Градуировка термопар – Термопары, термопреобразователи сопротивления — выбор, подключение, установка. Низкая цена

52 — Градуировка термопары

вставляется для теплоизоляции в пенопластовую чашку, и пропитать небольшим количеством воды. При отсутствии снега используется лед (приготовляется в холодильнике), который следует мелко натолочь.

Жидкий азот из большого металлического сосуда Дьюара наливается в дьюаровский стакан. Рабочий спай термопары погружается в азот и дьюар закрывается плотной крышкой так, чтобы жидкий азот находился в равновесии с собственным паром при атмосферном давлении.

Вода кипятится в колбочке; спай термопары помещается в парах кипящей воды вблизи от ее поверхности.

Олово расплавляется в фарфоровом тигельке на электроплитке.

Измерение э.д.с. методом компенсации.

Для измерения э.д.с. термопары используется метод компенсации, краткое описание которого приведено ниже. Более подробно читайте в книге: В.А. Соловьев, В.Е.Яхонтова «Руководство к лабораторным работам по физике» СПб, 1997г.,§5.4.

Компенсационными называют нулевые (или дифференциальные) методы измерения электрических величин, когда с помощью индикаторного прибора устанавливается равенство потенциалов, создаваемых двумя независимыми источниками э.д.с. В большинстве компенсационных методов используется принцип делителя напряжения, или потенциометра. Потенциометр дает возможность получать регулируемое напряжение U, его величину можно рассчитать, зная сопротивление участка цепи r, с которого снимается напряжение, и протекающий по нему ток I. Это напряжение сравнивается с измеряемой разностью потенциалов U x в компенсационной схеме, показанной

на рис 3. В этой цепи через индикатор (гальванометр) будет течь ток, зависящий от разности U −U x и от полного сопротивления измерительной цепи

Рис.3

Rизм . Значение Rизм складывается из сопротивления гальванометра,

эквивалентного выходного сопротивления потенциометра и выходного сопротивления устройства, создающего напряжение U x . Изменяя

сопротивление участка r, можно добиться равенства напряжений U и U x . В

этом случае ток через гальванометр не будет проходить. Отсутствие тока в гальванометре означает, что подключение напряжения U x к потенциометру не

изменяет никаких токов и напряжений в соединительных цепях: значения U и

Градуировки термопар

Градуировки термопар

Программа КИП и А

Windows ⁄ Android

Градуировка ПП-1 (ПЛАТИНОРОДИЙ — ПЛАТИНА)

ГОСТ 3044-61

  Термо ЭДС, мВ
T°C0102030405060708090
0,000-0,053-0,103
00,0000,0550,1120,1730,2340,2990,3640,4320,5000,571
1000,6430,7170,7920,8690,9471,0261,1061,1871,2691,352
2001,4361,5211,6061,6921,7791,8671,9552,0442,1332,223
3002,3142,4062,4982,5912,6842,7772,8712,9653,0603,154
4003,2493,3453,4403,5363,6333,7303,8263,9234,0214,119
5004,2184,3164,4154,5154,6154,7154,8155,9155,0165,118
6005,2205,3225,4255,5285,6315,7345,8375,9416,0466,151
7006,2566,3626,4676,5736,6796,7866,8937,0007,1087,216
8007,3257,4347,5437,653 7,7637,8727,9838,0948,2058,316
9008,4288,5408,6538,7658,8788,9929,1069,2209,3349,449
10009,5649,6799,7959,91110,02810,14510,26210,37910,49610,614
110010,73210,85010,96811,08611,20511,32411,44311,56311,68311,803
120011,92312,04312,16312,28412,40412,52512,64512,76612,88713,008
130013,12913,25013,37113,49213,61313,73413,85513,97514,09614,217
140014,33814,45814,57914,69914,81914,93915,05915,17915,29815,418
150015,53715,65615,77515,89316,01116,12916,24716,36416,48116,598
160016,714

Градуировка ХК (ХРОМЕЛЬ-КОПЕЛЬ)

ГОСТ 3044-61

  Термо ЭДС, мВ
T°C0102030405060708090
-0,64-1,27-1,89-2.50-3,11
000,651,311,982,663,354,054,765,486,21
1006,957,698,439,189,9310,6911,4612,2413,0313,84
20014,6615,4816,3017,1217,9518,7719,6020,4321,2522,08
30022,9123,7524,6025,4526,3127,1628,0228,8929,7630,62
40031,4932,3533,2234,0834,9535,8236,,6837,5538,4239,29
50040,1641,0341,9142,7943,6844,5645,4546,3447,2348,12
60049,0249,9050,7851,6652,5853,4154,2855,1556,0356,90
70057,7758,6459,5160,3761,2462,1162,9763,8364,7065,56
80066,42

Градуировка ХА (ХРОМЕЛЬ-АЛЮМЕЛЬ)

ГОСТ 3044-61

  Термо ЭДС, мВ
T°C0102030405060708090
-0,390,77
000,400,801,201,612,022,432,853,263,68
1004,104,514,925,335,736,136,536,937,337,73
2008,138,538,939,349,7410,1510,5610,9711,3811,80
30012,2112,6213,0413,4513,8714,3014,7215,1415,5615,99
40016,4016,8317,2517,6718,0918,5118,9419,3719,7920,22
50020,6521,0821,5021,9322,3522,7823,2123,6324,0624,49
60024,9125,3325,7626,1926,6127,0427,4627,8828,3028,73
70029,1529,5729,9930,4130,8331,2431,6632,0832,4932,90
80033,3233,7234,1334,5534,9535,3635,7636,1736,5736,97
90037,3737,7738,1738,5738,9739,3639,7640,1540,5440,93
100041,3241,7142,0942,4842,8843,2643,6444,0244,4044,78
110045,1645,5445,9146,2946,6647,0047,4047,7748,1448,50
120048,8749,2349,5949,9550,3150,6751,2051,3851,7352,08
130052,43

Градуировка НС (СПЛАВ НК-СА)

ГОСТ 3044-61

  Термо ЭДС, мВ
T°C0102030405060708090
3000,380,480,580,680,800,921,041,171,311,45
400
1,601,751,922,082,252,432,622,813,003,20
5003,413,603,793,984,174,374,564,764,965,16
6005,365,565,775,976,176,386,586,786,987,19
7007,397,597,798,008,208,408,608,809,019,21
8009,419,619,8210,0210,2210,4210,6210,8211,0211,22
90011,4211,6211,8212,0212,2112,4112,6112,8013,0013,20
100013,39

 

Градуировка термопары и её применение для определения кожных температур.

Цель работы

1.1 Углубление знаний по теории термоэлектричества.

    1. Изучение методики градуировки термопары.

    2. Изучение использования термопары для измерения кожных температур.

Оборудование

  1. Термопара

  2. Цифровой гальванометр

  3. Сосуд с горячей водой.

  4. Сосуд с таящим льдом.

  5. Термометр.

  6. Лист миллиметровой бумаги и линейка

Вывод рабочей формулы

Запишем закон Ома для полной цепи

(7)

где т — термо ЭДС; R — сопротивление проводов термопары;

r- сопротивление измерительного прибора

Подставим выражение (5) в формулу (7)

, а затем выразим t1

(8)

Силу тока в цепи термопары можно выразить следующим образом:

I = C N

Где С — чувствительность измерительного прибора

N — показания прибора

Подставим эту формулу в (8)

Введем обозначение , поскольку все величины входящие постоянны, после этого запишем рабочую формулу в виде

t1 = to + kN

Ход работы

1. Градуировка термопары.

Схема установки:

Горячий

или измерительный спай.

Холодный

спай (смесь

льда с водой).

Рис. 3 Схема установки для градуировки термопары.

Подключают термопару спаи 1,4 к цифровому гальванометру 6 (рис.3).

1.Холодный спай 1 помещают в сосуд 2 с тающим льдом. Температура тающего льда всегдаравна t0=00 C. Рабочий(горячий) спай 4 помещают в сосуд с водой 3. Для определения температуры воды используется термометр 5.

2. Сначала вносят спай 4 в среду 2 и записывают показания гальванометра N при Dt=0. При одинаковой температуре двух спаев Dt=00 C показания прибора N равны нулю (возможны варианты).

3. Далее, переносят спай 4 в сосуд 3 и фиксируют значение температуры t1 и показания прибора N. Аналогичные измерения проводят при различных значениях температуры спая 4, добавляя горячую воду в сосуд 3.

Результаты заносят в таблицу 1.

В соответствии с полученными данными строят зависимость (рис. 4). Это – градуировочный график. Полученную кривую аппроксимируют прямой линией, проходящий через 00С, и определяют величину, обратную коэффициенту чувствительности термопары β=— градуировочный коэффициент.

Рис.4

2 Определение температуры кожных участков тела.

Просушить рабочий спай с помощью фильтрованной бумаги.

Прижать рабочий спай 4 к избранному участку кожи на 0,5…1 мин. Холодный спай 1 находится в сосуде с тающим льдом 2. Для исключения

влияния температуры прижимающегося пальца между термопарой 4 и пальцем поместить в несколько раз сложенный лист бумаги.

Результаты внести в таблицу 2

Результаты измерений

Табл.1

t ,0C

N

Табл.2

№ п/п

Участок кожи

N

t=kN, 0С аналитически

tx

графически

1

2

3

4

5

6

7

Лоб

Нос

Щека

Подбородок

Шея

Локоть

Кисть

График градуировки термопары

Выводы_________________________________________________________

___________________________________________________________________________________________________________________________________________________________________________________________________

52 — Градуировка термопары

вставляется для теплоизоляции в пенопластовую чашку, и пропитать небольшим количеством воды. При отсутствии снега используется лед (приготовляется в холодильнике), который следует мелко натолочь.

Жидкий азот из большого металлического сосуда Дьюара наливается в дьюаровский стакан. Рабочий спай термопары погружается в азот и дьюар закрывается плотной крышкой так, чтобы жидкий азот находился в равновесии с собственным паром при атмосферном давлении.

Вода кипятится в колбочке; спай термопары помещается в парах кипящей воды вблизи от ее поверхности.

Олово расплавляется в фарфоровом тигельке на электроплитке.

Измерение э.д.с. методом компенсации.

Для измерения э.д.с. термопары используется метод компенсации, краткое описание которого приведено ниже. Более подробно читайте в книге: В.А. Соловьев, В.Е.Яхонтова «Руководство к лабораторным работам по физике» СПб, 1997г.,§5.4.

Компенсационными называют нулевые (или дифференциальные) методы измерения электрических величин, когда с помощью индикаторного прибора устанавливается равенство потенциалов, создаваемых двумя независимыми источниками э.д.с. В большинстве компенсационных методов используется принцип делителя напряжения, или потенциометра. Потенциометр дает возможность получать регулируемое напряжение U, его величину можно рассчитать, зная сопротивление участка цепи r, с которого снимается напряжение, и протекающий по нему ток I. Это напряжение сравнивается с измеряемой разностью потенциалов U x в компенсационной схеме, показанной

на рис 3. В этой цепи через индикатор (гальванометр) будет течь ток, зависящий от разности U −U x и от полного сопротивления измерительной цепи

Рис.3

Rизм . Значение Rизм складывается из сопротивления гальванометра,

эквивалентного выходного сопротивления потенциометра и выходного сопротивления устройства, создающего напряжение U x . Изменяя

сопротивление участка r, можно добиться равенства напряжений U и U x . В

этом случае ток через гальванометр не будет проходить. Отсутствие тока в гальванометре означает, что подключение напряжения U x к потенциометру не

изменяет никаких токов и напряжений в соединительных цепях: значения U и

ГРАДУИРОВКА ТЕРМОПАРЫ И ОПРЕДЕЛЕНИЕ

ТЕМПЕРАТУРЫ ТЕЛА

Одним из основных параметров, определяющих состояние биологических объектов, является температура. Повышение температуры человеческого тела всего на 1 – 2 0 приводит к потере трудоспособности, нарушению функций тканей, органов и систем: изменению скорости биохимических процессов, ритма сердечных сокращений, частоты дыхания и т. д. Следовательно, точное измерение температуры является важной процедурой в медицинской практике.

В настоящее время в медицине для измерения температуры широко применяются термопары и термисторы – приборы, принцип работы которых основан на контактных и термоэлектрических явлениях в металлах и полупроводниках.

 

Проводимость металлов и полупроводников.Заряды в веществе бывают свободные и связанные. Свободные заряды могут без затраты энергии двигаться по объему тела, участвуют в хаотическом движении и под действием электрических сил движутся вдоль электрического поля. Связанные заряды принадлежат данной молекуле и без затрат энергии не могут ее покинуть. В зависимости от концентрации свободных зарядов различают три типа веществ: проводники, диэлектрики и полупроводники. Вещество с большой концентрацией свободных зарядов – проводник, с малой концентрацией – диэлектрик, с промежуточной – полупроводник.

Упорядоченное движение свободных зарядов, возникающее в проводнике под действием электрического поля, называется током проводимости. Типичными проводниками являются металлы, а носителями тока в металлах — электроны проводимости. Металлы представляют собой кристаллическую решетку, в узлах которой колеблются ионы, а в промежутках движутся свободные электроны – это электроны проводимости. Существование свободных электронов обусловлено тем, что при образовании кристаллической решетки от атомов металла отщепляются валентные электроны, которые становятся обобществленными, т.е. не принадлежащими отдельному атому.

В полупроводниках количество подвижных носителей зарядов при обычном состоянии ничтожно мало, но значительно увеличивается при внешних воздействиях – нагревании, поглощении света и т.п. Характерными полупроводниками являются кремний, германий, селен, закись меди и др. Физические носители зарядов в полупроводниках – электроны. Однако в связи с некоторым различием процесса образования тока в них полупроводники разделяются на две основные группы – электронныеидырочные.

В электронных полупроводниках типа n (от латинского negativ – отрицательный) имеются свободные электроны, которые в процессе теплового движения могут перемещаться по всей массе полупроводника подобно электронам в металлах. Основное различие между полупроводниками и металлами заключается в том, что концентрация свободных электронов в металлах достаточно высокая и практически не зависит от температуры. В полупроводниках она при обычных температурах в миллионы раз меньше, однако внешние воздействия, особенно нагревание, повышают концентрацию свободных электронов в тысячи и даже сотни тысячи раз.

В дырочных полупроводниках типа p (от латинского positive – положительный) движение электронов ограничено, они могут перескакивать от одного атома к другому, вблизи лежащему. Дыркой называют незаполненную связь атома, находящегося в узле кристаллической решетки вещества. В процессе теплового движения наиболее слабо связанные с ядром электроны соседних атомов могут перескакивать в эти дырки. При этом заполняются одни дырки и образуются другие, в результате дырки беспорядочно перемещаются по всей массе полупроводника. Если на полупроводник действует электрическое поле, то перескок электронов и перемещение дырок принимает направленный характер. Электрический ток в этом случае может возникать или из-за цепочного перескока электронов как физических носителей отрицательных зарядов, или из-за перемещения в обратном направлении дырок в качестве условных носителей положительных зарядов.

В общем случае в любом полупроводнике имеется как электронная, так и дырочная проводимость. Такую проводимость называют собственной проводимостью полупроводника.

В реальных условиях у полупроводников преобладает одна из проводимостей – или электронная, или дырочная. Тот или другой характер проводимости придают проводнику искусственно с помощью примесей. Атомы примесей, попадая в полупроводник, занимают места в его кристаллической решетке и образуют связи с соседними атомами. Если примесные атомы имеют больше валентных электронов, чем атомы основного вещества, например, пятивалентные элементы в четырехвалентном полупроводнике, то лишние электроны освобождаются и увеличивают электронную проводимость полупроводника. Электроны в данном случае будут основными носителями зарядов, и их концентрация в полупроводниках будет высокой.

Если примесные атомы имеют меньше валентных электронов (трехвалентные элементы в четырехвалентном полупроводнике), то при образовании связи с атомами основного вещества к ним переходят электроны соседних атомов, у которых соответственно образуются дырки. Таким образом, увеличивается дырочная проводимость полупроводника. Дырки будут основными носителями зарядов, следовательно, концентрация их в полупроводнике будет высокой.

Примесная проводимость обычно превышает собственную проводимость полупроводника в сотни и даже тысячи раз.

 

Контактные явления в металлах и полупроводниках.Свободные электроны металла участвуют в хаотическом движении, равновероятном во всех направлениях. Электроны движутся с различными скоростями, и некоторые из них вылетают из металла. Случайное удаление электрона от наружного слоя положительных ионов кристаллической решетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда. Таким образом, отдельные электроны все время покидают поверхность металла, удаляются от нее на несколько межатомных расстояний, затем возвращается обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако совместно с наружным слоем ионов образует двойной электрический слой, который подобен весьма тонкому плоскому конденсатору толщиной в несколько межатомных расстояний. Электрон, покидающий металл, должен преодолеть задерживающее его электрическое поле двойного слоя. Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода электрона. Разность потенциалов Δj в электрическом поле двойного слоя называется поверхностным скачком потенциала или контактной разностью потенциалов (КРП)между металлом и окружающей средой:

,

где е – абсолютная величина заряда электрона;

А – работа выхода.

При соединении путем сварки или спайки двух проводников, изготовленных из различных металлов, между ними возникает КРП, которая зависит от их химического состава и температуры. КРП на границе двух металлов возникает вследствие различной величины работ выхода А1 и А2 электронов из этих металлов:

.

Это так называемая внешняя КРП. При А1 > А2 первый металл заряжается отрицательно, второй – положительно. Δjе практически не зависит от температуры.

Второй причиной появления КРП является различие концентраций n1 и n2 электронов проводимости в контактирующих металлах:

,

где к – постоянная Больцмана;

Т – абсолютная температура.

Δji представляет собой так называемую внутреннюю КРП.

В классическом приближении электроны проводимости рассматриваются как электронный газ: при тесном соприкосновении двух металлических проводников будет происходить диффузия электронов.

 

 

Рис. 1. Диффузия электронов при тесном соприкосновении двух проводников.

 

Если соприкасающиеся металлы одинаковы и находятся при одной и той же температуре, то будет осуществляться только обмен электронами. У разных металлов число свободных электронов в единице объема различно. При соприкосновении двух проводников из различных металлов из проводника с более высокой плотностью электронного газа в проводник с менее высокой плотностью будет переходить больше электронов, чем в обратную сторону (рис.1). Если бы электроны не обладали электрическим зарядом, то их диффузия происходила бы до тех пор, пока плотности и давление электронного газа в обоих проводниках не стали бы одинаковыми. До соприкосновения металлические проводники были электрически нейтральными. При их соприкосновении металл с более высокой плотностью электронного газа, теряя электроны, заряжается положительно, а металл с менее высокой плотностью электронного газа, приобретая электроны, – отрицательно. В результате между проводниками возникает разность потенциалов. Эта разность потенциалов противодействует переходу электронов из металла с более высокой плотностью электронного газа в металл с меньшей его плотностью. Процесс идет до достижения подвижного равновесия, при котором количество электронов, переходящих в обе стороны через поверхность соприкосновения металлов, становится одинаковым.

Для каждых двух металлов при одной и той же температуре внутренняя КРП имеет наибольшую величину при подвижном равновесии. Внутренняя КРП зависит от температуры и возрастает при нагревании соприкасающихся металлов.

По порядку величины ; при комнатных температурах и .

Разность потенциалов между концами цепи, состоящей из последовательно соединенных металлических проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников – она равна КРП, возникающей при непосредственном соединении крайних проводников.

Если составить замкнутую цепь из разных металлов, имеющих одну и ту же температуру, и присоединить к ней чувствительный гальванометр, то стрелка не отклонится. Это означает, что КРП в случае одинаковой температуры соприкасающихся металлов не создает электродвижущей силы.

Граница соприкосновения двух полупроводников с различными, n – и p- типами проводимости называется электронно-дырочным переходом (p-n–переход). Двойной слой p-n–перехода образуется в результате перемещения электронов из n- в p– полупроводник, а положительных дырок — в противоположном направлении.

Толщина d p-n перехода составляет 10-4 – 10-5 см. Контактное электрическое поле двойного слоя с контактной разностью потенциалов в несколько десятых долей вольта препятствует тепловому движению носителей тока (электронов и дырок), т.е обладает повышенным сопротивлением.

Термоэлектрические явления в металлах.При замыкании противоположных концов двух проводников из различных металлов в местах контакта возникает равная по величине, но противоположно направленная разность потенциалов, что исключает появление тока в цепи. Ток в замкнутой электрической цепи, образованной двумя различными металлическими проводниками, может возникнуть, если будут различны температуры спаев (рис.2).

 

 

Рис. 2. Возникновение тока в замкнутой цепи, образованной двумя различными

металлическими проводниками, при разнице температуры спаев (Та > Tв).

 

В этом случае возникает термоэлектродвижущая сила (термо–ЭДС) eитермоток I. Величина термо – ЭДС определяется по формуле:

 

,

где — величина, характеризующая свойства контакта двух металлов, k – постоянная Больцмана;

е – заряд электрона;

n1 и n2 – концентрации электронов проводимости в металлах.

Направление тока на рис.2 соответствует случаю, когда n1 > n2. Сила тока прямо пропорциональна термо–ЭДС и может служить мерой разности температур спаев.

Термоэлектрические явления обратимы. Если пропустить ток от постороннего источника в направлении, обратном направлению термотока (рис. 3, а, б),

 

 

Рис.3 Термоэлектрические явления в замкнутой цепи, образованной двумя различными

металлическими проводниками:

а – возникновение термотока при нагревании спая;

б – повышение температуры спая при пропускании тока в направлении,

противоположном направлению термотока;

в – понижение температуры спая при пропускании тока в направлении термотока.

 

то в спае выделится некоторое добавочное к обычному (обусловленному сопротивлением проводника) количество теплоты, вследствие чего температура спая Та будет несколько выше, чем температура Тб противоположных концов проводников (рис 3б). Если, наоборот, через спай пропустить ток в направлении термотока (рис 3в), то в спае будет поглощаться некоторое количество теплоты и температура спая Та станет ниже температуры Тб концов проводников.

Данное явление было открыто Пельтье. Оно связано с тем, что электрическое поле, образующееся в спае КРП, в первом случае ускоряет, во втором – тормозит движения проходящих через спай электронов. Повышение скорости электронов равносильно увеличению тока и вызывает дополнительное нагревание проводника. Снижение скорости электронов равносильно уменьшению тока и ведет к снижению температуры спая.

 

Термоэлектрические явления в полупроводниках.При нагревании полупроводника сопротивление движению зарядов в нем, как и у металлических проводников, несколько повышается. В то же время электропроводность его в значительно большей степени увеличивается за счет роста количества носителей зарядов, поэтому в целом сопротивление полупроводника с повышением температуры в значительной степени уменьшается.

Если нагревать один конец стержня из полупроводника (рис.4),

 

Рис. 4. Возникновение разности потенциалов на концах полупроводника

при нагревании одного из его концов.

 

то концентрация и кинетическая энергия основных носителей зарядов в нем будут увеличиваться, а носители зарядов — перемещаться от нагретого к холодному концу стержня. В результате на его холодном конце образуется их избыток, а на горячем — недостаток.

Между зарядами на концах стержня возникает разность потенциалов и образуется электрическое поле, которое будет препятствовать дальнейшему перемещению носителей зарядов. В результате наступает динамическое равновесие. Для n–полупроводника диффузия электронов ведет к образованию отрицательного потенциала на холодном конце и положительного – на нагретом, а для p–полупроводника диффузия дырок ведет к образованию на холодном конце положительного потенциала и на нагретом — отрицательного.

Разность потенциалов, образующаяся между холодным и нагретым концами полупроводника, прямо пропорциональна разности температур горячего Та и холодного Тб его концов:

 

,

 

где a — коэффициент, зависящий от природы полупроводника. Эта разность потенциалов называется термо–ЭДС полупроводника.

Если два полупроводника, один n – и другой p – типа, спаять концами и нагревать место спая, то электродвижущие силы etn etp, возникающие в каждом из проводников, будут складываться и дадут общую термоэлектродвижущую силу

 

.

 

Явление Пельтье имеет место также в спае двух полупроводников с электронной и дырочной проводимостью и может быть использовано для устройства как нагревателей, так и охладителей. Если ток от постороннего источника проходит через спай в направлении, обратном направлению термотока (рис. 5а), то дырки и электроны, образующие ток в соответствующих полупроводниках, двигаются навстречу и в контактном спае рекомбинируются.

 

 

Рис. 5. Явление Пельтье в спае двух полупроводников.

 

При этом их потенциальная энергия уменьшается и частично переходит в кинетическую энергию теплового движения – спай нагревается. Если ток от постороннего источника проходит в направлении термотока (рис. 5б), то электроны и дырки двигаются в направлении от контактного спая, в котором образуются пары электрон – дырка. На это затрачивается энергия, которая отнимается от атомов в контактном спае, и спай охлаждается.

Термопары и термисторы.Термопарой называется устройство, состоящее из двух различных металлов или двух полупроводников с разной электропроводимостью, приближенных друг к другу на межмолекулярные расстояния путем сварки или спайки. Основным применением термопары является измерение температуры. Для этого спай термопары приводится в соприкосновение со средой, температура которой измеряется. Свободные концы термопары подключаются к достаточно чувствительному измерительному прибору. Отклонение стрелки прибора при этом прямо пропорционально разности температур нагретого и холодного концов термопары. Величина термо–ЭДС зависит от того, из каких элементов состоит термопара. Зависимость термо–ЭДС от температуры для используемой термопары определяется по формуле

,

где k – постоянная термопары, величина которой зависит от КРП.

Градуировкой термопары называется установление графической зависимости между величиной термо–ЭДС и разностью температуры спаев (рис. 6).

 

 

Рис. 6. График зависимости величины термо-ЭДС от разности температур спаев.

 

Величина tg a определяет постоянную термопары: tg a = k.

Электродвижущие силы, получаемые при помощи полупроводников термопар, значительно выше, чем ЭДС от металлических термопар, и имеют величину порядка 1 мВ на 1 оС разности температур нагретого и холодного спая.

Полупроводник, в котором изменение температуры используется для измерения температуры, называется термистором и широко применяется в качестве электротермометра. Термисторы изготавливают из различных веществ: щелочноземельных металлов, закиси и окиси железа, двуокиси титана и т. п. Термистор может быть изготовлен в форме шарика или пластинки небольших размеров порядка долей миллиметра.

Электротермометр имеет большое преимущество перед ртутным термометром. Он значительно чувствительнее, измерение температуры происходит гораздо быстрее, рабочая поверхность и теплоемкость его весьма малы, что позволяет измерять температуру на поверхности тела и даже в глубине тканей. В этом случае термистор заделывается в кончик иглы, которую вкалывают вглубь ткани.



Дата добавления: 2016-10-07; просмотров: 6069;


Похожие статьи:

Градуировка термопары

Цель работы: ознакомиться с методом градуировки термопары.

Приборы и принадлежности: термопара, термометр, колба с водой, электроплитка, потенциометр (прибор для измерения ЭДС источника тока. Принцип действия и описание его даны в работе № 3) или гальванометр.

Сведения из теории

Термопара представляет собой два разнородных проводника (I и II), соединенные своими концами (рис. 4.1, а). Места соединений называют спаями (А и В). Если температуры спаев не одинаковы (например, ТА>ТВ), то в цепи термопары потечет ток (термоток) — явление Зеебека.

Опыт показывает, что связанная с термотоком ЭДС пропорциональна разности температур “горячего” (А) и “холодного” (В) спаев

= (ТА — ТВ), (4.1)

где — удельная термо-ЭДС, определяется свойствами металлов, из которых изготовлена термопара. Например, для пары железо — константан = 5,3  10-5 В/К.

Возникновение термотока при ТА ТВ связано с наличием разных по величине контактных разностей потенциалов (КРП) в спаях А и В. КРП в любом из спаев определяется выражением

, (4.2)

где А1 и А2— работа выхода электрона соответственно из металлов I и II; е заряд электрона; k — постоянная Больцмана; n1, n2 — концентрации электронов в металлах I и II.

При одинаковых температурах спаев их КРП одинаковы, но про-тивоположны по направлению. ЭДС, равная алгебраической сумме скачков потенциалов в цепи, в этом случае нулевая, так как имеется два одинаковых источника тока, соединенных одинаковыми полюсами (рис. 4.1, б).

Если ТА ТВ, то

/A/ /B/,

= AB =

что совпадает с формулой (4.1), если

.

Используются термопары чаще всего для измерения высоких (или низких) температур. Для этого “горячий” спай помещают в среду, температуру Т которой хотят узнать (ТА = Т), а “холодный” спай — в среду с известной температурой ТВ = ТО (например, в тающий лед). Измерив термо-ЭДС (термоток) и зная , по формуле (4.1) легко вычислить Т. При измерениях удобно иметь предварительно проградуированную термопару. В этом случае нет необходимости в знании . По измеренным ЭДС и Т непосредственно по графику = f(Т = Т — ТО) определяют Т, а значит, и Т. Задача данной лабораторной работы состоит в том, чтобы получить градуировочную кривую. Градуировку термопары производят по той же схеме (рис. 4.2), что и при измерениях температуры, с той лишь разницей, что “горячий” спай здесь помещают в среду, температуру которой можно изменить и измерить независимым от термопары способом (обычным термометром).

П р и м е ч а н и е. Очень часто ”холодный” спай оставляют при температуре окружающего воздуха (особенно при измерении температур в производственных условиях). В этом случае нет необходимости специально его создавать. Роль такого спая играет любой из контактов (В1 или В2) проводника термопары (рис. 4.3) с измерительным прибором.

Порядок выполнения работы

1. ”Горячий” спай термопары (он вместе с термометром помещен в пробирку с жидкостью) опустить в колбу с водой, установленную на электроплитке.

2. Концы термопары (здесь термопара такая, как на рис. 4.3) присоединить непосредственно к зажимам потенциометра (красный провод к “+”).

3. Измерить и записать температуру “холодного” спая — комнатную температуру. Эти и последующие измерения занести в табл. 4.1.

Таблица 4.1

п/п

То

Тi

i

Ti

Ti2

i Ti

1

2

7

Сумма

4. Включить плитку в сеть и довести воду в колбе до кипения.

5. Измерить температуру “горячего” спая и с помощью потенцио-метра определить термо-ЭДС ().

6. Выключить плитку. Следя за температурой “горячего” спая, произвести 6 — 7 измерений ЭДС (п. 5) при других температурах — приблизительно через каждые 10о.

П р и м е ч а н и е. Пока производятся измерения, температура воды, т.е. “горячего” спая, понизится. В таблицу следует записать температуру, соответствующую концу измерений.

7. По измеренным данным нанести точки на график = f (Т), не проводя пока линии самого графика.

8. По формуле

,

которая следует из метода наименьших квадратов, вычислить коэффициент , совпадающий с тангенсом угла наклона прямой = f(Т) к оси абсцисс.

9. По данным п. 8 построить график = f(Т). Это и есть градуировочный график, которым можно воспользоваться при измерении температур данной термопарой.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Работа выхода электрона из металла.

2. Контактная разность потенциалов (КРП): а) сущность явления; б) законы Вольта; в) величина КРП;

3. Явление Зеебека: а) сущность явления; б) объяснение явления;

4. Термопара (устройство, градуировка, использование).

5. Сущность явления Пельтье.

6. Сущность явления Томсона.

7.Сущность метода наименьших квадратов для установления эмпирической зависимости между величинами.

8. Преимущества термопары по сравнению с термометрами.

ЛАБОРАТОРНАЯ РАБОТА № 5

Термопара градуировка — Энциклопедия по машиностроению XXL

Действительная температура газового потока для рассматриваемого метода без учета поправок на температуру свободных концов термопары, градуировку шкалы вторичного прибора и без учета коэффициента С кривизны характеристики термопары [см. формулу (6-27)], °С  [c.135]

Ленты дешевле, но менее долговечны. При температурах выше 1600 °С используется сплав с большим содержанием родия или иридия. Такая печь, показанная на рис. 4.6, предназначена для определения точки затвердевания платины, она использовалась также для градуировки термопар по излучению черного тела из корунда до температуры плавления платины 1769 °С (см. гл.  [c.145]


Во время установления ПТШ-27 возможности улучшения термопары Ле Шателье при увеличении содержания родия в сплаве еще не были известны. Поэтому термопара Р1— 10 % КЬ/Р1 была принята в качестве интерполяционного прибора в интервале от 630°С до точки затвердевания золота 1063°С. В настоящее время шкала в этом интервале температур определяется квадратичным уравнением, константы которого находятся градуировкой при 630,74 °С и в точках затвердевания серебра и золота. При использовании термопары типа 5 удается, таким образом, обеспечить точность не лучше 0,2°С. Основные ограничения возникают в результате окисления родия и изменения его концентрации в сплаве, и исследования показывают [8, 44], что возможности повысить стабильность в основном исчерпаны.  [c.279]

Повторную градуировку такой термопары, предпринимаемую с целью учета смещения характеристик вследствие изменения состава, следует выполнять в печи, имеющей такое же температурное поле, как в реакторе. Выполнить это требова-  [c.295]

Для градуировки термопар, как и в большинстве других термометров, существуют различные способы. Можно, например, измерить напряжение термопары в нескольких реперных точках и выполнить интерполяцию либо по принятой формуле, либо по отклонениям от стандартной таблицы. Другой прием состоит в сравнении показаний градуируемой термопары с термопарой того же типа, принятой за эталон, в сравнительно большом числе точек и построении затем либо кривой отклонений от эталонной градуировки, либо непосредственно зависимости напряжения термопары от температуры. Градуировка термопар, для которых нет стандартной градуировочной таблицы, должна включать сравнение с термопарой другого типа или с термометром, который был градуирован ранее. Сравнение должно выполняться во всем рабочем интервале температур градуируемой термопары и в точках, количество которых достаточно для вычисления хорошей градуировочной кривой.  [c.299]

Стандартные справочные таблицы играют важную роль при измерении температуры термопары и экономят много времени и труда. Стандартная таблица описывает поведение типичной термопары конкретного типа. Градуировка рабочей термопары данного типа сводится к нахождению отклонений ее показаний от стандартных, приведенных в таблице. Если исходные данные для составления стандартной таблицы надежны, а при изготовлении градуируемой термопары состав сплавов выдержан таким же, какой лежит в основе стандартной таблицы, то отклонения оказываются очень малыми. Число градуировочных точек, достаточное для точного определения отклонений, соответственно уменьшается и весь процесс становится проще и дешевле.  [c.299]


Экспериментальные методы, применяемые при градуировке термопар по стандартным таблицам, можно разделить на три категории. В дополнение к двум описанным выше (методу реперных точек и методу сличения) следует добавить метод плавящейся проволоки. Последний представляет собой вариант метода реперных точек, однако обладает рядом преимуществ и заслуживает отдельного описания.  [c.301]

Известна полностью автоматическая система градуировки термопар в интервале температур от комнатных до 1100 °С [39]. При правильном подборе печи и системы переключения весь процесс градуировки, управляемый небольшой ЭВМ и микропроцессором, выполняется автоматически от момента монтажа термопары до получения результата.  [c.302]

Для градуировки термопар типов 8, R и В в температурном интервале выше 1100°С удобен, а при соблюдении ряда предосторожностей и надежен метод плавящейся проволоки. Принцип метода состоит в том, что небольшой кусочек проволоки из зо.лота, палладия или платины вставляется между двумя электродами термопары, как показано на рис. 6.17. Когда температура печи проходит через точку плавления проволоки, э.д. с. термопары перестает меняться, а затем исчезает в результате разрыва цепи. Одновременно измеряется э.д.с. конт-  [c.302]

Завершая рассмотрение вопросов градуировки, вновь отметим важность проблемы неоднородности термопар. Измеряемая э. д. с. термопары возникает в той ее части, которая находится в области температурного градиента. Неоднородности материала термопар приводят к тому, что измеренная э.д. с. оказывается зависящей не только от разности температур между спаями, но и от расположения неоднородностей в температурном поле. Практически это означает, что градуировка термопары точна лишь для той печи или ванны, где она выполнялась, и даже только для момента исходной градуировки. При извлечении термопары из печи часто возникает достаточное число вакансий в решетке для заметного сдвига градуировки. Окисление или фазовые превращения (например, в термопаре типа К) также приводят к неравномерным изменениям свойств, зависящим от температурного градиента градуировочной печи [8].  [c.303]
Приведенные ниже полиномы описывают градуировочные таблицы МЭК 584-1 (1977) для термопар. Полиномы А описывают градуировку в форме E=f(T), где Е — э. д. с., мкВ, Т — температура, °С.  [c.421]

Поскольку во всех опытах использовались термопары, изготовленные из одной партии термоэлектродной проволоки, а в расчетные формулы входят относительные температуры, то отпадает необходимость в их градуировке.  [c.151]

Для определения температуры по измеренной ЭДС пользуются таблицами или эмпирическими формулами. Представленные зависимости Е(Т) являются базовыми для градуировки конкретных термопар. Поправочная функция в виде степенного полинома находится по отклонениям значений ЭДС от табличных в нескольких температурных точках. Градуировочные таблицы стандартных термопар соответствуют реальным в пределах указываемой рабочей погрешности.  [c.179]

Чтобы по измеренному значению изм(определить температуру горячего спая t, необходимо знать температуру холодного спая и располагать градуировочной зависимостью термопары E=E t, fo=0° ). Если температура холодного спая в опытах была равна О °С, то t непосредственно определяют по градуировке, представленной в виде таблицы, графика или аппроксимирующей формулы. Если же о О°С, то поступают  [c.113]

Во время измерений с помощью термопары необходимо вводить поправку на температуру свободных концов термопары, так как обычно эта температура отличается от той, при которой производилась градуировка. Если термопара градуировалась при температуре свободных концов Го, а применяется при температуре Го, то к отсчитанной по прибору температуре следует прибавить поправку, равную (Го—Го)/С, где К — коэффициент, зависящий от. измеряемой температуры. Для того чтобы эта поправка была постоянна, температуру свободных концов стабилизируют, помещая их, например, в массивную коробку с тепловой изоляцией или в термостат, в котором температура поддерживается неизменной автоматически. Существуют устройства, с помощью которых поправка на температуру свободных концов вводится автоматически.  [c.135]

Градуировку и поверку термопар производят, пользуясь образцовой термопарой или образцовым термометром. Поверяемые термопару и термометр помещают в ванну с жидкостью, температуру которой медленно повышают. При температуре до 200 °С ис-пользуют минеральное масло, а при 200—600 °С — расплавленные соли при более высоких температурах градуировку выполняют в лабораторной печи.  [c.135]

Зависимость (3.4) может быть найдена при градуировке термопары методом сравнения ее показаний с показаниями образ-  [c.24]

Термопару перед градуировкой лучше отжечь целиком при температуре, несколько превышающей рабочую.  [c.26]

Поправка на температуру холодного спая. При градуировке термопар температуру холодного спая обычно поддерживают равной 0°С. Однако при технических и лабораторных измерениях температура холодного спая 1 й бывает постоянна, но не равна 0°С,  [c.26]

Надежность повышается путем резервирования усилителя И-102, а также возможностью быстрой замены неисправного блока. При работе системы с датчиком мощности выбирается модификация ВРТ-3 без компенсации температуры холодных спаев. Такая же модификация ВРТ-3 работает при использовании вольфрам-рениевой термопары. Если в системе имеются термопары градуировки ХА, ХК и т. д., компенсация температуры холодного 84 спая должна обеспечиваться вне прибора ВРТ-3 по известным схемам.  [c.84]

Лт1, передаточный коэффициент термопары, находится из градуировочных таблиц для термопар. При изморении температур в пределах 500—600° С коэффициент Kri равен для термопар градуировки XiK—0,074 мв]° С, для термопар градуировки ХА—0,042 лге/° С.  [c.239]

Рассмотрим конкретные примеры нагревания в экспериментальной установке (рис. 7.4) образцов из оргстекла и бетона, выполненных в виде призмы квадратного сечения, со скоростью изменения температуры на поверхности исследуемого материала Ь 0,025 К/с. Термопара градуировки хромель-копель, диаметром / = 0,4 10 м, расположена в прямоугольном пазу /г = 6 = 0,8 10 м. Коэффициент температуропроводности оргстекла и бетона соответственно равны аорг = 0,12 10 м /с, абет = = 0,5 10ш1с. Коэффициент тенлонроводности цементной замазки (для бетона) и опилок оргстекла, смешанных с дихлорэтаном (для оргстекла), соответственно равны Хцз = 0,5 Вт/(м К), Хзо = 0,2 Вт/(м К).  [c.115]

Коэффициент температуропроводности термоприемпика (термопары градуировки ХК) равен  [c.120]

В нынешней редакции МПТШ-68 платиновый термометр сопротивления, используемый при температурах выше 630 °С, должен градуироваться лишь путем сравнения со стандартной платино-платинородиевой термопарой. Поскольку даже с учетом эффектов решеточных вакансий и царапания проволоки воспроизводимость результатов у платинового термометра сопротивления гораздо лучше, чем у термопары, эту ситуацию нельзя признать удовлетворительной. Отсутствие общепринятого интерполяционного уравнения является одним из препятствий на пути к более широкому использованию высокотемпературных термометров сопротивления. До тех пор пока не будут проведены надежные сравнения МПТШ-68 с термодинамической шкалой температур в диапазоне от 630 до 1064 °С, от интерполяционного уравнения можно требовать лишь приведения в соответствие показаний платинового термометра сопротивления с квадратичной зависимостью э. д. с. термопары от температуры. Такое уравнение уже существует оно определяет градуировку платинового термометра сопротивления по шкале МПТШ-68 с точностью, достижимой для платино-платинородиевой термопары, а именно 0,2°С.  [c.219]

Если при градуировке термопары не ставится цель воспроизвести МПТШ-68 согласно положению, то для термопар типов S и R очень удобно использовать новые международные справочные таблицы [38]. Детально эти таблицы будут рассмотрены ниже и частично даны в приложении IV. Пока достаточно отметить, что изготавливаемый сегодня промышленностью материал имеет зависимость термо-э.д.с. от температуры, очень близкую к указанной в таблицах, и число точек для градуировки уменьшено.  [c.280]

Исследования показали, что этими сплавами можно пользоваться до более высоких температур, чем термопарой типа К при меньшем окислении и практически полном отсутствии эффекта упорядочения. Детали работы, приведшей к созданию ни-хросила и нисила, а также таблицы градуировки приведены в работе [20]. Чувствительность термопары нихросил/нисил несколько ниже, чем у термопар типа К, и потому эти термопары невзаимозаменяемы. Таблица дана в приложении VI.  [c.291]

Метод реперных точек хорошо иллюстрируется при использовании термопары типа 6 для воспроизведения МПТШ-68 между 630,74°С и точкой золота. Реперная точка затвердевания серебра при 961,93 °С позволяет по всем трем значениям э.д. с. вычислить квадратичную зависимость, требуемую для воспроизведения МПТШ-68. Устройство для получения реперных точек затвердевания металлов было описано в гл. 4 (рис. 4.26), и единственно, что необходимо добавить для градуировки термопар, это чехол из окиси алюминия, куда помещается термопара. Плотный чехол недопустим, поскольку необходимо обеспечить свободный доступ воздуха. Термопара типа 5 для измерений самой высокой точности имеет обычно диаметр проволок от 0,3 до 0,5 мм, изолятор диаметром 3 мм и длиной  [c.301]

Схема установки показана на рис. 6-4. Образец, на который напылялось покрытие, представляет собой трубку из ниобия. Температура внутренней поверхности слоя измерялась хро-мель-алюмелевыми термопарами диаметром 0,2Х ХЮ м, имеющими индивидуальную градуировку. Королек термопары, выведенный на шлифованную поверхность, прокатывался в тонкую полоску. Измерение наружной температуры слоя производилось такими же термопарами. Нагреватель, изготовленный из трубки ниобия, имел переменное сечение (против торцевых частей образца его сечение уменьшалось), что позволяло получить одномерный тепловой поток на рабочем участке. Эксперименты проводились в вакуумной камере при давлении не ниже 10 Па.  [c.132]

Поскольку в этой установке тепломеры располагались на вращающейся детали (скорость вращения до 500 об/мин), показания датчиков дублировались. Для этого возле каждого датчика в диск зачеканено по две термопары на обеих поверхностях диска, что позволяло измерять температурный перепад на гранях диска, пропорциональный локальному тепловому потоку. Чтобы повысить точность измерения, на одну пару колец токосъемника термопары были включены дифференциально по однопроводной схеме, с использованием в качестве промежуточного. термоэлектрода материала стенки диска. Градуировка этого устройства показала, что в достаточно широком диапазоне сохраняется линейная связь между тепловым потоком и термо-э. д. с.  [c.109]

Измерение коэффициента теплопроводности в стационарном режиме. По методу определения % в стационарном режиме кроме тепломеров используются одиночные термопары для измерения температуры или перепада температур, в частности медь-константановые высокой стабильностью и воспроизводимостью в диапазоне 170… 375 К. Градуировка их производится до закладки в теп-ломассомеры и в готовом устройстве по реперным точкам и в термостатах. Поскольку абсолютные отклонения термо-э. д. с. от табличных величин не превышали 0,05 мВ, таблицу из [14] можно использовать в качестве рабочей.  [c.124]

Псевдоожижение нешелушенного риса производилось в кольцевом зазоре шириной 50 мм между стенками высотой 230 мм, охлаждаемыми рассолом. Тепломеры с хромель-копелевыми термопарами были заделаны заподлицо в стенку и защищены от истирания зерном и мешалкой тонким охранным слоем эпоксидного компаунда с кварцевой пудрой в качестве наполнителя. Поскольку при этом неизбежно искажение сигнала элемента за счет неравенства к стенки из нержавеющей стали и самого элемента, градуировку элементов производили дважды — на градуировочном стенде и после монтажа на стенке, а при обработке данных учитывали снижение q за счет увеличения R.  [c.177]

Температура стенки и воздуха измерялась предварительно отградуированными термопарами типа ХА. Допускаемая погрешность градуировки Д0= 1°С. Термо-ЭДС термопар измерялась цифровым вольтметром Щ 1312 совместно с преобразователем П 1312. Из пас-нортных данных этих приборов находим, что класс их точности в диапазоне 0—16 мВ составляет 0,5. Измеренное значение термо-ЭДС термопары, установленной в выходной камере и измеряющей разность температур воздуха в опытном участке, равно 0,41 мВ. Измеренное значение термо-ЭДС для сечения № 10 (в конце обогреваемого участка хю=468 мм) равно 0,91 мВ.  [c.80]

В учебном лабораторном практикуме чаще всего используются хромель-алюмелевые, хромель-копелевые и медь-константановые термопары. Две первые являются стандартными. Стабильность и воспроизводимость их характеристик регламентирует ГОСТ 3044-77. Для нестандартных термопар, например медь-константановых, требуется индивидуальная градуировка. В табл. 3.1 приведены  [c.114]


Добавить комментарий

Ваш адрес email не будет опубликован.