | 4,5 | 15,5 | 27 | 43 | 85,5 | 148 | 363 | 705 |
Рис. 1.5. Форма грозовых им пульсов, характерная для точек присоединения а, в, г, д на рис. 1.4.
Рис. 1.6. Форма грозовых им пульсов, характерная для точек присоединения, проходящих через выводы силового трансформатора, рассматриваемая обмотка которого имеет связь с ВЛ (точки присоединения з, з’, и на рис. 1.4)
Рис. 1.7. Форма грозовых импульсов, характерная для точек присоединения б, е, ж на рис. 1.4.
Таблица 12.5 Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений
Длительность временного перенапряжения DtперU, с | До 1 | До 20 | До 60 |
Коэффициент временного перенапряжения КперU, о.е | 1,47 | 1,31 | 1,15 |
В среднем за год в точке присоединения возможны около 30 временных перенапряжений.
При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухо заземленной нейтралью, возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения, а длительность — нескольких часов.
Вероятность превышения указанных в табл. 1.4. значений коммутационных импульсных напряжений составляет не более 5%, а значений грозовых импульсных напряжений (табл. 1.3) — не более 10% для воздушных линий с металлическими и железобетонными опорами и 20% — для воздушных линий с деревянными опорами.
Защита электрооборудования от импульсных перенапряжений
Перенапряжением, в том числе импульсным перенапряжением, называется любое превышение напряжения относительно максимально допустимого для данной сети.К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения, вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.
Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.
Грозовые разряды – мощные импульсные перенапряжения, возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км, приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.
При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Харакер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.
Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.
Пример природы возникновения помех
Например, при отключении разделительного трансформатора мощностью 1кВА 220/220 В от сети вся запасенная трансформатором энергия «выбрасывается» в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.
Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.
Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.
Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.
Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.
Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная «мощность» первого примерно в 20 раз больше.
Существует четыре основных типа устройств защиты от импульсных перенапряжений:
Разрядник.Представляет собой устройство из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю.
По исполнению разрядники делятся на: воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.), кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты высокочастотных устройств до нескольких ГГц.
При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем, эти правила сводятся к схеме установки представленной на рис. 1
.
Рисунок 1 – Схема установки разрядников.
Силовое напряжение срабатывания в для разрядников составляет 1,5 – 4 кВ (для сети 220/380 В 50 Гц).
Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN-рейку.
Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).
Варистор.
Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения.
Напряжение срабатывания 470 – 560 В (для сети 220/380 В 50 Гц).
Время срабатывания менее 25 нс.
Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.
Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN-модуля для установки в силовые щиты.
Разделительный трансформатор.
Силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями.
Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является, в некоторой степени, идеальной защитой от импульсных перенапряжений. Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки, и трансформатор выходит из строя.
Защитный диод.
Применяется, как правило, для защиты аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.
Из четырех выше описанных устройств каждое имеет свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.
Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсных перенапряжений (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).
Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.
Одной из серьезных проблем в процессе организации защиты оборудования от грозовых и коммутационных перенапряжений является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).
В настоящее время существуют следующие нормативные документы, которые в той или иной мере рассматривают вопросы защиты электропитающих установок от импульсных перенапряжений:
- Инструкция по устройству молниезащиты зданий и сооружений (РД 34.21.122-87).
- Временные указаниях по применению УЗО в электроустановках зданий (Письмо Госэнергонадзора России от 29.04.97 № 42-6/9-ЭТ разд.6, п. 6.3).
- ПУЭ (7-е изд., п. 7.1.22)
- ГОСТ Р 50571.18-2000, ГОСТ Р 50571.19-2000, ГОСТ Р 50571.20-2000.
Основные ее положения приведены в стандартах IEC-1024-1 (1990-03) «Защита сооружений от удара молний. Часть 1. Общие принципы» и IEC-1312-1 (1995-02) «Защита от электромагнитного импульса молнии. Часть 1. Общие принципы».
Суть данной концепции заключается в том, что объект, подлежащий молниезащите (защите от перенапряжений), разбивается на три условных зоны. Предусматривается последовательное снижение уровня перенапряжений от зоны 0 к зоне 1 и далее к зоне 2, в которой устанавливается оборудование. Границей зоны 0 и зоны 1 служит внешний контур заземления и стены здания.
Для систем электропитания границей этих зон является ГРЩ здания. Границей зон 1 и 2, как правило, является токораспределительный щит.
Современная классификация защитных устройств строится в соответствии с зоновой концепцией молниезащиты (IEC-1024-1, IEC-1312-1). Основные классы защитных устройств приведены в IEC 1643-1 (37A/44/CDV: 1996-03) «Устройства защиты от волн перенапряжения для низковольтных систем распределения электроэнергии. Эксплуатационные требования и методы испытания».
В зависимости от места установки и способности пропускать через себя различные импульсные токи устройства защиты от перенапряжений делятся на следующие классы — A, B, C, и D.
Класс | Назначение защитного устройства | Место установки | Основные требования, предъявляемые к устройству | Импульсный ток, пропускаемый устройством при срабатывании |
В | Для защиты от прямых ударов молнии в здание, мачту, ЛЭП. (Категория перенапряжения IV) | На вводе в здание (во вводном щите) или в главном распределительном щите. |
– Защита от импульсных перенапряжений с большой энергией (прямых ударов молний, мощных бросков напряжений в режимах короткого замыкания). – Требуется защита от прямого прикосновения. – Отсутствие риска возгорания устройства защиты или короткого замыкания в линии в случае его выхода из строя в результате перегрузки. |
В соответствии с требованиями — E DIN VDE 0675-6/А1/ 03-96 (таблица 4) (при импульсе10/350 мкС Iimp = 0,5 — 50 кА) — IEC 1643 — 1 (37A/44/CDV:1996-03) |
C | Для защиты электросети от коммутационных помех, как вторая ступень защиты при ударе молнии. (Категория перенапряжения III) | Распределительные щиты. |
– Защита от синфазных перенапряжений (между фазой и землей, нейтралью и землей). – Требуется защита от прямого прикосновения. – Отсутствие риска возгорания устройства защиты или короткого замыкания в линии в случае его выхода из строя в результате перегрузки. |
В соответствии с требованиями: — E DIN VDE 0675-6/11-89 (таблица 6) (при импульсе 8/20 мкС Isn = 5 кА) — IEC 1643-1 (37A/44/CDV:1996-03) |
D | Для защиты потребителей от остаточных бросков напряжений, фильтрация помех (Категория перенапряжения II) | Розетки, оконечные защитные устройства (фильтры и т.п.) |
– Защита от дифференциальных перенапряжений (между фазой и нейтралью). – Требуется защита от прямого прикосновения. – Отсутствие риска возгорания устройства защиты или короткого замыкания в линии в случае его выхода из строя в результате перегрузки. |
В соответствии с требованиями: — E DIN VDE 0675-6/11-89 (таблица 6) (при импульсе 8/20 мкС Isn = 1,5 кА) — IEC 1643-1 (37A/44/CDV:1996-03) |
Обязателен переход на системы электропитания TN-S или TN-C-S с разделёнными нулевым рабочим и нулевым защитным проводниками.
Этот переход важен не только с точки зрения защиты от импульсных перенапряжений, но и для защиты от поражения электрическим током обслуживающего персонала и повышения противопожарной безопасности объекта (возможно применение устройств УЗО).
Типовая схема установки защитных элементов зонной защиты представлена на рисунке 2.
Защитные устройства класса В, газовые или воздушные разрядники с током разряда от 45 до 60 кА (10/350 мкс), устанавливаются на вводе в здание (во вводном щите, в ГРЩ или же в специальном боксе). Защитные устройства класса С в виде мощных варисторных модулей с токами разряда порядка 40 кА (8/20 мкс) – на других подраспределительных щитах. Защита класса D, варисторные модули с током разряда 6 – 8 кА или всевозможные фильтры со встроенной варисторной защитой, устанавливается непосредственно возле потребителя.
Защита класса В должна устанавливаться обязательно на объектах имеющих воздушный ввод и соответственно чья сеть может быть подвержена грозовому разряду.
В случае подземного кабельного ввода достаточна установка защит класса С и D.
Приведенные цифры по токам для защит по данной схеме существенно превышают требования норматива, однако разумное усиление всех рубежей защиты дает гарантию многолетней безаварийной работы элементов и обеспечивает существенно меньшие остаточные напряжения.
Установка разрядника в первой ступени защиты между нулевым рабочим (N) и нулевым защитным (PE) проводниками необязательна, так как защитные устройства расположены непосредственно возле точки разделения PEN проводника на N и PE проводники. Во второй ступени защиты между N и PE проводниками устанавливаться ограничитель перенапряжения, так как при удалении от точки разделения PE-N проводника и увеличении длины электрических кабелей индуктивность и, соответственно, индуктивное сопротивление жил кабелей току разряда молнии резко возрастает. В результате этого возможно возникновение разности потенциалов между элементами оборудования, подключенного к N и PE проводникам.
Так же при установке защитных устройств очень важно, чтобы расстояние между соседними ступенями защиты было не менее 7–10 метров по кабелю электропитания. Выполнение этого требования необходимо для правильной работы защитных устройств.
В момент возникновения в силовом кабеле импульсного перенапряжения, за счет увеличения индуктивного сопротивления металлических жил кабеля, обеспечивается необходимая временная задержка в росте импульса перенапряжения на следующей ступени защиты, что позволяет обеспечить поочерёдное срабатывание ограничителей перенапряжения от более мощных к менее мощным. В случае необходимости размещения защитных устройств на более близком расстоянии или рядом (в одном щите) необходимо использовать искусственную линию задержки в виде дросселя с номинальным током сети.
Подключение устройств защиты к РЕ рекомендуется делать отдельным проводником и сводить шине выравнивания потенциала (ШВП). Такое подключение позволяет свести к минимуму бросок потенциала в результате срабатывания устройств защиты от импульсного перенапряжения.
В случае применения устройств УЗО, ограничители перенапряжений классов В и С необходимо размещать на линейной стороне УЗО, чтобы токи разряда и токи утечки, протекающие через них на РЕ проводник, не вызывали срабатывания УЗО. К тому же в случае установки ограничителей перенапряжения классов В и С на сторону нагрузки УЗО, последнее может быть выведено из строя током разряда молнии, что недопустимо с точки зрения обеспечения электробезопасности. Ограничители перенапряжений класса D можно устанавливать после УЗО на стороне нагрузки для защиты оборудования от дифференциальных перенапряжений между фазным проводником L и нейтралью N. В этом случае импульсные токи разряда будут протекать между L и N проводниками, не отводясь на защитный РЕ проводник.
При данной схеме средняя точка двух варисторов подключается к РЕ проводнику через разрядник, который не позволит токам утечки варисторов вызвать ложное срабатывание УЗО. В данной схеме необходимо применение УЗО типа S с временной задержкой срабатывания. Однако следует отметить, что вопрос применения УЗО на объектах, где необходимо обеспечение электропитания по первой категории, на данный момент времени остается не решенным. ПУЭ издание 7-е 1999 года предусматривает применение УЗО в электроустановках жилых, общественных, административных и бытовых зданий. Документы, определяющие область применения УЗО в электрических сетях промышленных предприятий, в настоящее время отсутствуют.
Наличие предохранителей F2 – F4 и F5 – F7 является обязательным, в случае если номинал предохранителей F1 превышает значение, указанное в паспорте на данный тип защиты.
Например для разрядников FLT – PLUS CTRL 1.5 это 250 А., т.е. если линейный предохранитель F1 400 А, то F4 – F6 не более 250 А , а для варисторного модуля PIV 230 это значение составляет 160 А. Однако в случае аварии защитных устройств существует вероятность потери питания в сети.
Во многих случаях для обеспечения непрерывности питания устанавливаются защитные автоматы (F2 – F4 и F5 – F6) с номиналом тока меньше линейного автомата защиты. В этом случае возникает необходимость дополнительного контроля за состоянием устройств защиты и в первую очередь варисторных блоков.
При соблюдении всех правил установки зонной защиты срок службы защитных элементов составляет в среднем 15 – 17 лет.
Типовая схема защиты ЛВС
В данной схеме защиты потребители делятся на две группы.Потребитель первой категории – сервера, бухгалтерия, связь и тд – те, для которых потеря питания приводит к серьезным экономическим последствиям.
Источник бесперебойного питания желательно типа on – line так, как при необходимости он обеспечит стабилизацию напряжения и имеет надежность существенно выше, чем ИБП типа оff – line.
импульсное перенапряжение — с русского на все языки
импульсное перенапряжение
В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:
- перенапряжение,
- временное перенапряжение,
- импульс напряжения,
- импульсная электромагнитная помеха,
- микросекундная импульсная помеха.
Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами.
В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
[Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]
EN
surge
spike
Sharp high voltage increase (lasting up to 1mSec).
[ http://www.upsonnet.com/UPS-Glossary/]
Параллельные тексты EN-RU
The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes — even lightning.
[APC]
Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
[Перевод Интент]
Surges are caused by nearby lightning activity and motor load switching
created by air conditioners, elevators, refrigerators, and so on.
[APC]
ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?
Основных источников импульсов перенапряжений — всего два.
1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
2. Атмосферный явления — разряды молнии во время грозы
ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?
Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления — это кондуктивный путь проникновения.
Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии — это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.
ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?
Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.
[ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]
Защита от импульсного перенапряжения. Ограничитель перенапряжения — его виды и возможности
Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.
Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.
Грозовые разряды — мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.
При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.
Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.
Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия «выбрасывается» в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.
Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.
Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.
Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.
Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.
Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная «мощность» первого примерно в 20 раз больше.
Существует четыре основных типа устройств защиты от импульсного перенапряжения:
1. Разрядник
Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.
При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.
Типовое напряжение срабатывания в для разрядников составляет 1,5 — 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN — рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).
2. Варистор
Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 — 560 В (для сети 220/380 В 50 Гц).
Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.
Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN — модуля для установки в силовые щиты.
3. Разделительный трансформатор
Эффективный ограничитель перенапряжения — силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.
Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.
4. Защитный диод
Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.
Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.
Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).
Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.
Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).
[ http://www.higercom.ru/products/support/upimpuls.htm]
Чем опасно импульсное перенапряжение для бытовых электроприборов?
Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.
Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.
Причины возникновения импульсного перенапряжения.
Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.
Защита дома от импульсных перенапряжений
Избавиться от импульсных перенапряжений — невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.
Такими устройствами защиты являются УЗИП — устройство защиты от импульсных перенапряжений.
Существует частичная и полная защита устройствами УЗИП.
Частичная защита подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).
При полной защите УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.
[ Источник]