Графен как получить: две секунды в микроволновой печи / Habr – Методы получения графена — Мегаобучалка

Методы получения графена — Мегаобучалка

Существует несколько методов получения графена, которые можно разделить на три большие группы. К первой группе относятся механические методы. Основным среди них является механическое расщепление графита, которое на настоящий момент является наиболее распространенным методом для производства относительно больших образцов с размером ~ 10 мкм, пригодных для электрических и оптических измерений. Ко второй группе методов относят химические методы, которые отличаются большим процентом выхода материала, но малыми размерами пленок (порядка 10 – 100 нм). К последней группе относятся эпитаксиальные методы и метод термического разложения подложки из карбида кремния SiC.

Механическое расщепление графита.При механическом воздействии на пиролитический графит можно получить пленки графена относительно большой площади – вплоть до 100 мкм. Сначала тонкие слои графита помещают между липкими лентами (скотчем) и отщепляют раз за разом тонкие пленки графита, пока не будет получен достаточно тонкий слой. Среди многих пленок графита при этом могут попадаться и однослойные (графен), которые и представляют интерес. После отшелушивания скотч с тонкими пленками графита и графена прижимают к подложке окисленного кремния. При этом трудно получить пленку определенного размера и формы в фиксированных частях подложки. С помощью атомно-силового микроскопа можно определить реальную толщину пленки графита, которая в некоторых местах может составить величину порядка 1 нм.

Химический метод на основе интеркаляции графита.Одна из методик химического получения графена заключается в интеркаляции графита поверхностно-активными веществами (ПАВ), которые обладают более высокой энергией взаимодействия с графеновыми слоями, чем существующие между слоями силы Ван-дер-Ваальса. Интеркаляция представляет собой обратимое включение молекулы или группы между другими молекулами или группами. На рис. 2.28 интеркалированные молекулы показаны синим цветом. После интеркаляции расстояние между слоями увеличивается, что позволяет механическим воздействием (например, обработкой ультразвуком и центрифугированием) разделить слои. В качестве ПАВ используют те же вещества, что и для разделения жгутов из углеродных нанотрубок: N-полиметилпирролидон (NMP), N,N-диметилацетамид (DMA), g-бутиролактон (GBL), 1,3-диметил-2-имидазолидинон (DMEU).



 

 

Рис. 2.28. Химический метод получения графена

 

Альтернативный вариант – окисление графита. Используя сильные окислители, можно окислить внутренние слои графита, после чего расстояние между слоями увеличивается. Такой оксид графита механически разделяют ультразвуком в водном растворе, так как из-за гидрофильности графита молекулы воды проникают внутрь его, и межслоевое расстояние увеличивается еще больше. На последнем этапе получившиеся окисленные листы графена восстанавливают в водном растворе смеси гидразина и аммиака, потом удаляют продукты реакции и фильтруют раствор. Качество полученной смеси монослоев не позволяет использовать их при решении задач, требующих относительно большой подвижности носителей и однородности материала.

Химическое осаждение из газовой фазы (CVD).Химическое осаждение паров на металлы позволяет производить графен большой площади с хорошей подвижностью носителей. В основе метода лежит процесс каталитического разложения метана или другого газа, содержащего углерод, на поверхности катализатора. В качестве катализатора (подложки) обычно выступает медная фольга. Температура в камере, через которую прокачивают газ-прекурсор, составляет величину порядка 1000 °C. При такой температуре газ разлагается и формируется графен на поверхности меди, причем процесс прекращается после полного покрытия подложки. Этот метод позволяет получить наиболее качественные слои большой площади. Создана также прокатная технология производства. Если в качестве фольги использовать никель, то углерод растворяется в металле при высокой температуре и при охлаждении на поверхности формируются слои графена. Толщина пленки зависит от количества растворенного углерода. Затем слой катализатора удаляют, например, электрохимическим травлением, а слой графена переносят на нужную подложку.

Таким методом на высококачественной подложке из медной фольги удалось вырастить рекордные по размерам пленки графена примерно прямоугольной формы с длиной диагонали до 75 см, имеющие высокую электропроводность и оптическую прозрачность. Графен также можно выращивать на других металлах с гексагональной решеткой поверхности, таких как иридий (111) и рутений (0001).

Синтез на SiC.Один из методов получения графеновых листов основан на процессе термического разложения карбида кремния. Суть метода в том, что при нагреве кристаллического SiC до температур порядка 1300оС происходит испарение атомов кремния с поверхности кристалла SiC, в то время как оставшийся углерод организуется в гексагональную плоскую структуру (графен), состоящую из одного или нескольких слоев. Как показали исследования, основным фактором, ограничивающим степень совершенства подобной структуры, является процесс неконтролируемого испарения атомов кремния. Существенного улучшения качества синтезируемых образцов графена удалось добиться в результате стабилизации температуры синтеза.

Двумя основными недостатками этого метода являются высокая стоимость SiC-пластин и использование высоких температур (выше 1000 °C), поэтому использование графена на SiC, вероятно, будет ограниченным.

Лазерная абляция. Ла́зерная абля́ция – метод удаления вещества с поверхности лазерным импульсом. Получение графена данным методом основано на расслоении кристаллического графита при воздействии лазерного излучения. В качестве мишени используют кристалл высокоупорядоченного пиролитического графита, который помещают на кремниевую подложку. Синтез графена проводят в атмосфере аргона. Частицы углерода, образованные в результате лазерной абляции поверхности графита, попадают на кремниевую подложку. При плотности энергии лазерного излучения на мишени от 1 до 10 Дж/см

2 на поверхности мишени возникают тонкие чешуйки, которые самопроизвольно отделяются от мишени и попадают на поверхность подложки.

 

Применение графена

Полевые транзисторы для высокочастотных аналоговых устройств. Расчеты показывают, что при длине канала 20 нм частота отсечки транзисторов превышает 1 ТГц. В настоящее время лабораторные образцы имеют быстродействие на уровне сотен гигагерц (рекорд – 300 ГГц). Транзисторы на InP имеют предельную частоту 1 ТГц, но чтобы достичь таких значений потребовались десятилетия. Имеются сообщения о создании на основе таких графеновых транзисторов ультраширокополосных (порядка 100 ГГц) радиоусилителей с очень низким уровнем собственного шума и относительно малым потреблением электроэнергии, а также повторителей напряжения и смесителей частоты. Имеется проект министерства обороны США под названием CERA (Carbon Electronics for RF Applications), направленный на разработку компонентов для высокочастотной связи. Программа стартовала еще в 2008 году. Аналогичный проект по развитию углеродной электронике есть и у ЕС.

Прозрачные электропроводящие материалы.Они широко используются при изготовлении солнечных батарей, сенсорных дисплеев и электронной бумаги. Для формирования внешнего слоя в таких устройствах требуется, чтобы он был прозрачным и электропроводящим.

Графен отвечает всем перечисленным требованиям (поверхностное сопротивление для него составляет 30 Ом/квадрат, коэффициент пропускания 97,7 %). Обычно для таких применений используется сплав из оксида индия и олова (ITO), имеющий несколько лучшие характеристики, однако, следует учитывать, что качество графена улучшается каждый год. При этом графен обладает выдающейся механической гибкостью, что выгодно отличает его от ITO.

Фотодетекторы. Создание фотодетекторов на основе графена является одним из наиболее активно развивающихся направлений. Графен способен решить извечную проблему современного фото- и видеооборудования – невысокое качество съемки в условиях недостаточного освещения. Использование датчиков на основе графена может увеличить чувствительность сенсоров к свету в сотни раз, при этом энергопотребление таких сенсоров может быть существенно снижено. Благодаря этому можно будет получать очень качественные и детализированные снимки в условиях слабого освещения. Графен может использоваться не только в обычных бытовых камерах, но и в приборах ночного видения, инфракрасных камерах и аппаратах спутников, делающих детализированные фотографии земной поверхности. Графен также можно применять в биомедицине. В частности, на его основе были проведены исследования по определению последовательности нуклеотидов в генах.

В отличие от полупроводниковых фотодетекторов, графен может поглощать свет любого цвета (весь спектр). Однако, внешняя квантовая эффективность графена очень низка – он поглощает менее 5% падающего на него света. Один из вариантов решения проблемы – нанесение на графен квантовых точек (например, из сульфида цинка). В ходе эксперимента к графену присоединяли микроскопические золотые электроды. Затем на него наносили кристаллы сульфида свинца, после чего полученное устройство облучали светом разных длин волн. Для расширения диапазона поглощаемых длин волн, кристаллы имели разный размер. После тщательного подбора методики изготовления и нанесения кристаллов исследователям удалось добиться внутренней квантовой эффективности (доли переданных графену квантов, от тех, что образовались в квантовых точках) порядка 25 %, что говорит о весьма высокой эффективности передачи.

Катоды для холодной эмиссии. Преимущества использования углеродных наноструктур в качестве холодных полевых эмиттеров связаны с высоким аспектным отношением таких эмиттеров, обеспечивающим значительное усиление электрического поля вблизи их краев. До сих пор основным кандидатом на роль эмиттера подобного типа считались УНТ, величина аспектного отношения которых может составлять порядка 103 и даже выше. Поскольку толщина графенового листа составляет доли нанометра, что на много порядков меньше характерного размера образца, то такой образец из графена должен обладать высоким коэффициентом усиления электрического поля, а это, в свою очередь, способствует получению достаточно высоких токов эмиссии при относительно низком приложенном напряжении. Все это может быть использовано, в частности, при изготовлении дисплеев.

Суперконденсаторы. Перспективная область применения графена – это электроды в ионисторах (суперконденсаторах с емкостью порядка 1 Ф и больше), которые используются в качестве перезаряжаемых источников электроэнергии. Опытные образцы ионисторов на графене имеют удельную энергоемкость на уровне 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов, у которых удельная энергоемкость равна 30 − 40 Вт·ч/кг. Эксперименты показывают, что время зарядки аккумуляторов емкостью до 2500 мА·ч можно снизить до 90 секунд. Для сравнения литиевые аккумуляторы для лодочных электромоторов имеют емкость до нескольких сотен А·ч, но время зарядки у них несопоставимо больше.

Химические сенсоры. Графен можно использовать в качестве очень чувствительных сенсоров для обнаружения отдельных молекул химических веществ, присоединенных к поверхности пленки. Среди детектируемых молекул: NH3, CO, H2O, NO2 и др. Принцип действия этого сенсора заключается в том, что разные молекулы могут выступать как доноры или акцепторы, что в свою очередь вызывает изменения сопротивления графена.

Антикоррозионное покрытие. Графен может успешно использоваться в качестве очень эффективного антикоррозионного покрытия. Исследования показали, что, медь, защищенная графеновой пленкой, разрушилась в 7 раз медленнее, чем обычная незащищенная медь. Никель, защищенный несколькими слоями графена, разъедался в 20 раз медленней, чем незащищенный материал. Даже в том случае, когда графеновая пленка просто наносилась на поверхность материала, а не выращивалась на ней, уровень защиты от коррозии оставался по-прежнему высоким и по эффективности был на уровне антикоррозионных покрытий из органических материалов, превышающих по толщине графеновую пленку в десятки раз.

Фильтры для очистки морской воды. Для экономного и эффективного производства из соленой морской воды чистой питьевой можно использовать мембраны из графена. Размеры отверстий в таких мембранах составляют всего один нанометр, в результате чего вода через такие отверстия проходит, а частицы соли блокируется. Сами мембраны настолько тонкие, что для фильтрации воды требуется небольшой перепад давления, что приводит к минимуму затраченной для фильтрации энергии. Такие мембраны в 500 раз тоньше и в 1000 раз прочнее, чем любые другие, применяемые в коммерческих фильтрах для очищения воды. Но при этом требуется лишь одна сотая от той энергии, которые требуется при традиционных методах фильтрации воды от соли.

Топливные элементы для водородной энергетики. Водород является перспективным топливом, поэтому ученые всего мира ищут способы его хранения и транспортировки. Самым оптимальным и безопасным способом хранения водорода является насыщение им веществ, которые обладают высокой абсорбцией к нему. Министерство энергетики США опубликовало общепринятые критерии способности материалов абсорбировать водород. Количественно абсорбционная способность оценивается весовым процентом водорода, который может удерживать та или иная структура материала. Согласно их данным, общепринятым весовым процентом водорода в настоящее время является 4,5 (что составляет 0,028 кг/л), а перспективным до 2017 года является 5,5 или 0,040 кг/л.

Московские физики из Технологический институт сверхтвердых и новых углеродных материалов (г. Троицк) испытали материал, который способен абсорбировать водород, гораздо эффективнее критериев Министерства энергетики США. Было установлено, что структура материала может абсорбировать до 6,1 вес. % водорода или 0,074 кг/л молекулярного водорода. Такой результат они получили на новом сорбенте для водорода – графане с атомами натрия, лития и калия. Исследуемая структура графана включает атомы щелочных металлов и теоретически может связывать порядка 10 вес. % водорода. Процессом сорбции-десорбции водорода можно управлять посредством изменения внешнего давления и температуры.

 

Производные графена

 

Обнаруженные у графена уникальные свойства стимулировали поиск новых наноматериалов, обладающих похожими свойствами. Исследования показали, что свойствами графена можно управлять, используя методы химической модификации, такие как окисление, сорбция водорода или фтора. Таким способом были синтезированы производные графена – оксид графена, графан и фторид графена (флюорографен). В последние годы активно проводятся исследования, направленные на получение неуглеродных 2D-материалов – однослойных пленок толщиной в один атом, но не из атомов углерода, как в графене, а из других атомов. В результате таких исследований были синтезированы германен (из атомов Ge), силицен (из атомов Si), станен (из атомов Pb) и фосфорен (из атомов P). Рассмотрим производные графена.

 

Оксид графена

Структура оксида графена. Под оксидом графена понимают частицы графена с присоединенными по краям или внутри углеродной сетки кислородсодержащими функциональными группами и/или молекулами. Номенклатура этих групп обширна: гидроксильные, фенольные, карбонильные, карбоксильные, арильные, эфирные, фосфорсодержащие и т. п. Разновидностью являются оксиды графена, модифицированные полимерами, такими как полиэтиленгликоль, полиэфиры, поливинилы, полиакрилы и т.д. Еще одну группу оксидов графена составляют допированные соединения. В частности, известны оксиды графена, содержащие в своей структуре один или несколько атомов бора, азота, алюминия, фосфора, кремния, серы или же группы на их основе, например меламин, фосфин, силан, полисилоксан, сульфиды и т. д.

Существует множество моделей структуры оксида графита. Это обусловлено тем, что структура его довольно сложна, кроме этого, он имеет переменный химический состав, зависящий от способа получения. Одна из последних моделей, а именно, модель Лерфа – Клиновского представлена на рис. 2.29.

 

 

Рис. 2.29. Структурная модель оксида графена с различными функциональными группами

(A– эпоксидными, B– гидроксильными, C– карбоксильными)

Оксид графена имеет слоистую структуру. Углеродные слои деформированы за счет перехода атомов углерода из sp2— в sp3-гибридизованное состояние. Толщина его в среднем составляет 1 нм, что больше, чем у обычного графена и объясняется наличием функциональных групп.Оксид графена обладает способностью связывать ионы некоторых металлов из растворов, так же как и взаимодействовать с органическими и неорганическими соединениями. В результате можно получить пористые углеродные материалы, содержащие частицы металлов Pt, Pd, FexOy и др. Оксид графена имеет большое число дефектов топологической структуры и разрывов.

Что касается ширины запрещенной зоны в оксиде графена, то говорить о каких-то общепризнанных данных на этот счет пока преждевременно. Имеются, например, публикации, в которых приводятся результаты исследования влияния температуры отжига оксида графена на ширину его запрещенной зоны. Установлено, что при изменении температуры отжига в диапазоне от комнатной до 800 ºС ширина запрещенной зоны изменяется от 3 эВ практически до нуля.

Существует несколько разновидностей оксида графена, отличающихся своей формой:

– пленки на инертных подложках;

– нанопорошки с размером плоских частиц (чешуек) порядка 1 мкм;

– хлопья с размером частиц от 1 до 5 мкм;

– ленты с отношением длины к ширине более 10;

– «помпоны» с размером сфероподобных частиц диаметром от 3 до 6 мкм.

Последние представляют собой сростки лепестков графена в форме помпона или в форме детских шаров из гофрированной бумаги. Они были впервые получены в 2013 году в университете Енсе (Южная Корея).

Оксид графена, являясь продуктом окисления графита, часто применяется в качестве прекурсора для получения графена. Тем не менее, в последние несколько лет внимание исследователей привлекает и сам оксид графена, благодаря своим исключительно высоким сорбционным свойствам. Оксид графена по сорбционной емкости значительно превосходит ионообменные смолы на полимерной основе и другие традиционные сорбенты. Это главным образом и определяет большой интерес к оксиду графена как суперсорбенту нового поколения.

Методы получения оксидов графена.Существует три основных метода получения оксида графена: метод Броди, метод Штаудинмайера и метод Хаммерса.Все три метода включают в себя обработку графита сильными кислотами и окислителями.Метод Броди отличается низкой интенсивностью и должен проводиться многократно для получения оксида графена. Метод Штаудинмайера является модификацией метода Броди и также отличается низкой интенсивностью и большими временами синтеза. Метод Хаммерса отличается малой продолжительностью и высокой интенсивностью. В нем используется смесь, состоящая из азотной и серной кислот в присутствии перманганата калия (сейчас вместо азотной кислоты обычно используют фосфорную).

Из нано- и микрочастиц оксида графена уже научились делать сантиметровые образцы. Так, недавно китайскими учеными разработан новый материал, который состоит из оксида графена и лиофилизированного углерода (лиофилизация– способ мягкой сушки веществ, при котором высушиваемый препарат замораживается, а потом помещается в вакуумную камеру, где и происходит возгонка (сублимация) растворителя). Эта губчатая материя имеет плотность всего 0,16 мг/см3, что делает вещество самым легким из твердых материалов в мире. Красивой иллюстрацией этого является рис.2.30, на котором показан образец из нового материала, удерживаемый на весу лепестками цветка.

 

 

Рис. 2.30. Образец губчатой материи на основе оксида графена, удерживаемый лепестками цветка

 

Области применения.Как уже отмечалось, оксид графена обладает отличными сорбционными свойствами. Промышленные применения сорбентов на основе оксидов графена весьма многочисленны. Это, во-первых, дезактивация зараженных природных и техногенных объектов. Эксперименты показывают, что микроскопические частицы оксида графена легко растворяются в воде. Словно губка, они впитывают в себя радиоактивные вещества, превращаясь в небольшие комочки. Впоследствии эти комочки можно извлечь из жидкости и утилизировать, например – сжечь. Совместные исследования в этом направлении проводят ученые из МГУ (Россия) и университета Райса (США). По мнению ученых, такие сорбенты можно использовать в принципиально новой технологии очистки жидкостей, например в атомных электростанциях. Основные ее преимущества – простота и высокая эффективность. В частности, при сорбции ионов урана оксиды графена намного превосходят ближайшие аналоги (активированный уголь – примерно на порядок, бетонит – примерно в 7 раз)

При добыче полезных ископаемых, в том числе редкоземельных элементов и углеводородов, на поверхность поступают воды, содержащие природные радионуклиды – изотопы урана и радия. Это создает серьезную проблему очистки этих вод. С помощью оксида графена их можно очищать, что существенно улучшает экологию на территории вокруг месторождений. Помимо радионуклидов оксид графена обладает высокой эффективностью при очистке от тяжелых металлов, что дает возможность использовать его в любых системах водоочистки. Кроме того, с его помощью можно извлекать редкие и благородные металлы из бедных источников, содержащих данные металлы в незначительных количествах.

Кислородсодержащие функциональные группы на краях и в плоскости оксидов графена способны как к ковалентным, так и к нековалентным взаимодействиям с различными молекулами. Более того, значительная по величине удельная поверхность оксидов графена позволяет поглощать существенные количества ионов тяжелых металлов и органических специй. Благодаря особенностям приповерхностной химии и разных типов архитектуры конгломератов на основе оксидов графена, имеются многочисленные возможности для селективных каталитических процессов разложения вредных газов на безопасные производные.

Оксид графена нашел свое применение при изготовлении электродов суперконденсаторов (ионисторов). Исследования показали, что гидроксид калия реструктурирует оксид графита, создавая трехмерную пористую конструкцию. Каждая ее стенка имеет атомарную толщину, а площадь поверхности «активированного» оксида графита доходит до 3100 м²/г. Материал также отличается высокой удельной электропроводностью. Диаметр большей части пор в готовых образцах попадает в интервал 0,6 –5 нм. В экспериментах суперконденсатор, построенный с использованием нового электродного материала, показал высокую удельную емкость (200 Ф/г при напряжении 3,5 В) и высокую плотность энергии, причем последняя приближалась к показателям свинцово-кислотных аккумуляторов. После 10 000 циклов зарядки/разрядки «активированный» оксид графита продолжал работать на 97 % от исходной емкости.

В электронной промышленности для производства электронных компонентов специального назначения всегда имеется потребность в суперчистыех помещениях. Они требуют минимального наличия примесей в производственных зонах, а это могут обеспечить лишь высокоэффективные фильтры, в частности, фильтры на основе оксида графена.

Биомедицинское применение сорбционных свойств оксидов графена – относительно новая область со значительным потенциалом. За последнее десятилетие была проведена большая работа по изучению возможностей использования оксида графена, начиная от целевой доставки лекарств, биологического обнаружения и визуализации, создания антибактериальных материалов, и заканчивая использованием оксида графена в качестве биосовместимого каркаса для клеточной культуры.

Одним из методов использования оксида графена является диагностика раковых заболеваний. Его уникальные сорбционные свойства дают возможность обнаруживать биомаркеры (индикаторы раковых заболеваний) на ранних стадиях. Создаваемые на базе графена электрохимические устройства способны как детектировать биомаркеры, так и помогать изучать процессы образования активных форм кислорода в живых клетках.

Второй важной областью применения оксида графена является система адресной доставки диагностических и лекарственных средств. Уже осуществлено успешное использование оксида графена с магнитными наночастицами, выступающими в качестве носителей противораковых препаратов, нуклеотидов, пептидов, флуоресцентных агентов. Наиболее актуальным является направление, связанное с адресной доставкой короткоживущих радионуклидов к раковым клеткам, что позволит проводить эффективное направленное безоперационное лечение многих видов рака. Радионуклиды, которые предполагается использовать в сорбционном состоянии на носителях из оксида графена, – это короткоживущие альфа-излучатели (на основе Bi-213 и Ac-225), бета- излучатели (на основе Y-90 и Lu-177) или Оже-излучатели (на основе Ga-67).

Третьим направлением является создание сорбционных биодатчиков на основе оксида графена. В частности, доказано выборочное обнаружение ДНК в растворах.

Наконец, оксиды графена способны ускорить рост, дифференцировку (процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток) и пролиферацию (разрастание ткани организма путем размножения клеток делением) стволовых клеток и, следовательно, весьма перспективны в тканевой инженерии, регенеративной медицине и других биомедицинских областях.

 

Графан

Если в монослое графена к каждому атому углерода присоединить атом водорода, причем сделать это так, чтобы адсорбированные на разных углеродных подрешетках атомы водорода располагались по разные стороны от плоскости монослоя, то получится графан – диэлектрик с шириной запрещенной зоны Eg = 5 эВ. Графан может существовать только в «подвешенном» состоянии, но не на твердой поверхности, что делает его непригодным для реальных практических приложений. Например, не удается изготовить графен-графановые сверхрешетки, в которых наноленты графана играли бы роль потенциальных барьеров для электронов в графене. Альтернативой графану является графен с полной односторонней гидрогенизацией, в котором атомы водорода адсорбированы (как и в графане) на каждом атоме углерода, но (в отличие от графана) только с одной стороны от плоскости графенового монослоя. Величина Eg в таком графане достаточно велика – всего лишь на 1,6 эВ меньше, чем в графане. Но он, в принципе, может быть приготовлен на твердотельной подложке. Остается только неясным его термическая устойчивость по отношению к десорбции водорода.

 

 

Рис. 2.31. Модельное представление структуры графана

Метод получения графана сводится к пропусканию электрического тока через графен, находящийся в среде газообразного водорода. При этом атомы водорода присоединяются поочередно – один сверху «листа», другой снизу, немного деформируя плоскую структуру исходного графена. Поскольку графан является диэлектриком, то он может быть использован при производстве сверхминиатюрных транзисторов, выполняя функцию изолирующих слоев. Добавление атомов водорода к графену позволит получать на нем локальные области графана.

Во время обработки водородной плазмой часть пленки графена можно защитить резистом, и тогда гидрирование графена происходит в соответствии с рисунком маски из резиста. Не защищенная резистом часть пленки превращается в графан (диэлектрик), а защищенная остается графеном с высокой электропроводностью. Подобным образом можно, например, разделить лист исходного материала на множество проводящих полос. Ранее в качестве одного из вариантов решения проблемы получения проводящих контуров предлагалось использовать метод нанолитографии.

Следует отметить, что при отжиге пленок графана в атмосфере аргона при температуре порядка 425 ºС атомы водорода десорбируются, в результате чего атомы углерода возвращаются в состояние sp2-гибридизации, и, таким образом, из графана снова получается графен.

Большое относительное содержание водорода в графане (около 7,7 масс. %) не исключает его применения в водородной энергетике. Что касается возможности использования графана в топливных элементах автомобильных двигателей, то помимо выполняющихся для графана требований высокого содержания водорода (более 6 масс. %) и устойчивости при комнатной температуре, необходимым условием является также быстрая (в течение ~ 1 с) и почти полная десорбция водорода при температуре не выше 400 K. Как следует из некоторых результатов исследований, для графана это условие не выполняется, поскольку прочные ковалентные связи C-H, с одной стороны, обеспечивают высокую термическую устойчивость водорода, хемисорбированного на углеродных наноструктурах, а с другой – резко замедляют процесс десорбции. Таким образом, наиболее перспективным направлением практического применения графана видится наноэлектроника.

 

Флюорографен

Технология получение флюорографена схематически представлена на рис. 2.32. На подложке из оксида кремния традиционным способом, а именно, механическим отшелушиванием получали кристалл графена с линейными размерами более 100 мкм. На слой графена затем наносилась тонкая пленка (толщиной около 100 нм) полиметилметакрилата ПММА (оргстекло). После этого основание из оксида кремния вытравливалось, и накрытый полиметилметакрилатом графен переносился на другую подложку – очень мелкую золотую сетку c периодом 7 мкм. Смена подложки в данном случае необходима потому, что используемый для фторирования дифторид ксенона XeF2 весьма активно с ней взаимодействует, в то время как золото является элементом, инертным по отношению к подавляющему большинству активных веществ.

 

 

Рис. 2.32. Технология получения флюорографена

 

На третьем этапе с помощью ацетона пленка ПММА стравливалась, а графен на золотой подложке перемещался в тефлоновый контейнер, заполненный дифторидом ксенона XeF2. Контейнер после этого нагревали до 70 ºC и удерживали температуру неизменной в течение 30 часов. В результате графен фторировался и образовывался флюорографен. На данном этапе осуществлялся контроль его химического состава и структуры методами конфокальной рамановской микроскопии и атомно-силовой микроскопии. После этого флюорографен можно переносить на подложку из SiO2, что позволяет в принципе изготовить из него устройства наноэлектроники.

Исследования показали, что флюорографен представляет собой двумерную структуру с практически такой же гексагональной кристаллической решеткой, что и у графена, но в отличие от его химических производных (графана и оксида графена) флюорографен обладает отличной термической устойчивостью. Он остается совершенно стабильным соединением вплоть до 200 ºC, начиная терять атомы фтора только тогда, когда его температура достигает 400 ºC.

 

 

Рис. 2.33. Модельное представление структуры флюорографена

Что касается электрических свойств новой химической модификации графена, то флюорографен является полупроводником с большой шириной запрещенной зоны (около 3 эВ) и имеет высокое удельное сопротивление, которое при комнатной температуре составляет величину порядка 1012 Ом·м. Используя атомно-силовую микроскопию, удалось исследовать и механические свойства флюорографена. Оказалось, что модуль Юнга флюорографена составляет 0,3 ТПа. Это означает, что механическая прочность у флюорографена в 1,5 раза выше, чем у стали, и всего лишь в три раза уступает аналогичной характеристике для графена. Таким образом, фторирование монослоя углерода приводит к появлению нового двумерного материала. Флюорографен имеет хорошую структурную, температурную и химическую устойчивость, он не менее прочен, чем сам графен. Обладая такими свойствами, флюорографен может найти применение не только в графеновой микроэлектронике в качестве изолирующих «островков» в полевых транзисторах, но и, например, может рассматриваться как альтернатива тефлону в различных защитных покрытиях.

Химики научились делать графен из отбросов

MrVpetrik / youtube.com

Ученые разработали новый метод синтеза графена, для которого в качестве исходного реактива годится любое твердое вещество с высоким содержанием углерода, в том числе пищевые отбросы, древесный уголь, нефтяной кокс, автомобильные покрышки или смешанные пластиковые отходы. Данным методом удалось получить слабо упорядоченный графен с чистотой до 99 процентов, пишут авторы в журнале Nature.

Графен — одна из аллотропных модификаций углерода, которая представляет собой плоские листы атомарной толщины. Графен обладает рядом уникальных механических, химических и электронных свойств, что потенциально делает его востребованным в большом количестве областей науки и техники. Однако на данный момент широких применений у графена нет, так как существующие методы синтеза вещества годятся либо для получения крошечных количеств высококачественных образцов, либо для промышленного синтеза неориентированных хлопьев низкого качества.

Большинство способов крупномасштабного получения графена опирается на подход «сверху вниз», то есть в той или иной форме использует расслаивание графита путем его окисления до оксида, а затем восстанавливает полученное соединение до отдельных чешуек графена. При этом используются сильные и опасные окислители, а материал на выходе, как правило, невысокого качества из-за наличия дефектов. Подход «снизу-вверх», с другой стороны, используется для синтеза отдельных листов высокого качества, например, посредством осаждения из газовой фазы. Некоторые из таких методов можно масштабировать, но в таком случае также не удается сохранить высокое качество продукта.

Американские химики под руководством Джеймса Тура (James Tour) из Университета Райса придумали новый метод, который частично объединяет преимущества двух существовавших подходов. Авторы показали, что пропускание мощного импульса электрического тока через богатое углеродом вещество приводит к синтезу большого количества графена, причем субстратом могут быть самые распространенные и дешевые продукты, которые необходимо измельчить и поместить в керамическую емкость между электродов. В результате с разумными энергозатратами и без применения едких реактивов удается за одно включение получать до нескольких грамм турбостратного графена, то есть обладающего слоистой структурой, но со случайно повернутыми слоями.

Работа основывается на предыдущих исследованиях этой группы, в которых графен получался при помощи облучения технического углерода лазерными импульсами. Затем ученые узнали о работе другой группы, в которой металлические наночастицы получали при помощи пропускания мощного тока, что должно оказывать примерно одинаковое воздействие — резкий нагрев.

Последовавшие эксперименты с гибридной методикой позволили найти параметры электрического импульса, подходящие для достижения необходимых трех тысяч кельвин, а детальное изучение образцов подтвердило формирование графена. При этом исходный субстрат практически полностью испаряется в течение десяти миллисекунд, а затем атомы углерода выстраиваются в нужную конфигурацию из газовой фазы.

Авторы отмечают, что полученный материал хорошо подходит в качестве добавки, например, в строительные материалы, такие как бетон и асфальт, а также пластмассы. В частности, исследователи уже определили, что добавление синтезированного графена в количестве всего 0,05 объемных процентов увеличивает прочность на сжатие у бетона на четверть. Существуют также инициативы по улучшению с помощью графена дорожных покрытий и красок.

Ранее ученые улучшили каталитические свойства графена при помощи птичьего помета, превратили его в аномальный магнит и предложили удешевить его производство в сотни раз с применением коры эвкалипта.

Тимур Кешелава

Способы получения графена

До прошлого года единственным известным науке способом производства графена было нанесение на клейкую ленту тончайшего слоя графита с последующим удалением основы. Эта техника получила название «техники скотча». Однако недавно ученые обнаружили, что существует более эффективный способ получения нового материала: в качестве основы они стали использовать слой меди, никеля или кремния, который затем удаляется вытравливанием (рис.2). Таким способом, прямоугольные листы из графена шириной 76 сантиметров создала команда учёных из Кореи, Японии и Сингапура. Мало того что исследователи поставили своеобразный рекорд по размерам куска однослойной структуры из атомов углерода, так они ещё и создали на основе гибких листов чувствительные экраны.

Рисунок 2: Получение графена методом вытравливания

Впервые графеновые «хлопья» были получены физиками лишь в 2004 году, тогда их размер составил всего лишь 10 микрометров. Год назад команда Родни Руоффа из Техасского университета в Остине рассказала о том, что им удалось создать сантиметровые «обрывки» графена.

Руофф и его коллеги нанесли углеродные атомы на медную фольгу при помощи метода химического осаждения из пара (CVD). Исследователи лаборатории профессора Бюня Хее Хона из университета Сункхюнкхвана пошли дальше и увеличили листы до размеров полноценного экрана. Новая «рулонная» технология (roll-to-roll processing) позволяет получать из графена длинную ленту (рис. 3).

Рисунок 3: Изображение нанесённых друг на друга слоёв графена, полученное при помощи просвечивающей электронной микроскопии высокого разрешения.

Поверх графеновых листов физики поместили слой адгезивного полимера, растворили медные подложки, затем отделили полимерную плёнку – получился единичный слой графена. Чтобы придать листам большую прочность, учёные тем же способом «нарастили» ещё три слоя графена. В конце полученный «бутерброд» обработали азотной кислотой – для улучшения проводимости. Новенький лист графена помещается на подложку из полиэстера и проходит между нагретыми валиками (рис. 4).

Рисунок 4: Рулонная технология получения графена

Образовавшаяся структура пропускала 90% света и обладала электрическим сопротивлением меньшим, чем у стандартного, но по-прежнему очень дорогого прозрачного проводника – оксида индия и олова (ITO). Кстати, использовав листы графена в качестве основы сенсорных дисплеев, исследователи обнаружили, что их структура ещё и менее хрупкая.

Правда, несмотря на все достижения, до коммерциализации технологии ещё очень далеко. Прозрачные плёнки из углеродных нанотрубок пытаются вытеснить ITO уже довольно давно, но производители никак не могут справиться с проблемой «мёртвых пикселей», которые появляются на дефектах плёнки.

Применение графенов в электротехнике и электронике

Яркость пикселей в плоскопанельных экранах определяется напряжением между двумя электродами, один из которых обращен к зрителю (рис.5). Эти электроды обязательно должны быть прозрачными. В настоящее время для производства прозрачных электродов применяется оксид индия, легированный оловом (ITO), но ITO является дорогостоящим и не самым устойчивым веществом. К тому же мир вскоре исчерпает свои запасы индия. Графен является более прозрачным и более устойчивым, чем ITO, и уже был продемонстрирован ЖК-дисплей с графеновым электродом.

Рисунок 5: Яркость графеновых экранов в зависимости от подаваемого напряжения

Большой потенциал у материала и в других областях электроники. В апреле 2008 года ученые из Манчестера продемонстрировали самый крохотный в мире графеновый транзистор. Идеально правильный слой графена управляет сопротивлением материала, превращая его в диэлектрик. Становится возможным создание микроскопического переключателя питания скоростного нано-транзистора для контроля движения отдельных электронов. Чем меньше транзисторы в микропроцессорах, тем быстрее он сам, и ученые надеются, что графеновые транзисторы в компьютерах будущего станут размером с молекулу, учитывая, что современные кремниевые технологии производства микротранзисторов практически достигли предела своих возможностей.

Графен не только отличный проводник электричества. У него высочайшая теплопроводность: колебания атомов легко распространяются по углеродной сетке ячеистой структуры. Тепловыделение в электронике — серьезная проблема, поскольку существуют пределы высоких температур, которые электроника способна выдержать. Однако ученые из университета штата Иллинойс обнаружили, что транзисторы, в которых используется графен, обладают интересным свойством. В них проявляется термоэлектрический эффект, приводящий к понижению температуры прибора. Это может означать, что электроника, построенная на применении графена, оставит в прошлом радиаторы и вентиляторы. Таким образом, привлекательность графена в качестве перспективного материала для микросхем будущего дополнительно возрастает (рис.6).

Рисунок 6: Щуп атомно-силового микроскопа, сканирующий поверхность графеново-металлического контакта с целью измерения температуры.

Ученым было непросто измерить теплопроводность графена. Они изобрели совершенно новый способ измерения его температуры, расположив пленку из графена длиной в 3 мкм над точно таким же крохотным отверстием в кристалле диоксида кремния. Затем пленку нагрели лазерным лучом, заставив ее вибрировать. Эти вибрации помогли рассчитать температуру и теплопроводность.

Изобретательность ученых не знает границ, если речь идет об использовании феноменальных свойств нового вещества. В августе 2007 года был создан самый чувствительный из всех возможных датчиков на его основе. Он способен отреагировать на одну молекулу газа, что поможет своевременно обнаружить наличие токсинов или взрывчатых веществ. Чужеродные молекулы мирно опускаются в графеновую сеть, выбивая из нее электроны либо добавляя их. В результате меняется электрическое сопротивление графенового слоя, которое и измеряется учеными. Даже самые маленькие молекулы задерживаются прочной графеновой сеткой. В сентябре 2008 года ученые из Корнельского университета в США продемонстрировали, как графеновая мембрана, подобно тончайшему воздушному шару, надувается за счет разницы давлений в несколько атмосфер по обеим ее сторонам. Эта особенность графена может быть полезной при определении протекания различных химических реакций и вообще при изучении поведения атомов и молекул.

Получать большие листы чистого графена пока еще очень сложно, но задачу можно упростить, если слой углерода смешать с другими элементами. В Северо-Западном университете США графит окислили и растворили в воде. Результатом стал бумагоподобный материал — графеноксидная бумага (рис.7). Она очень жесткая и довольно проста в изготовлении. Графеноксид пригоден в качестве прочной мембраны в аккумуляторах и топливных элементах.

Рисунок 7: Графеноксидная бумага

Мембрана из графена — идеальная подложка для объектов изучения под электронным микроскопом. Безупречные ячейки сливаются на изображениях в однородный серый фон, на котором четко выделяются другие атомы. До сих пор было практически невозможно различить в электронном микроскопе легчайшие атомы, но с графеном в качестве подложки можно будет разглядеть даже малые атомы водорода.

Возможности применения графена можно перечислять до бесконечности. Недавно физики Северо-Западного университета США выяснили, что графен можно смешивать с пластиком. Результат — тонкий суперпрочный материал, выдерживающий высокие температуры и непроницаемый для газов и жидкостей.

Сфера его применения — производство легких автозаправочных станций, запчастей для автомобилей и самолетов, прочных лопастей ветровых турбин. В пластик можно упаковывать пищевые продукты, надолго сохраняя их свежими.

Графен не только тончайший, но и самый прочный в мире материал. Ученые из Колумбийского университета в Нью-Йорке убедились в этом, поместив графен над крошечными отверстиями в кристалле кремния. Затем нажатием тончайшей алмазной иглы попытались разрушить слой графена и измерили силу давления (рис.8). Оказалось, что графен в 200 раз прочнее стали. Если представить себе графеновый слой толщиной с пищевую пленку, он бы выдержал давление острия карандаша, на противоположном конце которого балансировал бы слон или автомобиль.

Рисунок 8: Давление на графен алмазной иглы

Графен – ответы на главные вопросы

Ранее о таких веществах ничего не было известно. Ученые говорят о том, что с использованием графена будет произведен переворот во всей электронике, и эта новая форма углерода заменит кремний во всех электронных приборах, в миллиардах микросхем, и, если это произойдет, это будет грандиозное практическое применение грандиозного открытия.

2. Уникальные свойства графена

Технический прорыв на основе графена возможен, потому что это самое тонкое вещество в мире может одновременно обладать сразу несколькими очень важными и уникальными электронными, электрическими свойствами. Во-первых, это вещество может быть прекрасным проводником, так как оно состоит из цепей шестиугольников углерода, по которым очень легко передается электрический ток. Во-вторых, при некотором видоизменении графен может быть эффективным изолятором. Можно сделать микросхему, которая состоит из проводников, полупроводников и изоляторов. Каждая из этих характеристик вещества может быть достигнута на основе графена.

3. Применение новой формы углерода

Существует возможность практически из одного вещества — самого обычного углерода, который есть на Земле в огромном количестве, — получать все электронные устройства на основе микросхем. В этом и состоит его уникальность. Например, из кремния можно сделать только полупроводниковую часть электронных устройств. Из графена же можно сделать все.

Первоначальный способ его получения очень прост, здесь проявилось хитроумие российских ученых, которые обычно сталкиваются с трудностями в работе без современных приборов и устройств, а также с финансированием, поэтому они вынуждены придумывать какие-то простые способы достижения результатов. Гейму и Новоселову это сделать удалось.

Важно отметить, что обычно Нобелевские премии по естественным наукам даются за открытия, сделанные достаточно давно. Должно пройти время, чтобы открытие осознали, применили его на практике, чтобы выяснилось, что результаты исследований пользуются большим вниманием со стороны других исследователей и так далее. В этом случае премия была дана через несколько лет после непосредственного открытия, которое было признано очень необычным.

4. Перспективы использования графена

Сейчас графена получают очень много. Обычно после подобных открытий очень быстро находятся способы получения больших количеств данного вещества. В настоящее время довольно трудно предсказать, где именно будет использоваться эта новая форма углерода. Когда ученые занимаются фундаментальной наукой, они в последнюю очередь думают о применении полученных данных. Они открывают новые законы природы, вещества или явления с расчетом на то, что потом кто-то придумает, как это можно будет использовать. Но, поскольку про графен известно довольно много, какие-то предсказания сделать можно. Например, вполне возможно, что скоро из этой формы углерода можно будет изготавливать любые виды ткани и одежды.

Графен/Получение — Викиверситет

Существует несколько способов для получения графена, которые можно разделить на три большие группы. Это разделение произвольно, но позволяет разграничить полученный графен по качеству. К первой группе относятся механические методы получения графена, основной из которых механическое отшелушивание (или расщепление mechanical cleavage), который к настоящему моменту (2009 год) не имеет аналогов для производства больших образцов с размером вплоть до ~1 мм пригодных для транспортных и оптических измерений. Ко второй группе методов относят химические методы, когда графит интеркалируется кислотами, а потом расщепляется ультразвуком. Эти методы отличаются большим процентом выхода материала — их возможности ограничиваются тоннами, но малыми размерами плёнок ~10-1000 нм. Химические методы приспособлены для промышленного производства. Впрочем этот недостаток преодолён. К последней группе относятся методы роста на различных подложках и метод термического разложения SiC подложки, благодаря которым можно вырастить плёнки графена неоднородные по толщине.

Механические методы[править]

Рис. 1. Кусочки тонких слоёв графита, полученные в процессе отшелушивания, на поверхности липкой ленты.

Механическое расщепление графита при помощи липкой ленты применяется для подготовки образцов с чистой поверхностью для калибровки сканирующего туннельного и атомно силового микроскопов. Начиная с 2004 года механическое расщепление высокоориентированного пиролитического графита или киш-графита[1] привело к возможности создания плёнок графена вплоть до ~100 мкм.[2] или даже до ~1 мм., но это зависит во многом от удачи. Образцы графита должны иметь хорошее качество и содержать слои с большой площадью. Метод механического расщепления до примитивности прост. Сначала подготавливают тонкую пластину графита,которую помещают на липкую ленту и потом складывают ленту вдвое. Разводя концы ленты легко получить два кусочка графита на ленте. Повторяя этот процесс несколько раз, пока не будет получен достаточно тонкий слой (среди многих плёнок могут попадаться и однослойные). После расщепления скотч с тонкими плёнками графита прижимают к подложке окисленного кремния. Часть плёнок прилипает к подложек, хотя при этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки.[3] В настоящее время основная часть образцов для транспортных измерений изготавливается таким образом.

Альтернативный метод предложен в работе[4]. Метод заключается в том, что окисленную подложку кремния покрывают эпоксидным клеем (в работе использовался слой толщиной ~10 мкм) и тонкую пластинку графита прижимают к клею при помощи пресса. После удаления графитовой пластинки с помощью липкой ленты на поверхности клея остаются области с графеном и графитом. Толщину графита определяли с помощью комбинационного рассеяния света и атомно-силовым микроскопом измеряли шероховатость графена, которая оказалась равной всего 0.16 нм (в два раза меньше шероховатости графена на подложке кремния[5]).

В статье[6] предложен метод печати графеновых электрических схем (ранее этот метод использовался для печати тонкоплёночных транзисторов на основе нанотрубок и для органической электроники.[7][8]). Сам процесс печати состоит из последовательного переноса с подложки Si/SiO2 золотых контактов, графена и наконец диэлектрика (PMMA) с металлическим затвором на прозрачную подложку из полиэтилентерефталата (ПЭТФ) предварительно нагретую выше температуры размягчения до 170°C, благодаря чему контакты, вдавливались в ПЭТФ, а графен приобретает хороший контакт с материалом подложки. При таком методе нанесения графена подвижность не становится меньше, хотя и появляется заметная асимметрия между электронной (μe=10000 см2В-1с-1) и дырочной (μh=4000 см2В-1с-1) областями проводимости. Этот метод пригоден для нанесения графена на любую подложку пригодную, в частности, для оптических измерений.

Химические методы[править]

Кусочки графена также можно приготовить из графита, используя химические методы[10]. Для начала микрокристаллы графита подвергаются действию смеси серной и соляной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита[11][12][13]

В статьях[14][15] описан ещё один химический метод получения графена, встроенного в полимерную матрицу.

Эпитаксия и разложение[править]

Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD)[16], рост при высоком давлении и температуре (англ. HPHT)[17]. Из этих методов только последний можно использовать для получения плёнок большой площади.

Работы[18][19] посвящёны получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. В работах[20][21] та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.

Графен можно вырастить на металлических подложках рутения[22] и иридия[23].

Если кристалл пиролитического графита и подложку поместить между электродами, то, как показано в работе[24], можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды.

Некоторая комбинация механического метода (графитовым стержнем пишут по поверхности подложки кремния, оставляя плёнки при разрушении) и последующего высокотемпературного отжига (~1100 K) использована для получения тонких слоёв графита вплоть до однослойных плёнок[25].

  1. ↑ Zhang Y.et. al. «Experimental observation of the quantum Hall effect and Berry’s phase in graphene» Nature 438, 201 (2005) doi:10.1038/nature04235
  2. ↑ Kuzmenko A. B. cond-mat/0810.2400
  3. ↑ Novoselov, K. S. et al. «Two-dimensional atomic crystals», PNAS 102, 10451 (2005) doi:10.1073/pnas.0502848102
  4. ↑ Huc V., et. al. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite Nanotechnology 19, 455601 (2008) doi:10.1088/0957-4484/19/45/455601 Препринт
  5. ↑ Ishigami M. et. al. Atomic Structure of Graphene on SiO2 Nano Lett., 7, 1643, (2007) doi:10.1021/nl070613a
  6. ↑ Chen J.-H. et. al. Printed Graphene Circuits Adv. Mater. 19, 3623 (2007) doi:10.1002/adma.200701059 Препринт
  7. ↑ Hines D. R. et. al. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates Appl. Phys. Lett. 86, 163101 (2005) doi:10.1063/1.1901809
  8. ↑ Hines D. R. et. al. Transfer printing methods for the fabrication of flexible organic electronics Appl. Phys. 101, 024503 (2007) doi:10.1063/1.2403836
  9. ↑ Shioyama H. Cleavage of graphite to graphene J. Mat. Sci. Lett. 20, 499—500 (2001)
  10. Solution Properties of Graphite and Graphene Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon J. Am. Chem. Soc.; 2006; 128(24) pp 7720 — 7721; (Communication) doi:10.1021/ja060680r
  11. ↑ Bunch J. S. et al. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots Nano Lett. 5, 287 (2005) doi:10.1021/nl048111+
  12. ↑ Li X. et. al. Highly conducting graphene sheets and Langmuir-Blodgett films Nature Nanotechnology 3, 538 (2008) doi:10.1038/nnano.2008.210
  13. ↑ Hernandez Y. et. al. High-yield production of graphene by liquid-phase exfoliation of graphite Nature Nanotech. 3, 563 (2008) doi:10.1038/nnano.2008.215
  14. ↑ Stankovich S. et al. «Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)», J. Mater. Chem. 16, 155 (2006) doi:10.1039/b512799h
  15. ↑ Stankovich S. et al. «Graphene-based composite materials», Nature 442, 282 (2006) doi:10.1038/nature04969
  16. ↑ Wang J. J. et. al. Free-standing subnanometer graphite sheets Appl. Phys. Lett. 85, 1265 (2004) doi:10.1063/1.1782253
  17. ↑ Parvizi F., et. al. Graphene Synthesis via the High Pressure — High Temperature Growth Process Micro Nano Lett., 3, 29 (2008) doi:10.1049/mnl:20070074 Препринт
  18. ↑ Rollings E. et. al. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate J. Phys. Chem. Solids 67, 2172 (2006) doi:10.1016/j.jpcs.2006.05.010
  19. ↑ Hass J. et. al. Highly ordered graphene for two dimensional electronics Appl. Phys. Lett. 89, 143106 (2006) doi:10.1063/1.2358299
  20. ↑ Berger, C. et al. «Electronic Confinement and Coherence in Patterned Epitaxial Graphene», Science 312, 1191 (2006) doi:10.1126/science.1125925
  21. ↑ J. Hass et. al. Why Multilayer Graphene on 4H-SiC(000-1) Behaves Like a Single Sheet of Graphene Phys. Rev. Lett. 100, 125504 (2008).
  22. ↑ Sutter P. W. et. al. Epitaxial graphene on ruthenium Nature Mat. 7, 406 (2008) doi:10.1038/nmat2166
  23. ↑ N’Diaye A. T. et. al. Structure of epitaxial graphene on Ir(111) New J. Phys. 10, 043033 (2008) doi:10.1088/1367-2630/10/4/043033
  24. ↑ Sidorov A. N. et al.,Electrostatic deposition of graphene Nanotechnology 18, 135301 (2007) doi:10.1088/0957-4484/18/13/135301
  25. ↑ Banerjee A. and Grebel H. Depositing graphene films on solid and perforated substrates Nanotechnology 19, 365303 (2008) doi:10.1088/0957-4484/19/36/365303

мифы и реальность / Offсянка

От редакции: затрагивая тему модернизации экономики России и развития высоких технологий в нашей стране, мы ставили задачу не только обратить внимание читателей на недостатки, но и рассказать о положительных примерах. Тем более что таковые есть, и немало. На минувшей неделе мы рассказывали о разработке в России топливных элементов, а сегодня поговорим о графене, за изучение свойств которого «бывший наш народ» недавно получил Нобелевскую премию. Оказывается, и в России, а точнее — в Новосибирске, над этим материалом работают весьма серьезно.

Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.

Тем не менее, есть и другие претенденты на лидерство в качестве полупроводникового материала. Например, графен, который после вручения Нобелевской премии за изучение его свойств, стал очень моден. Для перехода на него с кремния действительно есть основания, так как графен обладает рядом существенных преимуществ. Но получим ли мы в итоге «электронику на графене» — еще не ясно, потому что рядом с достоинствами притаились и недостатки.

Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.

Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?

Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.

Кремний — действительно уникальный материал, и именно это является причиной того, что в него вложено столько сил, средств и интеллектуальных ресурсов. Фундаментальные свойства кремния изучены настолько детально, что есть распространенное мнение о том, что ему просто не может быть замены. Однако недавние исследования графена дали зеленый свет другой точке зрения, которая заключается в том, что новые материалы могут быть доведены до такой степени, что смогут заменить кремний.

Кристаллическая структура кремния

Подобные дискуссии возникают в науке периодически, и разрешаются они, как правило, только после серьезных исследований. Например, недавно была схожая ситуация с высокотемпературными сверхпроводниками. В 1986 году Беднорц и Мюллер открыли сверхпроводимость в барий-лантан-медном оксиде (за это открытие им была присуждена Нобелевская премия уже в 1987 году – через год после открытия!), которая обнаруживалась при температуре, значительно превышающей значения, характерные для известных к тому времени сверхпроводящих материалов. При этом по строению купратные сверхпроводящие соединения значительно отличались от низкотемпературных сверхпроводников. Затем лавинообразные исследования родственных систем привели к получению материалов с температурой сверхпроводящего перехода 90 К и выше. Это означало, что в качестве хладоагента можно использовать не дорогой и капризный жидкий гелий, а жидкий азот — в газообразном виде его в природе очень много, и к тому же он существенно дешевле гелия.

Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.

Солнечная батарея на основе поликристаллического кремния

С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.

Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?

Владимир Федоров: Графен – это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.

Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру

А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.

Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов

Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.

Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные – 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.

Алла Аршинова: Прочнее алмаза?

Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.

Графит в первозданном виде

Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?

Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.

Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?

Владимир Федоров: Наверное, можно было. Просто они в свое время уехали. Их первая статья, опубликованная в Nature, написана в соавторстве с несколькими учеными из Черноголовки. По-видимому, наши российские исследователи тоже вели работу в этом направлении. Но завершить ее убедительным образом не получилось. Жалко. Возможно, одной из причин являются более благоприятные условия для работы в зарубежных научных лабораториях. Я недавно приехал из Кореи и могу сравнить условия работы, которые мне были там предоставлены, с работой дома. Так вот там я ничем не был озабочен, а дома – полно рутинных обязанностей, которые отнимают много времени и постоянно отвлекают от главного. Меня обеспечивали всем, что было необходимо, причем исполнялось это с поразительной быстротой. Например, если мне нужен какой-то реактив, я пишу записку — и на следующий день мне его привозят. Подозреваю, что у нобелевских лауреатов тоже очень хорошие условия для работы. Ну и им хватило упорства: они многократно пытались получить хороший материал и, наконец, достигли успеха. Они действительно потратили большое количество времени и сил на это, и премия в этом смысле вручена заслуженно.

Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?

Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.

Во-вторых, графен обладает высокой теплопроводностью, и это очень важно для электронных устройств. Он очень легкий, а графеновый лист — прозрачный и гибкий, его можно свернуть. Графен может быть и очень дешевым, если разработают оптимальные методы его получения. Ведь «скотч-метод», который продемонстрировали Гейм и Новоселов, не является промышленным. Этим методом получают образцы действительно высокого качества, но в очень малых количествах, только для исследований.

И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.

Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?

Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.

Есть еще один метод, также достаточно традиционный и известный уже давно — это химическое осаждение из газовой фазы с участием газообразных соединений. Его суть заключается в следующем. Сначала реакционные вещества возгоняют в газовую фазу, потом их пропускают через нагретую до высоких температур подложку, на которой и осаждаются нужные слои. Когда подобран исходный реагент, например, метан, его можно разложить таким способом, чтобы водород отщепился, а углерод остался на подложке. Но эти процессы трудно контролируемы, и идеальный слой получить сложно.

Графен— одна из аллотропных модификаций углерода

Существует и другой метод, который сейчас начинает активно применяться, – метод использования интеркалированных соединений. В графит, как и в другие слоистые соединения, можно помещать между слоями молекулы различных веществ, которые называются «молекулы гостя». Графит – это матрица «хозяина», куда мы поставляем «гостей». Когда происходит интеркаляция гостей в решетку хозяина, естественно, слои разъединяются. Это как раз то, что и требуется: процесс интеркаляции расщепляет графит. Интеркалированные соединения являются очень хорошими предшественниками для получения графена — нужно только вынуть оттуда «гостей» и не дать слоям снова схлопнуться в графит. В этой технологии важным этапом является процесс получения коллоидных дисперсий, которые можно превращать в графеновые материалы. Мы в нашем институте поддерживаем именно такой подход. На наш взгляд, это самое продвинутое направление, от которого ожидаются очень хорошие результаты, потому что из различного рода интеркалированных соединений можно наиболее просто и эффективно получать изолированные слои.

По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой

Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.

Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

«материал будущего»: где его можно применять?

Об удивительном «материале будущего» — графене — говорят, пишут, спорят, пытаются доказать, что он может иметь успех в будущем. А всё потому, что графен за последние десять лет наделал в научном мире столько шума, что постепенно получает применение практически во всех сферах человеческой деятельности.

Уверен, что вы немного слышали об этом чудо-материале, может даже читали о его применении. Сегодня я попробую собрать все известные факты его применения в нашей современной жизни.

Содержание

  1. Самая тонкая лампочка в мире
  2. Графен действует, как сверхпроводник
  3. Лучшая акустическая система
  4. Тонкие бронежилеты
  5. Фильтрация соли из морской воды
  6. Краска будущего
  7. Спортивная обувь
  8. На страже нашего здоровья
  9. Графеновые аккумуляторы

Что собой представляет графен?

Впервые мир услышал о графене в 2004 году, когда в журнале Science британскими исследователями российского происхождения из Манчестерского университета Андреем Геймом и Константином Новосёловым была опубликована статья об этом удивительном материале. Стоит отметить, что в 2010 году ученные получили за своё изобретение Нобелевскую премию. Прежде всего, представьте себе материал в миллион раз тоньше бумаги. Невероятно прочный, сложенный из «пчелиных сот», незаметных невооруженному взгляду. Гибкий, эластичный, стабильный при комнатной температуре. Обладающий высокой тепло- и электропроводностью. Вы скажете, что один материал не может совмещать в себе все эти свойства, но не тут-то было. Это как раз и есть свойства графена. По сути, «материал будущего» представляет собой первый строго двумерный материал. Свойства любого материала определяются не только химическим составом, но и расположением атомов. С углеродом это особенно понятно. Всем известно, насколько разные алмаз и графит, хотя состоят они из одних и тех же атомов углерода. Но эти атомы разным образом упорядочены в пространстве, что приводит к колоссальному различию свойств.

Во всех известных до недавнего времени материалах атомы упорядочены в трех измерениях, поэтому они, соответственно, имеют длину, ширину и высоту. А графен – это один слой углеродных атомов, взятый из графита. У него есть длина и ширина, а высоты, по сути, нет, поэтому мы и называем его двумерным. 

Графен – двумерная аллотропная модификация углерода, образованная слоем, толщиной в один атом, организованным в гексагональную кристаллическую решетку. Его можно представить, как плоскость, срез графита, отделенный от объемного кристалла. Графен обладает огромной механической прочностью и рекордно высокой теплопроводностью. Необычайно высокая подвижность электронов в нем делает графен перспективным материалом для использования в самых различных областях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Это один из самых сложных в мире материалов, который в 100 раз превосходит по прочности сталь, обладает огромной гибкостью и множеством других возможностей. На самом деле графен, по-видимому, является одним из самых полезных новых материалов. Где уже применяют графен?

Самая тонкая лампочка в мире

Коллектив ученых из Колумбийского университета и Сеульского национального университета (SNU) сумел создать самую тонкую лампочку в мире благодаря графену. Ученые создают устройство с использованием небольших графитовых нитей, которые прикреплены к металлическим электродам и кремниевой подушке.

Известно, что исследователи создали микролампочку, присоединив к металлическим электродам крошечные нити из графеновой пленки, при этом вся структура лампочки располагалась на одном кремниевом основании. Потом пропустили ток через нити, чтобы заставить их нагреться. Команда смогла показать, что графен достигал температур выше 2500 градусов по Цельсию, достаточно горячий, чтобы ярко светиться. Руководитель проекта профессор Джеймс Хон утверждает, что «они создали то, что является самой тонкой в мире лампой накаливания», которую можно найти в смарт-переносных устройствах.

В настоящее время исследователи заняты доработкой их изобретения, конструкция которого должна стать более технологичной. Кроме этого, сейчас проводятся измерения скоростных параметров графеновых источников света, скорости их включения и выключения, что имеет важное значения для использования таких источников света в оптических коммуникациях. Кроме этого, производятся поиски технологических методов, которые позволят включить такие источники света в состав тонких и гибких электронных устройств.

Графен действует, как сверхпроводник

Графен также может выступать в качестве сверхпроводника, а это означает, что электрический ток может проходить через него с нулевым сопротивлением. Это открытие было сделано исследователями из Кембриджского университета в Великобритании. Эффект активируется путем прикрепления графена к материалу, который называется praseodymium cerium copper oxide (PCCO). Как это качество графена может помочь? В будущем, благодаря этому открытию, ученые могут обеспечить источник неограниченной энергии.

Разработчики признались, что у них есть мечта создать такой источник неограниченной энергии, который бы позволил зарядить однажды ноутбук или смартфон, а потом можешь забыть о том, чтобы снова заряжать. Проще говоря, одной зарядки должно хватить на всё время, пока ваше устройство будет полноценно работать.

В настоящее время проблема заключается лишь в том, что такие сверхпроводники работают только при крайне низких температурах. Хотя материал PCCO, используемый в этом эксперименте, также охлаждался до очень низкой температуры, есть надежда, что в будущем можно будет выбрать альтернативные материалы, которые могут быть ближе к комнатной температуре.

Лучшая акустическая система

Всем нам известно, что для создания звука обычные динамики создают механические вибрации. Тем не менее, графен может предложить совсем иной подход. Исследователи из Университета Эксетера, Великобритания, продемонстрировали, как этот материал может генерировать сложные и управляемые звуковые сигналы при нагревании и охлаждении. Принцип работы нового динамика основывается на перемене температуры графена, изменения которой приводят к возникновению звука. Ранее графен уже применялся при создании динамиков, но в прошлом из него делали диффузоры, что приводило к увеличению эффективности работы устройства. Из нового же динамика исчезли все движущиеся части, что позволило в разы уменьшить его размер и увеличить эффективность. Динамик выполнен в форм-факторе микропроцессора размером с ноготь большого пальца. Внутри корпуса процессора, помимо самого динамика, спрятаны усилитель и даже графический эквалайзер. Новая технология не включает движущиеся части и не использует вибрации. Графен, который почти полностью прозрачен и способен воспроизводить сложные звуки без физического движения, может запустить новое поколение аудиовизуальных технологий. Результатом открытий может стать возможность включения динамиков в ультратонкие технологии сенсорного экрана, в которых экран способен создавать звук самостоятельно. В таком случает потребность в отдельных динамиках отпадёт.

Тонкие бронежилеты

Все мы знаем, что человеческая жизнь бесценна, поэтому всячески стараемся защитить ее, в том числе и с помощью бронежилетов. Но они громоздкие, тяжелые, неудобные, сковывают движение. Но использование графена перевернет в будущем ваше представление о бронежилетах.

Так, ученые из Georgia Tech обнаружили, что пленка из графена, нанесенная в два слоя, может защитить от пули. Этот сверхлегкий и сверхпрочный материал они назвали «диамином» и предлагают использовать в производстве бронежилетов.

Результаты своих разработок ученые успешно продемонстрировали перед почтенной публикой в Городском университете Нью-Йорка. В эксперименте команда показала, что даже алмазный наконечник не способен пробить двухслойную эпитаксиальную пленку графена.

Можно предположить, что как и ультралегкие, пуленепробиваемые пленки, так и износостойкие, гибкие, защитные покрытия могут быть использованы для защиты экрана и корпуса устройств, например, в смартфонах, планшетах и ноутбуках.

Фильтрация соли из морской воды

Запасы пресной воды на Земле с каждым годом уменьшаются. Проблема недостатка питьевой воды сейчас стоит в одном ряду с проблемой голода. А ведь вода занимает 71% земной поверхности, хотя ее постоянно человечеству не хватает. А все потому, что большая ее часть находится в океане, то есть попросту она солёная и не пригодна для питья.

Специалистам из университета Синсю и Государственного университета Пенсильвании удалось частично решить проблему фильтрации соли из морской воды, разработав интересный способ опреснения воды с помощью сита из мембран, произведенных из оксида графена.

Суть в том, что в обычных условиях отфильтровать соль не получается, так как ее ионы меньше молекул воды. Но мембраны из оксида графена с этим справляются, блокируя ионы соли. Тем самым, пропуская при этом саму воду. Правда, есть нюанс — это создать фильтры подобного рода, которые смогли бы протянуть достаточно долго при непрерывной работе. Например, хлор очень быстро разрушает подобные материалы, и потому ученые решили найти способ получше.Они разработали гибридный фильтр, в мембрану которого входит чистый графен, который лучше сопротивляется хлору. К тому же такая мембрана не разрушается при сильном течении, да и в производстве дешевле. В результате она отфильтровывает 85% соли, просто пропуская воду через себя, и никакой дополнительной энергии или электричества для этого процесса не нужно. Но полученная вода недостаточно чиста для питья, но идеально подходит для использования в сельском хозяйстве.

Однако это ничто по сравнению с недавними исследованиями, полученными в Манчестерском университете Великобритании. Там исследователи использовали графен для фильтрации цвета виски — превращая его в прозрачную жидкость. То есть, получили возможность менять цвет жидкости, что весьма интересно.

Краска будущего

Команда ученых из Института полимерных исследований им. Лейбница в Германии разработала графеновое покрытие, которое может сигнализировать специалистам о возможном повреждении конструкций, к примеру, моста, простым изменением цвета. Команда опубликовала свои результаты в журнале Material Horizons , в котором рассказывается о развитии и потенциальных применениях графена в этой сфере. 

Вдохновленные тем, как скалы отражают свет, они создали покрытие, которое позволяет увеличить некоторую длину волны света за счет других. В настоящее время работа по созданию данной краски все еще находится на ранней стадии, так как еще многое предстоит сделать с точки зрения исследований и инвестиций, чтобы решить проблемы, связанные с расширением производства, контролем параметров и т. д. 

Однако, если эти исследования будут эффективно решены, цветные графеновые покрытия потенциально могут стать неоценимым инструментом в арсенале конструкторов, инженеров-конструкторов.

Спортивная обувь

В декабре 2017 года исследователи из частного университета Райса (Хьюстон) сообщили, что им удалось создать удивительные кроссовки из графена. И добавили, что их спортивная обувь отличается невероятной прочностью и износостойкостью, но при этом очень удобная и характеризуется отличными электропроводящими свойствами.

Особенно поражает эластичность спортивных кроссовок из графена: их можно скрутить, согнуть, сложить и растянуть без какого-либо ущерба для своей структуры. При этом ее эластичность, прочность и износостойкость на 50% выше, чем у самой крепкой спортивной обуви, создаваемой сегодня. Так, в ходе эксперимента ученые выяснили, их кроссовки выдержат беспрерывную нагрузку минимум в 500 км. При этом обувь не потеряет своего внешнего вида. 

В продаже кроссовки из графена должны появиться уже в этом году. Стоимость их не будет баснословно высокой, и составит всего лишь $200. Уверен, что каждый захочет иметь прочные кроссовки из графена. Их продажей будет заниматься один из известных брендов спортивной одежды — британская компания inov-8.

На страже нашего здоровья

Ученые из Университета штата Иллинойс, Чикаго, продемонстрировали, как графен легко обнаруживает раковые клетки. В своих попытках они помещали клетки мозга, взятые у мышей, на графитовый лист, и обнаружили, что они способны отличить одну клетку нормального клеточного рака. Связан этот феномен с тем, что графен обладает удивительной электрической проводимостью. При контакте с гиперактивной раковой клеткой, электрическое поле, окружающее её, отталкивает электроны в долевом облаке графена. Это меняет энергию колебаний атомов углерода, а разницу эту можно заметить и выявить ту самую раковую клетку.

Исследователи из Техасского университета в Остине и вовсе решили использовать графен для диагностики состояния здоровья человека. Ими были разработаны уникальные прозрачные татуировки, которые дают возможность с высокой точностью определять температуру тела и гидратацию человеческой кожи.  Более того, они могут делать электрокардиограмму, электромиографию и считывать электроэнцефалограммы для измерения электрической активности сердца, мышц и мозга. Работы в этом направлении еще ведутся, и кто знает, может в будущем нас ждут еще и новые открытия в диагностике нашего организма при помощи графена.

Графеновые аккумуляторы

Уверен, что каждый из нас мечтает о том, чтобы его смартфон, планшет или ноутбук заряжался за считанные минуты. Возможно, уже совсем скоро нашим мечтам суждено осуществиться. Так, китайская компания  под названием Dongxu Optoelectronic создала батарею G-King, которая имеет мощную емкость — 4800 мА*ч, но ее можно заряжать от пустого до полного в течение 15 минут. Также создатели аккумулятора рассчитывают, что он может выдержать 3 500 циклов разрядки и зарядки. Это примерно в семь раз превосходит срок службы средней литий-ионной батареи. А всё благодаря удивительному «материалу будущего» — графену. Он обладает огромным технологическим потенциалом. Помимо увеличения эффективности батарей в устройствах, материал может пригодиться для создания устройств с гибкими экранами, различные версии которых сейчас разрабатываются.

В сухом остатке

Пусть ученым удалось получить небольшое количество графена, но то, что он имеет большой потенциал в будущем, вселяет большие надежды. Возможно, уже очень скоро мы будем пользоваться смартфонами с дисплеем, корпусом и аккумулятором из графена, ходить в обуви, сделанной из этого чудо-материала, носить прозрачные татуировки для диагностики состояния здоровья и ездить на автомобилях, изготовленных из высокопрочного и в то же время гибкого, эластичного графена. Фантастика и реальность всегда где-то рядом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *