Гидродинамический насос – Самовсасывающий насос: устройство и принцип действия центробежного, работа водяного вихревого насоса, конструкция

Содержание

Гидродинамический насос для отопления зданий и сооружений

Гидродинамический насос для отопления зданий и сооружений.

 

 

Тепловой гидродинамический насос – кавитационное устройство для получения тепла, образующегося путем преобразования механической энергии вращения двигателя в тепловую энергию рабочей жидкости. Не является тепловым насосом в его термодинамическом понимании.

 

Купить товар

 

Описание

Система отопления на основе гидродинамического насоса

Преимущества

Принципиальная схема системы отопления на основе гидродинамического насоса

Видео о гидродинамическом насосе

 

Описание:

Тепловой гидродинамический насос – кавитационное устройство для получения тепла, образующегося путем преобразования механической энергии вращения двигателя в тепловую энергию рабочей жидкости. Не является тепловым насосом в его термодинамическом понимании.

Тепловой гидродинамический насос также именуется вихревым тепловым насосом.

Гидродинамический насос

Гидродинамический насос вырабатывает тепло посредством изменения физико-механических параметров жидкостной среды при её течении под комплексным воздействием ускоренного и заторможенного движения (т.н. управляемой кавитацией).

 

Система отопления на основе гидродинамического насоса:

Система отопления на основе гидродинамического насоса состоит из следующих основных частей:

собственно гидродинамического насоса, представляющего собой кавитационное устройство, подключенного к системе отопления,

электродвигателя,

соединительной муфты,

рамы,

системы автоматического управления (контроллера).

Гидродинамический насос и электродвигатель смонтированы на единой раме. Вращающий момент от электродвигателя передается на гидродинамический насос через соединительную муфту.

 

Преимущества:

– простота конструкции. Гидродинамический насос может быть легко и быстро установлен в существующую систему отопления без изменения ее конструкции,

высокий КПД,

– высокая надежность,

не требуется проведение подготовки воды. Имеющиеся в воде соли выпадают в виде нерастворимого осадка и осаждаются в фильтре,

– срок окупаемости с момента установки гидродинамического насоса от 6 до 18 месяцев,

безотказность работы в течение не менее 10 лет,

– нет выбросов в атмосферу, нет продуктов горения,

100% экологическая чистота,

– полная пожаро- и взрывобезопасность,

высокая эффективность по сравнению с любыми другими нагревательными устройствами,

– значительно снижает расходы на теплоснабжение объектов и зданий, приблизительно в 2-3 раза по сравнению с традиционными системами отопления

(например, экономичнее электрокотлов в 1,5-2 раза, экономичнее дизельных котлов в 5-10 раз, экономичнее центрального отопления в 2 раза),

не требует согласований на установку,

– в отличие от теплового насоса, который может максимально дать теплоноситель с температурой до +65 °С, гидродинамический насос может нагреть теплоноситель до +95 °С.

 

Принципиальная схема системы отопления на основе гидродинамического насоса:

Гидродинамический насос

 

Видео о гидродинамическом насосе:

 

Примечание: © Фото https://www.pexels.com

 

Гидродинамический насосГидродинамический насос

Гидродинамический насосГидродинамический насос

карта сайта

тепловой гидродинамический насос для промывки канализации принцип работы
гидродинамические насосы высокого давления купить под ключ
насос для гидродинамической чистки машины
насос высокого давления гидродинамическая отчистка труб для чистки канализации цена ставрополь


гидродинамические машины и насосы высокого давления

 

Коэффициент востребованности 516

Тепловой гидродинамический насос — Циклопедия

Общий вид теплового гидродинамического насоса ТС1-075.

Тепловой гидродинамический насос — устройство для получения тепла, образующегося иначе, чем в процессе сгорания топлива. Преобразует механическую энергию вращения двигателя в тепловую энергию рабочей жидкости.

Не является тепловым насосом в его термодинамическом понимании.

Тепловой гидродинамический насос состоит из следующих основных частей:

  • Теплогенератора;
  • Электродвигателя;
  • Соединительной муфты;
  • Рамы;
  • Прибора управления (контроллера).

Теплогенератор и электродвигатель смонтированы на единой раме. Вращающий момент от электродвигателя передается на теплогенератор через соединительную муфту.

Теплогенератор имеет цилиндрический корпус, две крышки с устройствами уплотнения и подшипниковыми узлами. Внутри корпуса размещен вал с жестко посаженными на него дисками специальной формы (в зависимости от мощности, от 1 до 4 дисков). На крышках имеются патрубки (входной или выходной) для присоединения к системе теплоснабжения.

Применяется стандартный, двухполюсный асинхронный электродвигатель, 3000 об/мин, напряжением питания 380 В.

Возможно создание конструкции с другими видами двигателей (дизельными, ветряными и т. д.), имеющих другие рабочие обороты (1500, 6000, 10000 об./мин.).

[править] Принцип работы

Схема скоростей потока воды в системе.

Жидкий теплоноситель (вода) в трубопроводе системы теплоснабжения прокачивается циркуляционным насосом поступательно с линейными скоростями [math]V_1[/math] = [math]V_4[/math] = 1 м/мин. Попадая внутрь корпуса теплогенератора теплоноситель под воздействием разных сил начинает двигаться по сложной траектории. На входе во внутреннюю полость теплогенератора скачкообразно изменяется поступательная линейная скорость потока, снижаясь до [math]V_2[/math] = 0,14 м/мин, через теплогенератор вода прокачивается за 3,5 минуты. Одновременно поток вовлекается дисками во вращательное движение с частотой вращения 3000 об/мин. Линейная скорость вращающегося потока изменяется от [math]V_3[/math] = 565 м/мин у вала, до [math]V_3[/math] = 3485 м/мин у корпуса теплогенератра. Под действием центробежных сил вода перемещается от центра к периферии теплогенератора. В центре возникает разряжение, а у корпуса избыточное давление. Кроме этого диски имеют отверстия и специальный профиль поверхности, которые вызывают турбулентность в потоке воды. Создаются условия для возникновения гидравлической кавитации. В теплогенераторе пузырьки возникают в зоне разряжения и отбрасываются центробежными силами на периферию, где схлопываются. Гидродинамическая кавитация характеризуется тем, что вся масса жидкости участвует в процессах образования (развития и схлопывания) кавитационных полостей. Создаются условия генерирования кавитационных пузырьков, близких по величине диаметра. Кавитационные пузырьки схлопываются в потоке теплоносителя, разрушения элементов теплогенератора не происходит. Газы и пары внутри пузырька сжимаются, интенсивно выделяя тепло, за счет которого повышается температура жидкости в непосредственной близости от пузырька, и, таким образом, создается горячая микрообласть. Газ, содержащийся в пузырьке, достигает температуры около 5500 °C, тогда как жидкость в непосредственной близости от пузырька — 2100 °C. Для сравнения — температура пламени ацетиленовой горелки составляет около 2400 °C. Хотя давление, достигаемое при схлопывании пузырька, труднее определить экспериментально, чем температуру, между этими двумя величинами существует корреляция. Таким образом, для максимального давления можно получить оценку 500 атм.

[1]

На практике, в зависимости от температуры теплоносителя на входном патрубке и объема прокачки, за один проход через теплогенератор, теплоноситель нагревается на 14 — 24 °C. Рекомендуемый объем прокачки для тепловых гидродинамических насосов в зависимости от установленной мощности электродвигателя приведен в таблице

Мощность электродвигателя установки, кВт557590110
Рекомендованный средний объем прокачки, м³/час3,04,05,06,0


Существуют и другие гипотезы объясняющие тепловыделение.

[править] Практическое применение

Тепловые гидродинамические насосы выпускаются на серийных заводах, имеют сертификат соответствия. Первые тепловые узлы, использующие тепловые гидродинамические насосы, начали эксплуатироваться в отопительном сезоне 2003/2004 г.г.[2]

Тепловые узлы, использующие тепловые гидродинамические насосы ТС1.
  • Козлов С. В. Теплотехнические испытания тепловых гидродинамических насосов. «Энергия» — 2009. — № 2. С. 29—36. ISSN 0233-36-19.
  • Козлов С. В. О выделении энергии тепловыми гидродинамическими насосами. «Энергия» — 2009. — № 5. С. 12—17. ISSN 0233-36-19.

ЭНПОРТ — Тепловые гидродинамические насосы


ООО «ЭНПОРТ» является официальным дилером тепловых гидродинамических насосов от компании «Тепло XXI века».

Тепловые гидродинамические насосы (ТГН), также называемые «вихревые теплогенераторы» — источник тепла XXI века, относящийся к области нетрадиционной энергетики: выделение тепловой энергии основано на физическом законе преобразования одних видов энергии в другие.

Принцип действия ТГН основан на механической активации воды путем её закручивания и разрыва сплошности среды, т.е. организации в активаторе теплового гидродинамического насоса управляемой кавитации. Доказано, что при схлопывании кавитационных каверн, в жидкости локально возникают сверхвысокие температура и давление. Энергия такого схлопывания идет не только на нагрев теплоносителя, но и на разрушение водородных связей в кластерах воды. На выходе из активатора получаем механоактивированный теплоноситель с пониженной, по сравнению с исходной водой, плотностью. Такой теплоноситель и поступает в систему отопления, где вода в определенный промежуток времени возвращается в исходное состояние с исходной плотностью. Из физики мы знаем, что  в случае изменения плотности без приложения давления извне, выделяется теплота.

ТГН надежны в работе, экологически чисты, компактны и высокоэффективны по сравнению с любыми другими нагревательными устройствами, не требуют топлива и согласований на установку.

ТГН относится к дисковым или роторным насосам-теплогенераторам. Он является высокоэффективным источником тепловой энергии и предназначен для работы в системах отопления, горячего водоснабжения и приточной вентиляции. За счет особенностей конструкции  он значительно снижает расходы на теплоснабжение объектов и групп зданий, приблизительно в 2-3 раза по сравнению с традиционными системами отопления, что делает его незаменимым звеном энергосбережения на предприятиях различных сфер деятельности.

Преимущества ТГН:

• Простота конструкции и обслуживания, малые габариты и масса позволяют быстро и без больших затрат установить установку в любом месте.

• Сроки окупаемости затрат по внедрению ТГН составляет от нескольких недель до шести месяцев.

• Высокий КПД, ресурс и надежность конструкции.

• Не требуется химводоподготовка, поскольку при кавитационной обработке воды происходит выпадение карбонатных солей без использования химикатов. Соли выпадают в виде нерастворимого осадка, который осаждается в фильтре.

• Применение системы расчетов для ТГН, как объема заполнения водой системы, позволяет определить только полезное количество тепла, которое в сравнении со СНиПами (изданными в 60-х годах) в 4-6 раз ниже.

• Отсутствие тепловых потерь в теплотрассах, при монтаже ТГН непосредственно у потребителя тепла.

• Применение системы автоматического управления исключает необходимость постоянного присутствия обслуживающего персонала.

• По сравнению с котельными установками (уголь, мазут) работа ТГН не сопровождается выбросами в атмосферу продуктов горения и других вредных веществ, что позволяет применять ее в зонах с ограниченными нормами ПДВ.

• В системе трехтарифного учета при нагреве установкой ночью достаточного количества воды, аккумуляции ее в баке-накопителе и распределении воды циркуляционным насосом малой мощности в дневное время затраты на отопление сокращаются до 60%.

Сравнительная таблица характеристик: 

Тепловая установка Энергопотребление за сезон (210 дней) Стоимость отопления 1 кв. м. в год в рублях
Газовый котел «КЧМ» — 96 кВт 46 200 куб. м газа 46,29
Электрокотлы РУСНИТ 94 500 кВт 203,23
ВТГ (ТС1-075) 32 131 кВт 40,49
Жидкотопливные котлы «КЧМ-5» с итальянской горелкой 40 320 л. диз. топлива 322,56
Примечание: данные расчета приведены по результатам эксплуатации
тепловых установок конкретного объекта — г. Москва, ул. Бауманская, д. 6.
Расчет произведен в ценах 2003 г.

Тепловые гидродинамические насосы типа «ТС1»

Номенклатура и технические характеристики 

Марка тепловой установки

ТС1-055

ТС1-075

ТС1-090

ТС1-110

ТС1-160

ТС1-200

ТС1-250

БМПТ-55

Установленная мощность электродвигателя., кВт

55

75

90

110

160

200

250

55

Напряжение в сети, В

380

380

380

380

380

380/6000

380/6000

380/660

Обогреваемый рекомендуемый объем (до), м³

5180

7060

8450

10200

15200

20300

23540

5180

Потеря напора в агрегате, МПа

0,012-0,020

Температура теплоносителя, оС

95

95

95

95

95

95

95

95

Масса, кг.

720

880

930

1150

1715

3590

3700

1 800

Габаритные размеры, мм

 

длина

2000

2000

2000

2000

3200

3200

3200

2500

ширина

700

700

700

700

1000

1000

1000

2000

высота

820

820

820

820

918

1160

1160

2200

Режим работы

автомат

автомат

автомат

автомат

автомат

автомат

автомат

автомат

Скачать опросный лист для подбора тепловых гидродинамических насосов

Гидродинамический насос для отопления зданий и сооружений

Гидродинамический насос для отопления зданий и сооружений.

Ознакомиться с концепциейОзнакомиться с концепциейОзнакомиться с концепциейОзнакомиться с концепцией

Тепловой гидродинамический насос – кавитационное устройство для получения тепла, образующегося путем преобразования механической энергии вращения двигателя в тепловую энергию рабочей жидкости. Не является тепловым насосом в его термодинамическом понимании.

Купить товар

Описание

Система отопления на основе гидродинамического насоса

Преимущества

Принципиальная схема системы отопления на основе гидродинамического насоса

Видео о гидродинамическом насосе

Описание:

Тепловой гидродинамический насос – кавитационное устройство для получения тепла, образующегося путем преобразования механической энергии вращения двигателя в тепловую энергию рабочей жидкости. Не является тепловым насосом в его термодинамическом понимании.

Тепловой гидродинамический насос также именуется вихревым тепловым насосом.

Гидродинамический насос

Гидродинамический насос вырабатывает тепло посредством изменения физико-механических параметров жидкостной среды при её течении под комплексным воздействием ускоренного и заторможенного движения (т.н. управляемой кавитацией).

Система отопления на основе гидродинамического насоса:

Система отопления на основе гидродинамического насоса состоит из следующих основных частей:

собственно гидродинамического насоса, представляющего собой кавитационное устройство, подключенного к системе отопления,

электродвигателя,

соединительной муфты,

рамы,

системы автоматического управления (контроллера).

Гидродинамический насос и электродвигатель смонтированы на единой раме. Вращающий момент от электродвигателя передается на гидродинамический насос через соединительную муфту.

Преимущества:

— простота конструкции. Гидродинамический насос может быть легко и быстро установлен в существующую систему отопления без изменения ее конструкции,

высокий КПД,

— высокая надежность,

не требуется проведение подготовки воды. Имеющиеся в воде соли выпадают в виде нерастворимого осадка и осаждаются в фильтре,

— срок окупаемости с момента гидродинамического насоса от 6 до 18 месяцев,

безотказность работы в течение не менее 10 лет,

— нет выбросов в атмосферу, нет продуктов горения,

100% экологическая чистота,

— полная пожаро- и взрывобезопасность,

высокая эффективность по сравнению с любыми другими нагревательными устройствами,

— значительно снижает расходы на теплоснабжение объектов и зданий, приблизительно в 2-3 раза по сравнению с традиционными системами отопления (например, экономичнее электрокотлов в 1,5-2 раза, экономичнее дизельных котлов в 5-10 раз, экономичнее центрального отопления в 2 раза),

не требует согласований на установку,

— в отличие от теплового насоса, который может максимально дать теплоноситель с температурой до +65 °С, гидродинамический насос может нагреть теплоноситель до +95 °С.

Принципиальная схема системы отопления на основе гидродинамического насоса:

Гидродинамический насос

Видео о гидродинамическом насосе:

Примечание: © Фото https://www.pexels.com

Гидродинамический насосГидродинамический насосГидродинамический насосГидродинамический насос

отдел технологий

г. Екатеринбург и Уральский федеральный округ

Звони: +7-908-918-03-57

или пиши нам здесь…

карта сайта

Войти    Регистрация

В чате:

Виктор Потехин

Поступила просьба разместить технологию обработки торфа электрогидравлическим эффектом.

Мы ее выполнили!

2018-04-06 19:21:11

Виктор Потехин

Поступил вопрос о лазерной очистке металла. Дан ответ. В частности, указана более дешевая и эффективная технология.

2018-04-11 23:18:19

Виктор Потехин

Поступил вопрос по термостабилизаторам грунтов в условиях вечной мерзлоты. Дан ответ.

2018-04-29 09:51:54

Виктор Потехин

Поступил вопрос по стеклопластиковым емкостям. Дан ответ.

2018-05-04 06:47:56

Виктор Потехин

Поступил вопрос по гидропонным многоярусным установкам. Дан ответ. В частности указаны более прорывные технологии в сельском хозяйстве.

2018-05-16 20:22:35

Виктор Потехин

Поступил вопрос по выращиванию сапфиров касательно технологии и оборудования. Дан ответ.

2018-05-16 20:23:28

Виктор Потехин

Поступил вопрос касательно мотор-колеса Дуюнова и мотор-колеса Шкондина, что лучше. Дан ответ.

2018-05-16 20:30:50

Виктор Потехин

Поступил вопрос об организациях, которые осуществляют очистку металла от ржавчины. Дан ответ: оставляйте свои заявки внизу в комментариях. Производители сами найдут вас и свяжутся.

2018-05-17 10:35:28

Виктор Потехин

Поступил вопрос касательно санации трубопровода. Дан ответ. В частности указана более инновационная технология.

2018-05-17 18:10:26

Виктор Потехин

Поступил вопрос касательно сотрудничества, а именно: определения направлений развития предприятия и составления планов будущего развития. В настоящее время ведутся переговоры. Будет проанализирована исходная информация, совместно выберем инновационные направления и составим планы.

2018-05-18 10:34:05

Виктор Потехин

Поступил вопрос касательно электрохимических станков. Дан ответ.

2018-05-18 10:35:57

Виктор Потехин

Поступил вопрос относительно пиролизных установок для сжигания ТБО. Дан ответ. В частности, разъяснено, что существуют разные пиролизные установки: для сжигания 1-4 класса опасности и остальные. Соответственно разные технологии и цены.

2018-05-18 11:06:55

Виктор Потехин

К нам поступают много заявок на покупку различных товаров. Мы их не продаем и не производим. Но мы поддерживаем отношения с производителями и можем порекомендовать, посоветовать.

2018-05-18 11:08:11

Виктор Потехин

Поступил вопрос по гидропонному зеленому корму. Дан ответ: мы не продаем его. Предложено оставить заявку в комментариях для того, чтобы его производители выполнили данную заявку.

2018-05-18 17:44:35

Виктор Потехин

Поступает очень много вопросов по технологиям. Просьба задавать эти вопросы внизу в комментариях к записям.

2018-05-23 07:24:36

Для публикации сообщений в чате необходимо авторизоваться

тепловой гидродинамический насос для промывки канализации принцип работы
гидродинамические насосы высокого давления купить под ключ
насос для гидродинамической чистки машины
насос высокого давления гидродинамическая отчистка труб для чистки канализации цена ставрополь
гидродинамические машины и насосы высокого давления

Похожие записи

Дирижабль с энергоснабжением от солнечных батарей…

Биоклей – универсальный экологически чистый клей…

Средство для обезжиривания поверхностей взамен орг…

Мобильное дорожное покрытие Мобистек…

Магнитные материалы нового поколения и технология …

Автоматические линии порошковой окраски…

Материал для фильтров и респираторов…

Полимер-сорбент из органических компонентов «…

Технология очистки сточных вод и других…

Ядерная батарейка на основе трития…

Ветровая турбина гиперболоидного типа по Шухову…

Сухогруз — сухогрузное судно проекта RSD59…

Ротационное формование полимерных изделий…

Метод разведки нефти, руды и кимберлитовых тел…

SLA 3D-принтер для печати миниатюрных изделий…

Летательный аппарат «АТЛАНТ»…

Полимерные материалы на основе дициклопентадиена (…

Количество просмотров с 26 марта 2018 г.: 1

comments powered by HyperComments
Источник публикации

Тепловые гидродинамические насосы — jendosey — LiveJournal

Максим Калашников
Только закончил еще одно расследование по линии Академгейта. О том, как Комиссия по лженауке нанесла страшный удар по прорывному направлению — гидродинамическим теплонасосам Константина Урпина, успешно работающих на сотне объектов.
Очень скоро его опубликую в двух частях: больно уж наглядно она раскрывает приемчики нынешнего главы лженаучной комисии Евгения Александрова. По сути дела, мы имеем дело не только с новой инквизицией, но и с недобросовестной научно-технической конкуренцией. Написана еще одна глава новой книги — «Хроник невозможного».
Ну, а пока размещаю видео по работам команды Константина Урпина.

ВИХРИ ВОЛШЕБНЫЕ ВЕЮТ…

Десять лет назад, весной 2003 года, мне довелось побывать в конторе столичной фирмы «Тепло XXI века» . Команде Константина Урпина удалось, как мне казалось тогда, прорваться на рынок с подрывной инновацией.
«…Мы были в офисе московской фирмы, большое здание отапливается машиной, которая обогревается с помощью оригинального агрегата, извлекающего тепло из завихрившейся от электромотора воды. Откуда берется эта энергия — еще толком никто не знает. С точки зрения классической науки, это полная чушь, такого быть не может по определению. А машина тем не менее, работает, давая КПД в сотни процентов — хотя это и немыслимо с точки зрения старой науки…» — написал я тогда в книге «Оседлай молнию!». Хотя, конечно, речь шла не о КПД, а о КПЭ – коэффициенте преобразования энергии.
Константин Урпин, казалось, был воплощенной историей успеха. Его дисковые вихревые теплогенераторы (потом пришлось сменить это название на тепловые гидродинамические насосы) стали реально завоевывать рынок. (http://rutube.ru/video/a2189d7e8daca1456c98e6ebfe86bef7/#.UMSMTINg9e8).

Эффект был налицо: теплогенераторы, крутившие воду, показали реальную экономию на отоплении по сравнению не только с центральным отоплением, но и с автономными установками прочих типов. Да, теоретический механизм эффекта до сих пор неясен. Ведь сам факт нагревания воды от лопающихся пузырьков кавитации открыт еще в 1920-х и существуют целых пять гипотез о физическом механизме этого явления. Большая наука его еще не объяснила. Но разве древние люди не пользовались огнем, хотя только в девятнадцатом веке наука толком описала химический механизм горения? Вот и в этом случае эффект непонятного пока происхождения с успехом используется, может быть воспроизведен и просчитан….

…О ЦИОЛКОВСКОМ, БЕРИИ И «ТЕХНОЛОГИЧЕСКОЙ ВНЕЗАПНОСТИ»

Возвращаясь домой после беседы с Константином Урпиным, я не переставал думать об услышанном.
Почему серые ничтожества и сегодня ненавидят и пытаются принизить Циолковского? Потому, что на его фоне подсознательно чувствуют свои убожество и неполноценность. Потому что великий КЭЦ – другой. Титан с неистовым воображением, великий визионер, зажегший свою звезду и воспламенивший умы нескольких поколений, открывший нам дорогу в космос. Поистине – не просто святой, а настоящий пророк русской инноватики, не боявшийся идти наперекор мнению окружающей толпы и придумывать то, что на десятки лет опережало его время. В годы, когда в воздух только-только поднимались хрупкие, фанерные аэропланы («Пролетишь, как фанера над Парижем!»), КЭЦ осмеливался конструировать межпланетные корабли и орбитальные станции. Вот почему бескрылая, лишенная интеллектуальной смелости и пассионарности мразь даже сегодня пытается «развенчать» Циолковского. Ибо сама она ни на что подобное не годится. Ибо она и труслива, и бесплодна. Это что-то сравни зависти низшего существа к представитель высшей расы.
Уже в метро купил газету и журнал «Эксперт». И они дали мне новую пищу для размышлений.
Прочел, что сейчас (май 2013-го) американское Агентство передовых разработок (DARPA) уже осуществляет программу «Технологическая внезапность». Читаю – и узнаю ту программу, что мы с С.Кугушевым предложили для РФ еще в «Третьем проекте» (2005 г.), назвав ее «Техноштормом». Мы ведь тогда говорили, что впереди – мировой кризис страшной силы и изнуряющей длительности, и выйти из него можно, лишь осуществив переход в новую цивилизацию, развивая самые «безумные» технологии, познавая пока неведомое. Американцы, судя по всему, это поняли и тронулись в путь. А в РФ – мертвый штиль. Какие. К черту, безумные прорывы могут быть здесь, если все давится в зародыше омиссией по лженауке? Если академик Александров, во всей красе показавший себя в грязной истории с вихревыми машинами, нынче – глава «лженаучной комиссии». О-о, он-то обеспечит беспристрастную и строго научные экспертизы! Потому янки уйдут в прорыв, а Эрэф – останется в трясине застоя.
Теперь я прекрасно понимаю, что любой в стране, кто создаст нечто, грозящее монопольным прибылям старых монстров, рискует получить донос на себя в новую инквизицию, в академическую Комиссию по лженауке. И она расправится с опасным конкурентом. Скажем, появится некто, кто лечит рак без химиотерапии и дорогущих протонных ускорителей – и на него пойдет донос. И его растерзают. Изобретет кто-нибудь дешевое топливо – и будет то же самое. Это – уже не просто самозащита старой академической среды, желающей обладать монополией на знания, это — именно орудие грязной научно-технической конкуренции, убивающей русское развитие. Причем злоключения Урпина и его команды почти полностью повторяют мытарства Петрика.
Но разве не было в нашей истории примеров, когда государство использовало нечто необычное, что толком так и не объяснила официальная наука? Разве СССР не пускал в ход того, что противоречило признанным научным теориям? Такие примеры были. И об одном из них я вычитал в журнале «Эксперт».
В 2013 году еще жил академик-атомщик Федор Михайлович Митенков, участник ядерного проекта Лаврентия Берии. Рожденный в 1924 году, он в 1950-м, сразу по окончании физфака Саратовского университета, был замечен московской комиссией по отбору перспективных кадров для работы в ядерной программе. Чьей? Первого главного управления Спецкомитета при правительстве СССР под руководством Л.Берия. Как видите, тогда государство вполне успешно искало молодые таланты. Не чьих-то сынков – а именно умных и энергичных ребят.
Молодой Федор Митенков не обманул ожиданий. Брошенный на создание оборудования для газодиффузионного обогащения урана, он столкнулся с тем, что процесс пожирает огромные объемы электричества. И он придумал компрессор, который потреблял энергии в разы меньше, чем имевшаяся техника. Причем разработал его Митенков (коему тогда и тридцати-то лет от роду не было!) буквально по наитию, вопреки мнению академического авторитета, не имея практически никакого теоретического обоснования полученному эффекту. Решение проблемы по созданию сверхэкономичного нагнетателя было найдено чисто практическим, опытным путем! И вот что особенно удивительно: при передаче технологии на Кировский завод в Питере воспроизвести эффект не удалось, невзирая на то, что завод получил подробные чертежи. Более того, внятного объяснения инновации Митенкова нет и до сих пор, шестьдесят лет спустя! Вот что рассказал в 2013-м сам советский (а не постсоветский!) академик Федор Митенков…
«…То, что мы сделали, было событием, которое интересовало всю отрасль, потому что обогащение урана тогда было одной из ключевых задач всей страны. Главный конструктор ленинградского КБ Николай Михайлович Синев позвонил моему руководителю Игорю Ивановичу Африкантову (выдающийся конструктор, долгие годы возглавлял ОКБ Горьковского машиностроительного завода, а позже и ОКБМ, возникшее на месте конструкторского бюро. — «Эксперт») и попросил: «Нам стало известно, что Митенкову удалось существенно уменьшить затраты электроэнергии. Мы же занимаемся одной проблемой, не передадите нам необходимую информацию?» Игорь Иванович понимал, насколько важна наша разработка для отрасли, для страны в целом, и попросил меня помочь ленинградским товарищам. Я ему ответил, что мы, конечно, все им передадим, но закавыка в том, что теоретически осмыслить полученное нам самим не удалось, так как мы достигли успеха опытным путем.
Я поехал в Ленинград и честно им все последовательно рассказал. Рассказал, что вопреки мнению академика Миллионщикова (Михаил Дмитриевич Миллионщиков — известный специалист в области аэрогидродинамики, механики и прикладной физики, в то время научный руководитель проектов по совершенствованию газодиффузионных машин. — «Эксперт») предложил использовать вместо осевого компрессора центробежный и что Африкантов поддержал меня. Поведал им, как мы меняли конструкцию сверхзвукового компрессора, как я мучил своих конструкторов, пока искали необходимую геометрию лопаток на выходе из компрессора и перепробовали все, что можно было, а получив нужную лопатку, стали ее просто буквально копировать, повторяя эту, можно сказать, в значительной степени случайную находку. Рассказал и то, что теоретически объяснить, изложив какой-то математической функцией, какими-то алгоритмами, почему и как это работает в сверхзвуковых течениях, мы не готовы, потому что просто не понимаем сами всего.
— Чем же закончилась история с Кировским заводом?
— А не пошло это дело в Ленинграде. Как будто скопировали они все. Я же им конструкцию свою всю привез в чертежах. Они повторили все по нашей документации, но у них не получилось. Николай Михайлович позвонил Африкантову и серьезно сказал: а все-таки ваш порученец Митенков не сказал всего, что знал. Я Игорю Ивановичу поклялся, что это не так. Я, кстати, впервые рассказываю эту историю вам, неспециалисту, и до сей поры очень неприятно вспоминать, что мне не поверили до конца. А позже уже сам академик Миллионщиков предложил мне изложить результаты в работе на базе накопленных материалов по центробежному варианту компрессора, и под его научным руководством я подготовил диссертацию на соискание ученой степени кандидата технических наук. Но вопросы, конечно, остались и после этой работы.
— А сейчас нашли объяснение вашей тогдашней находке, может, просчитали на современных вычислительных средствах эти сверхзвуковые течения?
— Вы знаете, я все годы следил за изучением процессов в сверхзвуковых течениях, имел хорошие связи с учеными ЦАГИ, (Центрального аэрогидродинамического института имени Жуковского). Представьте себе, та же сложность с теорией и в авиации, с ней и сейчас конструкторы сталкиваются при проектировании сверхзвуковой техники. Объяснить все получается не всегда. Ведь не случайно тот же ЦАГИ построил когда-то специальные стенды в натуральную величину, с помощью которых и сейчас ищут решения с точки зрения управления такими самолетами, и многие из таких решений по-прежнему находят только благодаря практическим изысканиям…»
Выделения жирным в тексте я сделал сам. Ибо то, что совершил Митенков, до боли напоминает то, что делали и делают создатели вихревых теплогенераторов. То есть, путем постоянных проб находится эффект, который можно использовать и воспроизводить, но каковой при всем том не имеет внятного, приемлемого для академической науки, объяснения! И все это ищется не с помощью теоретически-бумажных расчетов и не с помощью виртуально-компьютерного моделирования (ибо в мозги ЭВМ просто не заложены неизвестные науке эффекты), а путем натурных экспериментов «в железе».
Страшно подумать о том, как могла бы расправиться с Митенковым нынешняя Комиссия по лженауке. Ибо все признаки шарлатанства тут налицо. Научно-теоретического обоснования – нет вообще никакого. Публикаций в серьезных научных журналах – ни единой. Противоречие признанному авторитету (академику Миллионщикову) – полное. Воспроизвести изобретение на Кировском заводе не удалось, несмотря на получение им чертежей. Признаки лженауки по критериям нынешних академиков александровых, кругляковых и гинзбургов – налицо. Ату его, шарлатана и мошенника, вон из науки вообще!
Но, к счастью, в начале 1950-х в СССР такого позорища, как Комиссия по лженауке, не существовало. Спецкомитет при Совмине СССР, руководимый Берией, решал конкретную задачу и делал Дело. Его интересовало одно: решается конкретная проблема экономии электроэнергии или нет? Если решается, коли эффект достигнут и помогает сделать Главное Дело – изобретению дается ход. И плевать на то, что думают по этому поводу всякие там академики. Спецкомитету нужно было создать ядерный щит СССР, а не охранять душевный покой, статус и неприкосновенность авторитета старцев из Академии наук. Если что-то, воплощенное в металле, работает на практике, то оно должно жить. Академики же пусть отрывают от кресел свои задницы и работают, ища объяснение дотоле неведомому. Иначе какого черта страна их содержит и кормит за счет казны?
Я уверен в том, что в начале 1950-х генераторы, созданные командой Урпина, попади они в сферу внимания Спецкомитета, точно так же получили бы распространение и защиту на уровне государства. Ибо они решают задачу государственной важности: обеспечения дешевого отопления и экономию миллионов тонн угля, нефти, урана. Колоссальную экономию денег и труда сотен тысяч работников. Любые попытки «высокоученых козлов» объявить эффект несуществующим пресекались бы на корню. Академику-инквизитору Александрову тогда, вздумай он действовать на нынешний манер, крепко дали бы по мозгам. Не умеешь сделать сам – не мешай тем, кто может.
В те сталинские годы государство, извините за выражение, дрючило Академию наук и ставило перед нею конкретные, практические задачи. Оно не давало академическому сообществу замкнуться в себе и в так называемой «чистой науке». Государство не давало возможности академикам прятаться за трусливое «Отрицательный результат – тоже результат», оно постоянно требовало от АН СССР прикладных плодов работы. Именно за достигнутые результаты в академики выдвигались настоящие ученые – практические исследователи и искатели нового. Там не было места велиховым, например, десятки лет кормивших нас обещаниями скорого овладения «горячим термоядом». Там не было места всяким александровым и кругляковым, которые занимаются лишь «отстрелом» первопроходцев во имя «чистоты веры», но сами не могут создать ничего прорывного. Существовал пускай и не идеальный, но достаточно сильный предохранитель от нашествия в Академию наук бесплодных существ, способных только получать высокие титулы, но ни черта не делать и достойных давить. Если до сих пор РАН еще из себя что-то представляет, то именно благодаря той сталинской «прививке» из таких, как академик Митенков. Считаю, что и Мастер в такой системе нашел бы поддержку своим работам.
И так это академическим старцам не понравилось, так их смущало, что после хрущевской «десталинизации» АН СССР принялась все больше и больше уходить от решения прикладных задач. Оттого советская наука все больше и больше стала превращаться в прибежище бездарей и дармоедов, лишь делающих вид, что занимаются наукой и уничтожающих тех, кто мог показать их никчемность. Оттого уже в 1977 году в СССР насчитывалось 1,3 миллиона людей, числившихся учеными, хотя при этом страна не могла опередить Запад в технологиях и перешла к политике почти полного копирования западных достижений вчерашнего дня. Примечательно, что сегодняшний главный борец со лженаукой Е.Александров – выходец из ГОИ, Государственного оптического института. А ГОИ с советских времен имеет печальную славу копировщика иностранных технологий при достаточно скромных собственных достижениях. Улавливаете закономерность?
Логическое завершение тенденция слабоумия нашей Большой науки получила после развала Союза и создания РАН на месте АН СССР. РАН практически полностью отказалась от прикладных задач и деградировала в «храм чистой науки», в науку ради науки, в лавочку для сохранения статуса остепененных стариков. Это и привело к превращению официальной науки в тормозящую поиски силу, в монополизатора истины и бюджетных потоков. А создание новой инквизиции – Комиссии по лженауке – лишь увенчало дело этого оскотинивания. Скандал с Петриком это показал во всем «великоляпии».
При этом РАН после 1991 года трусливо и безучастно наблюдала за разграблением и разгромом страны властью мародеров, пресмыкаясь перед нею (лишь бы бабки на Академию давали). РАН (отдельные академики – не в счет) не пыталась ни выступить против либерального геноцида, ни предложить проектов развития РФ. Она не поддерживала акции протеста ни молодых ученых, ни работников образования. Она, говоря о сохранении и «окукливании» науки до лучших времен, за двадцать с лишним постсоветских лет растеряла кадры и превратила свои институты в дома престарелых. А теперь вот всякая смелая мысль в этих институтах рискует быть убитой, оклеветанной или изгнанной вон. Понятное дело, что никакими простыми вливаниями дополнительных денег в деградировавшую, впавшую в реакционное слабоумие, систему РАН положения не выправить.

(Ждите полного текста)


Устройство и схема гидродинамического насоса

Кавитационный теплогенератор

Кавитационный теплогенератор купить

Кавитационное отопление

Вихревой кавитационный теплогенератор

Вихревые кавитационные теплогенераторы

Отопление кавитационным насосом

Кавитационная система отопления

Кавитационный теплогенератор отопления

Кавитационные теплогенераторы систем отопления

Кавитационный насос для отопления дома

Кавитационный теплогенератор цена

Вихревой кавитационный теплогенератор купить

Кавитационные вихревые теплогенераторы купить

Кавитационные насосы для отопления частного дома

Кавитационное отопление купить

Кавитационный для отопления дома 100 квадратных метров

Купить кавитационный теплогенератор для дома

Кавитационные котлы отопления

Кавитационные теплогенераторы купить цена

Тепловые кавитационные насосы для отопления

Кавитационные теплогенераторы систем отопления купить

Кавитационные теплогенераторы систем отопления цена

Кавитационный насос для отопления дома цены

Кавитационный теплогенератор купить в москве

Теплогенераторы вихревые кавитационные статические

Купить кавитационный теплогенератор для частного дома

Вихревой кавитационный теплогенератор для дома купить

Вихревой кавитационный теплогенератор цена

Приборы отопления водяные промышленные

Водяное отопление производственных помещений

Водяное отопление жилых зданий

Система водяного отопления жилых зданий

Системы водяного отопления многоэтажных зданий

Промышленное отопление предприятия

Системы отопления промышленных предприятий

Затраты на отопление предприятия

Снижение затрат на отопление на предприятии

Воздушное отопление предприятия

Предприятие отопление

Система отопления предприятия

Отопление производственных помещений и предприятий

Отопление предприятия общественного питания

Отопление малых предприятий лесного комплекса

Промышленное газовое отопление

Газовые промышленные котлы отопления

Газовое отопление промышленных зданий

Газовое воздушное отопление производственных помещений

Газовое отопление производственных помещений

Отопление производственных помещений газом

Газовое оборудование для отопления производственных помещений

Газовое инфракрасное отопление производственных помещений

Газовое отопление здания

Газовое отопление складов

Инфракрасное отопление производственных помещений

Инфракрасное отопление склада

Промышленные котлы отопления

Электрокотлы промышленные для отопления

Промышленные котлы отопления цены

Промышленные электрические котлы отопления

Электрокотлы для отопления промышленных зданий

Индукционные промышленные котлы отопления

Котлы отопления для предприятия

Котлы отопления для производственных помещений

Электрокотлы для отопления производственных помещений

Электрическое отопление промышленное

Промышленные электрические системы отопления

Промышленные электрические системы отопления ангара

Электрический котел для отопления производственных помещений

Электрокотел для отопления здания

Котел электрический для отопления здания

Электрическое отопление производственных помещений

Электрическое отопление зданий

Отопление зданий электричеством

Электрическое отопление склада

Отопление склада электричеством

Основные системы отопления здания

Промышленный твердотопливный котел отопления

Промышленный котел отопления на твердом топливе

Промышленно паровое отопление

Воздушное отопление склада

Отопление склада воздухом

Монтаж систем воздушного отопления для производственных помещений

Промышленное воздушное отопление

Воздушное отопление промышленных помещений

Воздушное отопление производственного помещения

Системы воздушного отопления производственных помещений

Отопление воздухом производственных помещений

Воздушное отопление зданий

Воздушное отопление общественных зданий

Печное отопление зданий

Альтернатива центральному отоплению в многоквартирном доме

Отопление предприятия альтернатива централизованному

Альтернатива отопления

Альтернатива газовому отоплению

Отопление дома альтернатива

Отопление частного дома альтернатива

Альтернатива газовому отоплению дома

Альтернатива отопления в частном доме

Альтернатива газу отопление

Альтернатива газовому отоплению в частном доме

Альтернатива центральному отоплению

Альтернативы котлам отопления

Альтернатива электрического отопления

Альтернатива газовому отопление тесла генератор

Альтернатива газовым котлам для отопления

Альтернатива радиаторам отопления

Альтернатива батареям отопления

Альтернатива водяному отоплению

Альтернатива отопления дома когда нет газа

Альтернатива газу экономное отопление электричеством

Альтернатива природному газу для отопления

Альтернатива газовому и электрическому отоплению

Отопление частного дома альтернатива газу

Альтернатива углю для отопления

Отопление без газа склада

Новые системы отопления зданий

Отопление склада способы

Снижение затрат на отопление

Экономичное отопление производственного помещения

Автономное отопление производственных помещений

Современное отопление производственных помещений

Варианты отопления производственных помещений

Виды отопления производственных помещений и их характеристика

Современные системы отопления производственных помещений

Виды отопления зданий

Автономное отопление здания

Промышленное отопление

Отопление промышленных теплиц

Промышленные системы отопления

Отопление промышленных зданий

Отопление промышленных помещений

Системы отопления промышленных зданий

Отопление промышленных объектов

Отопление промышленных цехов

Промышленное котельное отопление

Система отопления промышленной теплицы

Системы отопления промышленных помещений

Стоимость промышленного отопления

Отопление в промышленном районе

Промышленное отопление зданий и помещений

Отопление промышленных зданий и сооружений

Промышленное отопление спортивных сооружений

Отопление промышленных зданий спг

Высотные здания отопление и вентиляция

Отопление производственных зданий

Системы отопления производственных зданий

Отопление производственных помещений

Системы отопления производственных помещений

Оборудование для отопления производственных помещений

Стоимость отопления производственных помещений

Отопление производственных и бытовых помещений

Отопление производственных помещений г уфа

Отопление производственных помещений и рабочих мест

Печь для отопления производственных помещений

Отопление зданий

Системы отопления зданий

Отопление жилого здания

Отопление общественных зданий

Отопление административных зданий

Системы отопления жилых зданий

Отопление зданий и сооружений

Отопление жилых и общественных зданий

Системы отопления общественных зданий

Отопление офисного здания

Системы отопления административных зданий

Система отопления зданий и сооружений

Отопление нежилого здания

Отопление многоэтажных зданий

Внутренние системы отопления зданий

Индивидуальное отопление здания

Отопление малоэтажных зданий

Системы отопления жилых и общественных зданий

Отопление гражданского здания

Системы отопления многоэтажных зданий

Современные системы отопления зданий

Реконструкция отоплений зданий

Кирпичное здание отопления

Системы отопления высотных зданий

Отопление двухэтажного здания

Системы теплоснабжения и отопления зданий

Система отопления офисного здания

Реконструкция системы отопления здания

Печное отопление малоэтажных зданий

Местное отопление зданий

Автономная система отопления здания

Система отопления двухэтажного здания

Отопления в высотных зданиях

Отопление в здании школы

Системы отопления для больших зданий

Местное отопление помещений зданий

Стоимость отопления офисного здания

Системы отопления одноэтажных зданий

Современные энергосберегающие системы отопления малоэтажных жилых зданий

Какую систему отопления применить для двухэтажного здания

Промышленный монтаж систем отопления

Проектирование и монтаж системы отопления здания

Монтаж отопления производственных помещений

Стоимость монтажа отопления производственных помещений

Монтаж отопления зданий

Монтаж системы отопления здания

Отопление склада

Система отопления складов

Оптовый склад отопление

Оборудование для отопления склада

Водяное отопление склада

Отопление складов и складских помещений

Обогрев ангара

Отопление ангаров складов

Отопление ангара

Система отопления ангара

Отопление большого ангара

Расчет отопления ангара

 

 

Устройство и принцип работы теплового гидродинамического насоса

5.8. Насосы гидродинамического действия

5.8.1. Центробежные насосы

В центробежных насосах перекачивание жидкости осуществляется за счет действия на жидкость центробежной силы, сообщаемой жидкости лопастями вращающегося рабочего колеса.

Основными узлами центробежных насосов являются рабочие колеса, корпуса, в которых эти колеса вращаются, и устройства для подвода и отвода жидкости. Рабочие колеса имеют лопасти и установлены на валах, которые вращаются приводным двигателем.

Жидкость подводится в полости между лопастями и дисками рабочего колеса и получает вращательное движение. Под действием центробежной силы жидкость направляется к внешней окружности рабочего колеса и выталкивается за его пределы. Такое движение жидкости является непрерывным и равномерным процессом.

К достоинствам центробежных насосов относятся простота устройства, небольшое количество частей, высокая надежность, возможность получения больших подач в широком диапазоне необходимых давлений. Благодаря этому насосы такого типа получили очень широкое распространение на судах в качестве питательных, конденсатных, циркуляционных, противопожарных, трюмно-осушительных и балластных.

На рис. 63 представлена схема одноступенчатого консольного центробежного насоса с односторонним подводом жидкости при всасывании.

Рис. 63. Схема центробежного насоса:

1 – подвод жидкости, 2 – рабочее колесо, 3 – спиральный отвод жидкости, 4 – нагнетательный патрубок

Проточная часть насоса образована подводом 1, рабочим колесом 2 и отводом 3. Жидкость поступает по подводу из всасывающего трубопровода в рабочее колесо, заполняя пространство между лопастями «б» с шириной на входе «в1» и на выходе «в2».

Лопасти “б” обычно отлиты заодно с задним несущим и передним ведомым дисками. Форма и кривизна лопастей существенно влияют на напор и подачу насоса. Рабочее колесо, благодаря воздействию лопастей на жидкость, вращает поток и сообщает ему необходимую энергию. Жидкость движется от центрального всасывающего отверстия диска к периферии и по спиральному отводу 3 направляется к нагнетательному патрубку 4.

При входе жидкости на лопасти рабочего колеса скорости потока и давления распределены неравномерно. Неодинаковы давления у передней и тыльной сторон лопасти, при этом давление с тыльной стороны заметно ниже. Если давление понизится до давления парообразования при данной температуре, то в межлопастном пространстве, в зонах пониженного давления образуются пузырьки пара. При дальнейшем движении потока вдоль лопастей давление повышается, пар мгновенно конденсируется и жидкость устремляется в освободившееся при конденсации пространство. В результате возникает ударное давление, оказывающее разрушающее воздействие на лопасти. Это явление называется кавитацией.

Кавитация сопровождается шумом и треском внутри насоса и может вызвать вибрацию насосной установки.

Для длительной безаварийной эксплуатации насоса необходимо создать условия исключающие кавитацию. В этой связи значение удельной энергии жидкости при входе потока на рабочее колесо должно обеспечить создание заданной скорости входа, преодоление потерь при входе и избыток напора превышающий тот, при котором начинается кипение.

Исходя из этого определяется высота установки насоса над уровнем всасываемой жидкости – максимально допустимая геометрическая высота всасывания:

Z = [(pа pn)/ρg] – hl – φΔh

где: pа – давление на поверхности жидкости в приемном резервуаре,

pn – давление парообразования при эксплуатационной температуре,

ρ – плотность перекачиваемой жидкости,

g – ускорение свободного падения,

hl – гидравлические потери во всасывающем трубопроводе,

φ = 1.2 – 1.3 коэффициент запаса, предупреждающий возможность вскипания жидкости,

Δh – минимальный избыточный напор.

На рис. 64 показано устройство одноступенчатого центробежного насоса с двусторонним подводом воды.

Рис. 64. Одноступенчатый центробежный насос с двусторонним подводом:

1 – рабочее колесо, 2 – корпус, 3 – уплотняющее кольцо, 4 – вал, 5 – опорные подшипники, 6, 7 – соединительные полумуфты, 8 – уплотнения, 9 – корпус, 10– колесо водокольцевого насоса, 11– вал, 12 – упорный подшипник

Рабочее колесо 1 посажено на вал 4 и располагается в литом корпусе насоса 2. Уплотняющее кольцо 3 уменьшает возможность перетекания жидкости из отводящей в приемные полости. Опорные подшипники 5 удерживают вал от осевых сдвигов. Уплотнения 8 служат для устранения подсоса воздуха. В нижней части насоса, в корпусе 9, находится самовсасывающий водокольцевой насос с лопаточным колесом 10, сидящим на валу 11, укрепленном в упорном подшипнике 12. Вспомогательный водокольцевой насос обеспечивает создание вакуума во всасывающем трубопроводе при пуске основного центробежного насоса. Его использование необходимо в случае, если насос установлен выше уровня жидкости в приемном резервуаре.

При эксплуатации центробежных насосов следует выполнять ряд общих требований:

  • перед пуском насоса производится его осмотр, проверяется заправка и исправность системы смазки, проверяется отсутствие осевого сдвига рабочего колеса, при возможности вручную проворачивается вал насоса;

  • перед пуском производится заливка всасывающего трубопровода и рабочего колеса с выпуском воздуха через воздушные краны;

  • насос запускается при закрытом клинкете (вентиле) на нагнетательном трубопроводе;

  • после пуска, при достижении нормальной частоты вращения и давления нагнетания, медленно открывается клинкет на нагнетательном трубопроводе. Длительная работа при закрытом клинкете приводит к перегреву насоса.

Во время работы насоса осуществляется периодический контроль за работой смазочных устройств, показаний мановакууметрических приборов, частоты вращения вала, поступлением жидкости в уплотняющие устройства, если это предусмотрено.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *