Громкоговоритель применение силы ампера – Применение действия силы Ампера в технике | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Содержание

Применение сил Ампера и Лоренца в науке и технике. Амперметр, телеграф, электромагниты, масс-анализаторы

Для науки представляют огромную ценность полученные знания, которые впоследствии могут найти свое практическое применение. Новые открытия не только расширяют исследовательские горизонты, но и ставят новые вопросы, проблемы.

Выделим основные открытия Ампера в области электромагнетизма.

Во-первых, это взаимодействия проводников с током. Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены, и отталкиваются, если токи в них противонаправлены (рис. 1).

Рис. 1. Проводники с током

Закон Ампера гласит:

Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

– сила взаимодействия двух параллельных проводников,

– величины токов в проводниках,

 − длина проводников,

 – расстояние между проводниками,

 – магнитная постоянная.

Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесенного через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а именно количество заряда, переносимое через поперечное сечение проводника. На основании этого определения мы не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путем: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенных в вакууме на расстоянии один метрот друга взаимодействуют с силой

 Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой, прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

 – сила тока,

 – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис. 2).

Рис. 2. Амперметр

После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

Рис. 3. Двигатель

Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи рамка с током начнет вращение.

Рис. 4. Принцип работы электродвигателя

В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит – устройство, мощность которого можно регулировать (рис. 5).

Рис. 5. Электромагнит

Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

Рис. 6. Электрический телеграф

Идея телеграфа (рис. 6) возникла в первые же месяцы после открытия электромагнетизма.

Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

Рис. 7. Схема работы телеграфа

Математик Гаусс, когда познакомился с исследованиями Ампера, предложил создать оригинальную пушку (рис. 8), работающую на принципе действия магнитного поля на железный шарик – снаряд.

Рис. 8. Пушка Гаусса

Необходимо обратить внимание на то, в какую историческую эпоху были сделаны эти открытия. В первой половине XIX века Европа семимильными шагами шла по пути промышленной революции – это было благодатное время для научно-исследовательских открытий и быстрого внедрения их в практику. Ампер, несомненно, внес весомый вклад в этот процесс, дав цивилизации электромагниты, электродвигатели и телеграф, которые до сих пор находят широкое применение.

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нем частицу, заставляя ее двигаться по дуге окружности:

Cила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику, как отношение заряда к массе – удельный заряд.

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь то электрон, протон или любая другая частица. Таким образом, ученые получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия – и бета-частицы – электроны.

В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. Магнитное поле искривляет траектории частиц (рис. 9). Направление изгиба следа позволяет судить о знаке заряда частицы; измерив радиус траектории, можно определить скорость частицы, если известны ее масса и заряд.

Рис. 9. Искривление траектории частиц в магнитном поле

На этом принципе разработан Большой адронный коллайдер (рис. 10). Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Рис. 10. Большой адронный коллайдер

Для того чтобы охарактеризовать влияние ученого на технический прогресс, вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, ее скорости и заряда. Таким образом, получаем возможность классифицировать заряженные частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках, и остается только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряженных частиц. Именно по такой схеме работает 

масс-анализатор (рис. 11)Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Рис. 11. Масс-анализатор

Это еще не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью ученых и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

 

Список литературы

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. – М.: Мнемозина.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «Чип и Дип» (Источник).
  2. Интернет-портал «Киевская городская библиотека» (Источник).
  3. Интернет-портал «Институт дистанционного образования» (Источник).

 

Домашнее задание

1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл., ст. 88, в. 1-5.

2. В камере Вильсона, которая размещена в однородном магнитном поле с индукцией 1,5 Тл, альфа-частица, влетая перпендикулярно к линиям индукции, оставляет след в виде дуги окружности радиусом 2,7 см. Определите импульс и кинетическую энергию частицы. Масса альфа-частицы 6,7∙10-27 кг, а заряд 3,2∙10-19 Кл.

3. Масс-спектрограф. Пучок ионов, разогнанных разницей потенциалов 4 кВ, влетает в однородное магнитное поле с магнитной индукцией 80 мТл перпендикулярно линиям магнитной индукции. Пучок состоит из ионов двух типов с молекулярными массами 0,02 кг/моль и 0,022 кг/моль. Все ионы обладают зарядом 1,6 ∙ 10-19 Кл. Ионы вылетают из поля двумя пучками (рис. 5). Найти расстояние между пучками ионов, которые вылетают.

 

Рис. 5 

4. *С помощью электродвигателя постоянного тока поднимают груз на тросе. Если отключить электродвигатель от источника напряжения и замкнуть ротор накоротко, груз будет опускаться с постоянной скоростью. Объясните это явление. В какую форму переходит потенциальная энергия груза?

Электроизмерительные приборы. Громкоговоритель — Класс!ная физика

Электроизмерительные приборы. Громкоговоритель

«Физика — 11 класс»

Электроизмерительные приборы

Действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы — амперметрах и вольтметрах.

Как устроен измерительный прибор магнитоэлектрической системы?
В основе устройства электроизмерительных приборов магнитоэлектрической системы лежит ориентирующее действие магнитного поля на рамку с током.

Амперметр

На алюминиевую рамку 2 со стрелкой 4 намотана катушка. Рамка укреплена на двух полуосях ОО’. В положении равновесия ее удерживают две тонкие спиральные пружины 3. Силы упругости пружин, возвращающие катушку в положение равновесия, зависят от угла отклонения стрелки от равновесия.
Катушка находится между полюсами постоянного магнита М. Внутри катушки расположен цилиндр 1 из железа, что обеспечивает радиальное направление линий магнитной индукции в области витков катушки.
При любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны.

Векторы сил F, действующие на катушку со стороны магнитного поля, поворачивают ее. Катушка с током поворачивается до тех пор, пока силы упругости пружин не уравновесят силы магнитного поля.

Силу тока после градуирования шкалы определяют по углу поворота катушки.

Вольтметр

Такой же прибор может измерять и напряжение. Для этого нужно градуировать прибор так, чтобы угол поворота стрелки соответствовал определенным значениям напряжения.
Однако сопротивление вольтметра должно быть много больше сопротивления амперметра.


Громкоговоритель

Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока звуковой частоты.
В электродинамическом громкоговорителе (иначе динамик) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус — диафрагма D. Диафрагма укреплена на подвесах, что позволяет ей совершать вынужденные колебания вместе с подвижной катушкой.

По катушке проходит переменный электрический ток с частотой, равной звуковой частоте сигнала с микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО1 в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.

Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

D настоящее время широкое применение получили громкоговорители, основанные на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации кристаллов в электростатическом поле.

Пьезоэлектрический элемент состоит из пььезоэлектрических пластинок, которые могут менять свои размеры под действием поля. В результате элемент сильно изгибается, создавая при переменном электрическом поле акустическую волну.
Пьезогромкоговорители имеют малые размеры, поэтому нашли широкое применение в мобильных телефонах, ноутбуках и микрокомпьютерах.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов — Магнитная индукция. Линии магнитной индукции — Модуль вектора магнитной индукции. Сила Ампера — Электроизмерительные приборы. Громкоговоритель — Действие магнитного поля на движущийся заряд. Сила Лоренца — Магнитные свойства вещества — Примеры решения задач — Краткие итоги главы

ЗАКОН АМПЕРА Применение закона ЗАКОН АМПЕРА

ЗАКОН АМПЕРА Применение закона ЗАКОН АМПЕРА Применение закона

ЗАКОН АМПЕРА — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из ЗАКОН АМПЕРА — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

 Сила , с которой магнитное поле действует на элемент проводника с током, находящегося Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию : где α — угол между векторами магнитной индукции и тока.

ПРИМЕНЕНИЕ ЗАКОНА Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося ПРИМЕНЕНИЕ ЗАКОНА Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

 Схема устройства громкоговорителя показана на рисунке 1. 22, а. Звуковая катушка ЗК располагается Схема устройства громкоговорителя показана на рисунке 1. 22, а. Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус — диафрагма D. Диафрагма укреплена на упругих подвесах, позволяющих ей совершать вынужденные колебания вместе с подвижной катушкой. По катушке проходит переменный электрический ток с частотой, paвной звуковой частоте сигнала с микрофона или с выхода радиоприемника, проигрывателя, магнитофона. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО 1 (см. рис. 1. 22, а) в такт с колебаниями токa. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны. Первоклассные громкоговорители воспроизводят без значительных искажений звуковые колебания в диапазоне 40— 15 000 Гц. Но такие устройства очень сложны. Поэтому обычно применяют системы из нескольких громкоговорителей, каждый из которых воспроизводит звук в определенном небольшом интервале частот. Общим недостатком всех громкоговорителей является их малый КПД. Они излучают лишь 1 3% проводимой энергии.

 Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током в поле постоянного магнита. Наряду с электромеханическими громкоговорителями в настоящее время широкое применение получили громкоговорители, основаннью на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации некоторых типов кристаллов в электростатическом поле. Две пьезопластинки склеивают. Пластинки подбирают так, что одна из них увеличивается но длине под действием поля, а другая уменьшается (см. рис. 1. 22, б). В результате получают элемент, который сильно изгибается под действием поля и при переменном электрическом поле создает акустическую волну. Пьезогромкоговорители очень удобны в изготовлении и могут быть совсем маленькими. Вследствие этого они нашли широкое применение в радиотелефонах, мобильных телефонах, ноутбуках и микрокомпьютерах. Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

 Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током

ЭЛЕКТРОДИНАМОМЕТР ВЕБЕРА Закон Ампера взаимодействия токов, или, что то же самое, магнитных полей, порождаемых ЭЛЕКТРОДИНАМОМЕТР ВЕБЕРА Закон Ампера взаимодействия токов, или, что то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

 Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой llў подвижная катушка C, ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме llў зеркала f.

Применение силы Ампера Громкоговоритель Громкоговоритель служит

Применение силы Ампера Громкоговоритель Применение силы Ампера Громкоговоритель

 Громкоговоритель служит для возбуждения звуковых волн в воздушной среде под действием переменного электрического Громкоговоритель служит для возбуждения звуковых волн в воздушной среде под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в катушке, способной свободно перемещаться в определённой инженером области пространства.

 Если в магнитное поле, образованное полюсами магнита, помещен проводник, по которому проходит постоянный Если в магнитное поле, образованное полюсами магнита, помещен проводник, по которому проходит постоянный электрический ток, то на проводник будет действовать механическая сила, называемая электродинамической. Эта сила стремится вытолкнуть проводник из зоны действия магнитного поля в направлении, перпендикулярном силовым линиям поля и направлению тока (правило «левой руки»).

Устройство электродинамического громкоговорителя Постоянный магнит 1 создает сильное магнитное поле в кольцевом зазоре между Устройство электродинамического громкоговорителя Постоянный магнит 1 создает сильное магнитное поле в кольцевом зазоре между керном 2 и передним фланцем 3. В этом зазоре помещается звуковая катушка 4, жестко соединенная с диффузором конической формы 5. Звуковая катушка расположена посередине кольцевого зазора благодаря наличию центрирующей шайбы 6, приклеенной к диффузору вблизи места соединения его со звуковой катушкой. Края диффузора и центрирующей шайбы в виде плоского воротника крепятся к диффузородержателю 7, имеющему прорези (окна). Звуковая катушка вместе с диффузором и центрирующей шайбой образуют подвижную систему громкоговорителя. Перемещения (колебания) диффузора возбуждают в окружающем воздушном пространстве звуковые волны, воспринимаемые человеческим ухом как звуки.

Классификация электродинамических громкоговорителей Электродинамические громкоговорители разделяются по электроакустическим, конструктивным и эксплуатационным признакам. К первым Классификация электродинамических громкоговорителей Электродинамические громкоговорители разделяются по электроакустическим, конструктивным и эксплуатационным признакам. К первым относятся: полоса воспроизводимых частот (ширококополосные или узкополосные громкоговорители), номинальная электрическая мощность, активное сопротивление звуковой катушки (низкоомные или высокоомные громкоговорители).

К конструктивным признакам относятся: устройство подвижной системы (один диффузор или два, одна звуковая катушка К конструктивным признакам относятся: устройство подвижной системы (один диффузор или два, одна звуковая катушка или две, одиночный или спаренный громкоговоритель), устройство магнитной системы, форма диффузора — круглая или овальная. К эксплуатационным признакам относятся температурные и климатические условия работы громкоговорителя и его влагостойкость.

 Согласно ГОСТ 9010 -67 сокращенные обозначения громкоговорителей имеют следующее значение: первая цифра указывает Согласно ГОСТ 9010 -67 сокращенные обозначения громкоговорителей имеют следующее значение: первая цифра указывает номинальную мощность громкоговорителя в ваттах, буквы указывают тип громкоговорителя (ГД — громкоговоритель электродинамический, КЗ — колонка звуковая), вторая — номер разработки громкоговорителя. Третья цифра указывает значение частоты механического резонанса, если этот тип громкоговорителя выпускается с различными резонансными частотами. Громкоговорители, предназначенные для работы в тропических условиях, имеют в конце обозначения букву Т.

Применение действия силы Ампера в технике | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Тема:

Магнитостатика

Силы Ампера используются для преобра­зования энергии электрического тока в ме­ханическую энергию проводника. Такое пре­образование применяется во многих элект­ротехнических устройствах. Рассмотрим не­которые из них.

1. Электроизмерительные приборы магни­тоэлектрической системы.

Рис. 6.19. Строение измерительного при­бора магнитоэлектрической системы

Электроизмерительный прибор магнито­электрической системы состоит из посто­янного магнита и проволочной рамки, кото­рая находится между полюсами (рис. 6.19). Полюса магнита имеют специальные насад­ки, которые дают возможность получить такое магнитное поле, при котором по­ворачивание рамки в нем не приводит к изменению угла между магнитной индук­цией и проводниками рамки. Этот угол ос­тается всегда равным 90°. С рамкой соеди­нены две спиральные пружины, которые подводят электрический ток к рамке. При прохождении электрического тока по рамке появляется сила Ампера, пропорциональная силе тока в рамке. Поворачивание рамки приводит к деформации пружин и возник­новению силы упругости. Рамка прекратит поворачиваться тогда, когда момент силы Ампера станет равным моменту силы упру­гости.

Стрелка, связанная с рамкой, показывает угол ее поворота, при котором моменты урав­новешиваются. Этот угол пропорциональ­ный силе тока в рамке.

2. Электрический двигатель постоянного тока. Материал с сайта http://worldofschool.ru

Рис. 6.20. Строение двигателя постоян­ного тока

Электрический двигатель предназначен для непрерывного превращения энергии элект­рического тока в механическую. Принцип его действия такой же, как и электроизме­рительного прибора, описанного выше. Но в его конструкции отсутствует пружина. Ток к рамке подводится через специальные скользящие контакты — щетки (рис. 6.20). При замыкании цепи рамка начинает взаи­модействовать с магнитным полем постоян­ного магнита или электромагнита и повора­чивается так, что ее плоскость становится перпендикулярной магнитной индукции. Не­прерывность вращения рамки обеспечива­ется применением специального устройст­ва — коллектора, которое периодически из­меняет направление тока в рамке.

В современных электродвигателях постоян­ного тока подвижная часть (ротор) состоит из многих рамок, размещенных в пазах ци­линдра из специальной электротехнической стали. Роль коллектора в них часто вы­полняет специальное электронное устройст­во.

На этой странице материал по темам:
  • Как применяется физика в технике

  • Применения силы ампера

  • Применение силы ампера в жизни

  • Применение силы и ампера конспект

  • Применение силы лоренца реферат по физике

Сила Ампера и закон Ампера

Закон Ампера
  • Что такое сила Ампера

  • Правило левой руки

  • Применение силы Ампера

  • Сила Ампера, видео
  • Трудно представить нашу современную жизнь без электричества, ведь исчезни оно, это бы мгновенно привело к глобальным катастрофическим последствиям. Так что в любом случае с электричеством мы отныне не разлучные. А вот для того, чтобы иметь с ним дело нужно знать определенные физические законы, одним из которых, безусловно, является закон Ампера. А пресловутая магнитная сила Ампера – главная составляющая этого закона.

    Закон Ампера

    Итак, давайте сформулируем закон Ампера: в параллельных проводниках, где электрические токи текут в одном направление, появляется сила притяжения. А в проводниках, где токи текут в противоположных направлениях, наоборот возникает сила отталкивания. Если же говорить простым житейским языком, то закон Ампера можно сформулировать предельно просто «противоположности притягиваются», и ведь в реальной жизни (а не только физике) мы наблюдаемо подобное явление, не так ли?

    Но вернемся к физике, в ней также под законом Ампера понимают закон, определяющий силу действия магнитного поля на ту часть проводника, по которой протекает ток.

    Что такое сила Ампера

    Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так

    са=ст*дчп*ми

    Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.

    Правило левой руки

    Правило левой руки предназначено для того, чтобы помочь запомнить, куда направлена сила Ампера. Оно звучит следующим образом: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый под углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника.

    правило левой руки

    правило левой руки

    Примерно так выглядит правило левой руки на этой схеме.

    Применение силы Ампера

    Применение силы Ампера в современном мире очень широкое, можно даже без преувеличение сказать, что мы буквально окружены силой Ампера. Например, когда вы едете в трамвае, троллейбусе, электромобиле, его в движение приводит именно она, сила Ампера. Аналогичны лифты, электрические ворота, двери, любые электроприборы, все это работает именно благодаря силе Ампера.

    Сила Ампера, видео

    И в завершение небольшой видео урок о силе Ампера.


    Referat. Сила Ампера — PhysBook

    Сила Ампера

    Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.

    Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:

    \(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)

    где α – угол между направлениями тока и вектора индукции.

    Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):

    Рис. 1

    если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.

    Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.

    Рис. 2

    Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

    Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены II2) по формуле:

    \(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .

    Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,

    \(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2)

    Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.

    • а

    • б

    Рис. 3
    • а

    • б

    Рис. 4

    Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,

    если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.

    Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.

    Момент сил, действующий на прямоугольную рамку с током

    Поместим в однородном магнитном поле с индукцией \(~\vec B\) прямоугольную рамку с током ABCD (рис. 5 а – вид сбоку; рис. 5 б – вид сверху), где обозначим AB = a, AD = b, β – угол между перпендикуляром к рамке и вектором магнитной индукции.

    • а

    • б

    Рис. 5

    На участки AD и BC магнитное поле действуют с силами, которые меняются от нуля до максимального значения (в зависимости от угла поворота рамки β) и стремятся растянуть рамку (на рис. 5 эти силы не указаны). На участки AB и CD магнитное поле действуют с постоянными силами \(~\vec F_1\) и \(~\vec F_2\), которые направлены в противоположные стороны (на рис. 5 а силы направлены перпендикулярно плоскости рисунка) и стремятся повернуть рамку вокруг оси OO´. Таким образом, эти силы \(~\vec F_1\) и \(~\vec F_2\) создают вращающий момент \(~M = F_1 \cdot l_1 + F_2 \cdot l_2\) , где \(~F_1 = F_2 = I \cdot B \cdot l\) (угол α = 90°), \(~l_1 = l_2 = \frac{AD}{2} \sin \beta = \frac{b}{2} \sin \beta\) , \(~l = AB = CD = a\) . Тогда

    \(~M = 2 F_1 \cdot l_1 = 2I \cdot B \cdot a \cdot \frac{b}{2} \cdot \sin \beta = I \cdot B \cdot a \cdot b \cdot \sin \beta = I \cdot B \cdot S \cdot \sin \beta\) ,

    где \(~S = a \cdot b\) – площадь рамки.

    Момент сил будет максимальным при β = 90° (рамка расположена вдоль линий индукции)

    \(~M_{max} = I \cdot B \cdot S\) . (3)

    Отметим, что формула (3) справедлива не только для квадратной рамки, но и для плоской рамки другой формы.

    Применение силы Ампера в технике

    Электрический двигатель постоянного тока

    В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера.

    Основными частями электродвигателя постоянного тока (рис. 6) являются индуктор 4, с помощью которого создается постоянное магнитное поле, якорь 3, через обмотки которого пропускается ток, и коллектор 1 с электрическими щетками 2, с помощью которых осуществляется соединение обмоток якоря с источником тока.

    • а

    • б

    Рис. 6

    В простейшей машине постоянного тока индуктор – это постоянный магнит или электромагнит со стальным сердечником. Обмотки электромагнита индуктора называются обмотками возбуждения. Магнит индуктора имеет полюсные наконечники такой формы, что между ними образуется отверстие цилиндрической формы. Между полюсными наконечниками индуктора помещается якорь. Якорь состоит из сердечника – стального цилиндра с пазами, параллельными оси цилиндра, и обмоток, вложенных в пазы сердечника (рис. 7). Выводы каждой обмотки соединены с медными контактами коллектора.

    Рис. 7

    Якорь насажен на ось, концы которой установлены в подшипниках, и может свободно вращаться вокруг этой оси.

    Для постоянного вращения рамки с током в магнитном поле необходимо устройство, меняющее направление тока. Такое устройство – коллектор – было изобретено в XIX веке. В простейшем случае он представляет собой два металлических полукольца 1, насаженных на общую с рамкой ось 2, и к которым припаяны провода обмотки 4 (рис. 8). К коллектору с двух противоположных сторон прижимаются щетки 3 из графита или меди; щетки подключаются проводами 5 к источнику постоянного напряжения.

    Рис. 8

    При включении ток проходит через щетки, полукольца и обмотку, в результате чего под действием пары сил Ампера обмотка начинает поворачиваться и поворачивает полукольца коллектора. Когда плоскость обмотки окажется перпендикулярной линиям магнитной индукции, вращающий момент обратится в ноль. Однако это положение обмотка проскакивает по инерции, и с этого момента каждое из полуколец, повернувшись вместе с рамкой, станет прикасаться уже к другой щетке. В результате направление тока в обмотке изменится на противоположное, а возникший после такой смены направления тока вращающий момент будет вынуждать обмотку вращаться в прежнем направлении до тех пор, пока ее плоскость снова не станет перпендикулярной вектору индукции. После этого направление тока в обмотке снова изменится, и она продолжит вращение, и т.д.

    Скорость вращения якоря электродвигателя можно регулировать, изменяя силу тока в его обмотках; направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.

    Электродвигатель постоянного тока может приводить в движение колеса электровоза, троллейбуса, трамвая, приводить в действие электробритву, магнитофон и другие бытовые электроприборы.

    Электроизмерительные приборы

    В электроизмерительных приборах магнитоэлектрической системы используется действие магнитного поля на проводник с током (рис. 9).

    Рис. 9

    Измеряемый электрический ток пропускается через рамку 6, помещенную в магнитное поле постоянного магнита 5. Рамка укреплена на оси 2. Измеряемый ток подводится к рамке 6 через спиральную пружину 3. На участки проводников, расположенные перпендикулярно линиям индукции магнитного поля, действует сила Ампера. Если бы подвижная часть измерительного механизма не имела пружину 3, противодействующую ее повороту, то при пропускании тока через рамку происходил бы поворот ее на 180° независимо от силы тока. Но силы упругости, возникающие при закручивании пружины, препятствуют повороту рамки. Сила упругости прямо пропорциональна углу закручивания пружины, поэтому угол поворота, при котором наступает равенство моментов сил Ампера и сил упругости, пропорционален силе тока в рамке. Шкала магнитоэлектрического прибора равномерная.

    При изменениях силы тока равновесие моментов сил упругости и сил Ампера нарушается, в результате подвижная система начинает совершать колебания относительно нового положения равновесия. Вместе с ней колеблется и стрелка прибора. Для устранения этих колебаний в приборах применяются специальные успокоители. В них для торможения подвижной системы используется тонкая алюминиевая пластина 7, помещенная между полюсами постоянного магнита 8 и закрепленная на оси вращения подвижной системы. При повороте подвижной системы алюминиевая пластина успокоителя движется в поле постоянного магнита. Наводимые в ней при этом индукционные токи тормозят движение пластины и вместе с тем вращение всей подвижной системы электроизмерительного прибора.

    Для того чтобы при любом положении указательной стрелки 4 подвижная часть была уравновешена в поле тяжести, имеются противовесы 9. Установка на нулевое деление шкалы производится с помощью корректора 10.

    Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе \(~I = \frac{U}{R}\) . Поэтому прибор можно проградуировать и так, чтобы определенному углу отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.

    Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.

    Литература

    1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
    2. Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
    3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о