Геотермальная электростанция — Википедия
Геотерма́льная электроста́нция (ГеоЭС или ГеоТЭС) — вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников (например, гейзеров).
Геотермальная энергия — это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло предоставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира.
По различным подсчетам, температура в центре Земли составляет, минимум, 6650 °C. Скорость остывания Земли примерно равна 300—350 °C в миллиард лет. Тепловой поток, текущий из недр Земли через ее поверхность, составляет 47±2 ТВт тепла (400 тыс. ТВт⋅ч в год — в 17 раз больше, чем выработка всей мировой энергетики), а тепловая мощность, вырабатываемая Землёй за счет радиоактивного распада урана, тория и калия грубо оценивается в 13–61 ТВт
Крупнейшей ГеоТЭС является Олкария IV (Olkaria IV) в Кении (парк Ворота Ада) мощностью 140 МВт[2].
Устройство геотермальных электростанций[править | править код]
Существует несколько способов получения энергии на ГеоТЭС:
- Прямая схема: пар направляется по трубам в турбины, соединённые с электрогенераторами;
- Непрямая схема: аналогична прямой схеме, но перед попаданием в трубы пар очищают от газов, вызывающих разрушение труб;
- Смешанная схема: аналогична прямой схеме, но после конденсации из воды удаляют не растворившиеся в ней газы.
- Бинарная схема: в качестве рабочего тела используется не термальная вода или пар, а другая жидкость, имеющая низкую температуру кипения. Термальная вода пропускается через теплообменник, где образуется пар другой жидкости, используемой для вращения турбины. Такая схема используется, например, на геотермальной электростанции Ландау[de] в Германии, где в качестве рабочего тела применяется изопентан.
В 1817 году граф Франсуа де Лардерель разработал технологию сбора пара из естественных геотермальных источников.
В 20-м веке спрос на электроэнергию привёл к появлению проектов создания электростанций, использующих внутреннее тепло Земли.
Человеком, который провёл испытания первого геотермального генератора, был Пьеро Джинори Конти. Это произошло 4 июля 1904 года в итальянском городе Лардерелло. Генератор смог успешно зажечь четыре электрических лампочки.
В 1958 году, когда была введена в эксплуатацию электростанция Вайракей, Новая Зеландия стала вторым крупным промышленным производителем геотермальной электроэнергии. Вайракей была первой станцией непрямого типа.[4] В 1960 году «Pacific Gas and Electric» начала эксплуатацию первой успешной геотермальной электростанции в США на гейзерах в Калифорнии.
Тепловой КПД геотермальных электростанций невысок — около 7–10%,
В СССР первая геотермальная электростанция была построена в 1966 году на Камчатке, в долине реки Паужетка. Её мощность — 12 МВт.
На Мутновском месторождении термальных вод 29 декабря 1999 года запущена в эксплуатацию Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт (на 2004 год).
10 апреля 2003 года запущена в эксплуатацию первая очередь Мутновской ГеоЭС, установленная мощность на 2007 год — 50 МВт, планируемая мощность станции составляет 80 МВт, выработка в 2007 году — 360,687 млн кВт·ч. Станция полностью автоматизирована.
2002 год — введен в эксплуатацию первый пусковой комплекс «Менделеевская ГеоТЭС» мощностью 3,6 МВт в составе энергомодуля «Туман-2А» и станционной инфраструктуры.
2007 год — ввод в эксплуатацию Океанской ГеоТЭС, расположенной у подножия вулкана Баранского на острове Итуруп в Сахалинской области, мощностью 2,5 МВт. Название этой электростанции связано с непосредственной близостью к Тихому океану. В 2013 г. на станции произошла авария, в 2015 г. станция была окончательно закрыта
Название ГеоЭС | Установленная мощность на конец 2010 года, МВт | Выработка в 2010 году, млн кВт⋅ч | Год ввода первого блока | Год ввода последнего блока | Собственник | Место расположения |
---|---|---|---|---|---|---|
Мутновская | 50,0 | 360,7 (2007 год) | 2003 | 2003 | ПАО «Камчатскэнерго» | Камчатский край |
Паужетская | 12,0 | 42,544 | 1966 | 2006 | ПАО «Камчатскэнерго» | Камчатский край |
Верхне-Мутновская | 12,0 | 63,01 (2006 год) | 1999 | 2000 | ПАО «Камчатскэнерго» | Камчатский край |
Менделеевская | 3,6 | ? | 2002 | 2007 | ЗАО «Энергия Южно-Курильская» | о. Кунашир |
Сумма | 77,6 | >466,3 |
Для современных геотермальных электростанций характерен умеренный уровень выбросов. В среднем он равен 122 кг CO2 на мегаватт-час электроэнергии, что значительно меньше выбросов при производстве электроэнергии с использованием ископаемого топлива
Предупреждение извержений вулканов[править | править код]
Для предупреждения суперизвержения Йеллоустонской кальдеры, которое может иметь крайне катастрофические последствия для Североамериканского континента, NASA предложило проект геотермальной электростанции, которая будет отбирать тепло от магматического пузыря, расположенного под кальдерой. Затраты на строительство такой геоТЭС оцениваются в 3,5 млрд долларов США, но стоимость вырабатываемой энергии обещает быть очень невысокой — 0,1 доллара за киловатт-час.
- ↑ Ядерное тепло Земли
- ↑ В Кении запустили самую мощную в Мире ГеоТЭС (неопр.). greenevolution.ru (3 ноября 2014).
- ↑ Tiwari, G. N.; Ghosal, M. K. Renewable Energy Resources: Basic Principles and Applications. Alpha Science Int’l Ltd., 2005 ISBN 1-84265-125-0
- ↑ IPENZ Engineering Heritage Архивная копия от 22 июня 2013 на Wayback Machine. Ipenz.org.nz. Retrieved 13 December 2013.
- ↑ 1 2 Lund, J. (September 2004), «100 Years of Geothermal Power Production», Geo-Heat Centre Quarterly Bulletin (Klamath Falls, Oregon: Oregon Institute of Technology) . — Т. 25 (3): 11–19, ISSN 0276-1084, <http://geoheat.oit.edu/bulletin/bull25-3/art2.pdf>. Проверено 13 апреля 2009.
- ↑ McLarty, Lynn & Reed, Marshall J. (October 1992), «The U.S. Geothermal Industry: Three Decades of Growth», Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (London: Taylor & Francis) . — Т. 14 (4): 443–455, doi:10.1080/00908319208908739, <http://geotherm.inel.gov/publications/articles/mclarty/mclarty-reed.pdf>. Проверено 29 июля 2013. Архивировано 16 мая 2016 года.
- ↑ Erkan, K.; Holdmann, G.; Benoit, W. & Blackwell, D. (2008), «Understanding the Chena Hot Springs, Alaska, geothermal system using temperature and pressure data», Geothermics Т. 37 (6): 565–585, ISSN 0375-6505, doi:10.1016/j.geothermics.2008.09.001, <http://linkinghub.elsevier.com/retrieve/pii/S0375650508000576>. Проверено 11 апреля 2009.
- ↑ Bertani, Ruggero Geothermal Energy: An Overview on Resources and Potential (неопр.) (2009).
- ↑ Schavemaker, Pieter; van der Sluis, Lou. Electrical Power Systems Essentials (неопр.). — John Wiley & Sons, Ltd, 2008. — ISBN 978-0470-51027-8.
- ↑ ГеоТЭС «Океанская» на Итурупе закрыта. 26.01.2016. Наталья Голубкова. Новости. Курильск. Сахалин.Инфо
- ↑ Сидорович, Владимир, 2015, с. 126.
- Владимир Сидорович. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир. — М.: Альпина Паблишер, 2015. — 208 с. — ISBN 978-5-9614-5249-5.
Геотермальная энергетика — это… Что такое Геотермальная энергетика?
Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.
В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.
Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика.[1]
Ресурсы
Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.
Россия
На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
Достоинства и недостатки
Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.
Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным[источник не указан 489 дней], в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.
Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.
Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.
Геотермальная электроэнергетика в мире
Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт[2].
США
Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновляемой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт[5]. До 2013 года планируется строительство более 4400 МВт.
Наиболее мощная и известная группа геотермальных электростанций находится на границе округов Сонома и Лейк в 116 км к северу от Сан-Франциско. Она носит название «Гейзерс»(«Geysers») и состоит из 22 геотермальных электростанций с общей установленной мощностью 1517 МВт[6]. «На «Гейзерс» сейчас приходится одна четвертая часть всей произведенной в Калифорнии альтернативной [не-гидро] энергии»[7]. К другим основным промышленным зонам относятся: северная часть Солёного моря в центральной Калифорнии (570 МВт установленной мощности)и геотермальные электростанции в Неваде, чья установленная мощность достигает 235 МВт.
Важно отметить тот факт, что американские компании являются мировыми лидерами в этом секторе, несмотря на то, что геотермальная энергетика начала активно развиваться в стране сравнительно недавно. По данным Министерства Торговли, геотермальная энергия является одним из немногих возобновляемых источников энергии, чей экспорт из США больше, чем импорт. Кроме того, экспортируются также и технологии. 60%[8] компаний-членов Геотермал Энерджи Ассошиэйшн (Geothermal Energy Association) в настоящее время стремятся делать бизнес не только на территории США, но и за ее пределами (в Турции, Кении, Никарагуа, Новой Зеландии, Индонезии, Японии и пр.)
Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.
Филиппины
На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27% всей электроэнергии в стране.
Мексика
Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.
Италия
В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.
Исландия
В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.
Одна из таких станций снабжает столицу Рейкьявик. Станция использует подземную воду, а излишки воды сливают в гигантский бассейн.
Кения
В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.
Россия
Впервые в мире неводяные пары как тепловой носитель применены на Паратунской ГеоТЭС в 1967 году.[9]
По данным института вулканологии Дальневосточного Отделения Российской Академии наук, геотермальные ресурсы Камчатки оцениваются в 5000 МВт.[10] Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
- Мутновское месторождение:
- Паужетское месторождение возле вулканов Кошелева и Камбального — Паужетская ГеоТЭС мощностью 14,5 МВт·э (2011) и выработкой 43,1 млн кВт·ч (на 2010 год проводится реконструкция с увеличением мощности до 18 МВт·э).
- Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт·э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт·ч.
- Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт·э (2009).
В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.
В Краснодарском крае эксплуатируется 12 геотермальных месторождений.[11]
Классификация геотермальных вод[12]
По температуре
Слаботермальные | до 40°C |
Термальные | 40-60°C |
Высокотермальные | 60-100°C |
Перегретые | более 100°C |
По минерализации (сухой остаток)
ультрапресные | до 0,1 г/л |
пресные | 0,1-1,0 г/л |
слабосолоноватые | 1,0-3,0 г/л |
сильносолоноватые | 3,0-10,0 г/л |
соленые | 10,0-35,0 г/л |
рассольные | более 35,0 г/л |
По общей жесткости
очень мягкие | до 1,2 мг-экв/л |
мягкие | 1,2-2,8 мг-экв/л |
средние | 2,8-5,7 мг-экв/л |
жесткие | 5,7-11,7 мг-экв/л |
очень жесткие | более 11,7 мг-экв/л |
По кислотности, рН
сильнокислые | до 3,5 |
кислые | 3,5-5,5 |
слабокислые | 5,5-6,8 |
нейтральные | 6,8-7,2 |
слабощелочные | 7,2-8,5 |
щелочные | более 8,5 |
По газовому составу
сероводородные | |
сероводородно-углекислые | |
углекислые | |
азотно-углекислые | |
метановые | |
азотно-метановые | |
азотные |
По газонасыщенности
слабая | до 100 мг/л |
средняя | 100-1000 мг/л |
высокая | более 1000 мг/л |
Петротермальная энергетика
Данный тип энергетики связан с глубинными температурами Земли, которые с определённого уровня начинают подниматься. Средняя скорость её повышения с глубиной – около 2,5°С на каждые 100 м. На глубине 5 км температура составляет примерно 125°С, а на 10 км – 250°С. Добыча тепла производится посредством бурения двух скважин, в одну из которых закачивается вода, которая, нагреваясь, попадает в смежную скважину и выходит в виде пара. Проблема данной энергетики на сегодня — её рентабельность.[1]
См. также
Примечания
- ↑ 1 2 Кирилл Дегтярёв Петротермальная энергетика – старт в России. Русское географическое общество (24 октября 2011). Архивировано из первоисточника 20 ноября 2012. Проверено 1 ноября 2012.
- ↑ Geothermal Development Expands Globally
- ↑ Bertani, Ruggero (September 2007), ««World Geothermal Generation in 2007»», Geo-Heat Centre Quarterly Bulletin (Klamath Falls, Oregon: Oregon Institute of Technology) . — Т. 28 (3): 8–19, ISSN 0276-1084, <http://geoheat.oit.edu/bulletin/bull28-3/art3.pdf>. Проверено 12 апреля 2009.
- ↑ Holm, Alison (May 2010), «Geothermal Energy:International Market Update», Geothermal Energy Association, сс. 7, <http://www.geo-energy.org/pdf/reports/GEA_International_Market_Report_Final_May_2010.pdf>. Проверено 24 мая 2010.
- ↑ Geothermal Projects Being Developed in 70 Countries 25 Май 2010 г
- ↑ The Geysers Geothermal Field, California, United States of America//www.power-technology.com — http://www.power-technology.com/projects/the-geysers-geothermal-california
- ↑ Calpine and the Environment//www.geysers.com — http://www.geysers.com/environment.htm
- ↑ Charles W. Thurston. Accelerating Geothermal Growth Through DOE Initiatives//Renewable Energy World North America, May, 2010//www.renewableenergyworld.com — http://www.renewableenergyworld.com/rea/news/article/2012/01/accelerating-geothermal-growth-through-doe-initiatives
- ↑ Л.А. Огуречников Геотермальные ресурсы в энергетике. №11 (31). Альтернативная энергетика и экология (2005). Архивировано из первоисточника 20 ноября 2012. Проверено 1 ноября 2012.
- ↑ Геотермальная энергетика. журнал «Энергосвет». Архивировано из первоисточника 20 ноября 2012. Проверено 1 ноября 2012.
- ↑ В. А. Бутузов, Г. В. Томаров, В. Х. Шетов Геотермальная система теплоснабжения с использованием солнечной энергии и тепловых насосов. журнал «Энергосбережение» (№3 2008). Архивировано из первоисточника 20 ноября 2012. Проверено 1 ноября 2012.
- ↑ ВСН 56-87 «Геотермальное теплохладоснабжение жилых и общественных зданий и сооружений»
Литература
- Дворов И. М. Глубинное тепло Земли / Отв. ред. доктор геолого-минералогических наук А. В. Щербаков. — М.: Наука, 1972. — 208 с. — (Настоящее и будущее человечества). — 15 000 экз.
- Э Берман, Б. Ф. Маврицкий Геотермальная энергия. Издательство Мир, 1978. 416 стр.
- А. Е Севастопольский Геотермальная энергия: Ресурсы, разработка, использование : Пер. с англ. Издательство Мир, 1975.
- А. Г. Баева, В. Н. Москвичёва Геотермальная энергия: проблемы, ресурсы, использование. Библиографический указатель. Издательство СО АН СССР, Институт теплофизики, 1979
Ссылки
Геотермальная энергетика России — Википедия
Геотермальная энергетика России — отрасль российской электроэнергетики, обеспечивающая энергоснабжение с использованием геотермальной энергии. По состоянию на 2019 год, в России эксплуатируются три геотермальные электростанции общей мощностью 74 МВт, все — в Камчатском крае. В 2018 году они выработали 427 млн кВт·ч электроэнергии[1].
Мутновская ГеоЭС[править | править код]
Крупнейшая геотермальная электростанция России — мощность 50 МВт, среднегодовая выработка около 350 млн кВт·ч. Введена в эксплуатацию в 2001 году, совместно с Верхне-Мутновской ГеоЭС обеспечивает около 30 % энергопотребления Центрального энергоузла Камчатки. Существует возможность увеличения мощности Мутновской ГеоЭС, как за счет строительства новых очередей станции (потенциал месторождения позволяет разместить электростанции общей мощностью около 300 МВт), так и повышения эффективности работы действующей станции путем монтажа бинарного энергоблока мощностью 13 МВт, использующего тепло сбросного сепарата[2][3].
Верхне-Мутновская ГеоЭС[править | править код]
Установленная мощность станции — 12 МВт, среднегодовая выработка электроэнергии — около 65 млн кВт·ч. Введена в эксплуатацию в 1999 году, работает в едином комплексе с Мутновской ГеоЭС[2][3].
Паужетская ГеоЭС[править | править код]
Установленная мощность станции — 12 МВт, располагаемая мощность ограничена количеством поставляемого пара и составляет 5,8-6,0 МВт, ежегодная выработка электроэнергии составляет около 42 млн кВт·ч. Первая геотермальная электростанция России, введена в эксплуатацию в 1966 году. Обеспечивает электроэнергией изолированный Озерновский энергоузел, используя ресурсы Паужетского геотермального месторождения. Также в составе Паужетской ГеоЭС имеется экспериментальный бинарный энергоблок мощностью 2,5 МВт, который должен был использовать в качестве теплоносителя сбросной сепарат температурой 120°С. По состоянию на 2019 год энергоблок не введён в эксплуатацию[3][2].
Паратунская ГеоЭС[править | править код]
Располагалась на Камчатке, вблизи посёлка Термальный, использовала геотермальные ресурсы Паратунских источников. Экспериментальная электростанция, построенная для отработки бинарного геотермального цикла (первая бинарная геотермальная электростанция в мире). Мощность — 0,6 МВт[4].
Менделеевская ГеоТЭС[править | править код]
Установленная мощность — 3,6 МВт, тепловая мощность — 17 Гкал/час. Располагается на острове Кунашир около вулкана Менделеева, Сахалинская область. Введена в эксплуатацию в 2002 году. В 2016 году выведена в эксплуатации. Ведется модернизация станции, которая по состоянию на 2018 год находилась на завершающем этапе[5][6].
Океанская ГеоТЭС[править | править код]
Установленная мощность — 2,5 МВт. Расположена у подножия вулкана Баранского на острове Итуруп, Сахалинская область. Введена в эксплуатацию в 2007 году, в 2013 году остановлена в результате аварии, в 2016 году окончательно закрыта[7].
Имеются оценки, согласно которым потенциал геотермальной энергии в России значительно превышает запасы органического топлива (до 10-15 раз). Выявленные в России запасы геотермальных вод (температура 40-200 С, глубина залегания до 3500 м) составляют около 14 млн м³ горячей воды в сутки, что соответствует около 30 млн тонн условного топлива[8]
Наиболее доступный к освоению геотермальный потенциал сосредоточен на Камчатке и Курильских островах. Ресурсы геотермальных месторождений Камчатки оцениваются в 250—350 МВт электроэнергии (по другим данным — в 2000 МВт[9]), Курильских островов — в 230 МВт, что потенциально позволяет полностью закрыть потребности регионов в электроэнергии, теплоснабжении и горячей воде. Существенные объемы геотермальных ресурсов находятся на Северном Кавказе, Ставропольском и Краснодарском краях. В частности, в Дагестане разведано 12 геотермальных месторождений, в Чеченской республике — 14 месторождений, в Краснодарском крае — 13 месторождений. В целом разведанные ресурсы геотермального теплоносителя на Северном Кавказе позволяют обеспечить эксплуатацию электростанций мощностью около 200 МВт. В Дагестане ведется добыча геотермального теплоносителя для теплоснабжения, геотермальным отоплением пользуются более 100 тысяч человек[8][9]
В Калининградской области имеется геотермальное месторождение с температурой теплоносителя 105—120°С, потенциально пригодное для использования в электроэнергетике. Существует проект бинарной ГеоЭС мощностью 4 МВт в городе Светлый. В Центральной части России высокотемпературный геотермальный теплоноситель в основном залегает на глубинах более 2 км, что делает его использование в целях электроэнергетики экономически неэффективным. Возможно использование теплоносителя с температурой 40-60°С, залегающего на глубине 800 м, в целях теплоснабжения[8].
В Западной Сибири в ходе бурения нефтегазовых скважин на глубине до 1 км обнаружены геотермальные ресурсы Западно-Сибирского артезианского бассейна, потенциал которых оценивается в более чем 200 млн Гкал в год[10] .
В СССР разведка геотермальных ресурсов была начата в 1957 году с бурения первой скважины на Паужетском геотермальном месторождении. Геологоразведочные работы закончились в 1962 году, что позволило перейти к проектированию и строительству Паужетской ГеоЭС. Пуск первой в СССР геотермальной электростанции состоялся в 1966 году при мощности 5 МВт. В 1967 году была введена в эксплуатацию экспериментальная Паратунская ГеоЭС мощностью 0,6 МВт, первая в мире геотермальная электростанция с бинарным циклом[4].
В сентябре 1977 года Госплан СССР принял решение построить Мутновскую ГеоЭС мощностью 200 МВт с вводом первых агрегатов в 1984—1985 годах. В 1983 году сроки строительства первой очереди были сдвинуты на 1986—1990 годы. Запасы месторождения были представлены в Государственный комитет по запасам только в 1987 году, а утверждены — в 1990 году. В 1988 году была создана дирекция строительства Мутновской ГеоЭС, но в связи со сложной экономической ситуацией в стране строительство станций затянулось, в 1999 году была введена в эксплуатацию опытно-промышленная Верхне-Мутновская ГеоЭС мощностью 12 МВт, в 2001 году — Мутновская ГеоЭС мощностью 50 МВт[11][3].
В 2002 году введена в эксплуатацию Менделеевская ГеоТЭС мощностью 3,6 МВт на острове Кунашир, в 2007 году — Океанская ГеоТЭС на острове Итуруп. По состоянию на 2019 год, эти электростанции выведены из эксплуатации[6].
- Геотермальная энергетика России (неопр.). Государственная информационная система в области энергосбережения и повышения энергетической эффективности. Дата обращения 14 сентября 2019.
Виды источников геотермальной энергии
Ядро Земли состоит из двух взаимодействующих частей. Твёрдая часть окружена жидкой — расплавленной смесью железа и никеля, температура которой достигает 6100 ˚С. В результате создаётся магнитное поле планеты и подогревается земная поверхность у нас под ногами. Научись мы использовать такое количество тепла хотя бы частично, можно было бы забыть о других видах энергии на миллионы лет.
Проблема заключается в том, что поверхность Земли велика, а её кора неоднородна и имеет разную толщину. Поэтому плотность энергетического потока на единицу площади незначительна, а его выход неравномерен. Получать и использовать эту энергию можно от разных несущих в себе тепло сред. В настоящее время геотермальные источники энергии по типу эксплуатируемых теплоносителей можно разделить на три группы:
- Магматические;
- Гидротермальные и паротермальные;
- Петротермальные.
Гидротермальные и паротермальные источники, их виды и особенности
Гидротермальные и паротермальные носители тепловой энергии – это горячие вода и пар, находящиеся близко к земной поверхности в тех местах, где кора имеет наименьшую толщину. Это самый используемый сегодня способ отбора тепловой энергии, происходящей из планетарных недр.
Первый опыт эксплуатации паротермального источника был произведён ещё в 1904 году в Италии. Там вырывающийся из трещин в земной коре горячий пар сначала был использован для вращения турбин. Затем остывший пар превращался в конденсированную воду и снова возвращался в скважину для нового цикла нагрева.
Минус описанной технологии заключается в том, что пар и горячая вода, поднимающиеся на поверхность, небезопасны. Они часто содержат в своём составе агрессивные и токсичные примеси и газы, которые быстро приводят в негодность лопасти турбогенераторов и опасны для персонала станции.
Более современным способом использования подземного тепла от гидротермальных и паротермальных источников является так называемая «бинарная» технология. Её отличие от более ранних разработок в том, что горячие пар и вода не крутят турбины напрямую, а поступают в теплообменники. Там они отдают тепло более удобному и химически нейтральному носителю, который выполняет дальнейшую работу без вреда для людей и энергоустановок.
Петротермальный вид источников геотермальной энергии
Петротермальные источники – это верхние слои земной коры, имеющие местами достаточно высокую температуру. Если к ним подвести воду через глубокие скважины, она будет нагреваться и превращаться во вторичные гидро – и паротермальные носители тепловой энергии.
Есть в истории геотермальной земной энергетики практический опыт использования этого вида источников. В швейцарском городе Базеле был реализован проект направления воды в скважину, пробуренную к разогретым скальным породам. Предполагалось использование полученной в результате этого горячей воды и пара для производства электроэнергии путём вращения лопастей турбогенератора. В 2007 году проект был остановлен из-за опасения, что это может вызвать землетрясения в той горной местности.
Магматические источники геотермальной энергии
Магма – раскалённая порода, в расплавленном виде извергающаяся на поверхность планеты в местах вулканической активности. Особенность магматических источников заключается в высокой температуре теплоносителя, что могло бы значительно увеличить КПД энергоустановки. Трудность – в отсутствии современных технологий безопасного и стабильного извлечения этой огромной тепловой энергии из такого нестабильного и непредсказуемого теплоносителя, как магма.
Геотермальные источники энергии в России
Несмотря на богатство российских недр углеводородами, которых хватает не только нашей стране, но и поставляется в большом количестве за рубеж, вопросам использования геотермальных источников энергии тоже уделено достойное внимание. Обилием на земной поверхности источников горячей воды и пара на Камчатке, Курилах и Сахалине обусловлена экономическая целесообразность строительства там энергоустановок.
В 1967 году подземное тепло было впервые в России использовано на практике в Елизовском районе Камчатского края. Сегодня в этом регионе доля источников получения геотермальной энергии достигает уже 40 % в суммарном объёме энергопроизводства. По информации РАН, в ближайшей перспективе только на Камчатке этот ресурс может использоваться для получения 5000 МВт. В Краснодарском крае уже используется 12 месторождений этого природного ресурса тепла.
В мире геотермальные источники энергии активно используются в США, России, Японии, Исландии, Новой Зеландии, Италии, Мексике, Индонезии, на Филиппинах.
Плюсы и минусы геотермальной энергии
Дата публикации: 4 января 2019
Сила геотермальных вод Земли — альтернативный источник энергии. Такой метод получения энергии задействуется в регионах, где геотермальные источники выходят на поверхность или располагаются в местах легкой досягаемости. Перед возведением станции на месте источников периметр оценивают с точки зрения инженерной и экономической целесообразности, а главное — безопасности. Турбины геотермальных станций приводит в движение пар, который выпускают гейзеры и вулканы. Отсюда следует, что геотермальные источники обычно располагаются в неустойчивых сейсмических зонах, а значит, безопасность — вопрос первостепенной важности.
Перспективы и преимущества геотермальной энергии
Схема строительства будущей ГеоТЭС, преобразующей энергию геотермальных вод Земли в электричество, зависит от источника, на котором станция будет возведена. Иногда инженерная задумка сводится к простому бурению скважины, а иногда требуется дополнительное оборудование и технологии для очищения пара от вредных выхлопов или твердых частиц. Принцип добычи электричества из источников прост: пар поднимается вверх по скважине, приводя турбины в движение, а после возвращается обратно в обсадную.
Геотермальные станции активно используются в промышленных масштабах, сельскохозяйственной деятельности, ЖКХ. С их помощью обогреваются и поливаются оранжереи, теплицы, различные аква-установки. Подземные источники служат для полива полей или поддержания необходимого уровня влажности для выращивания сельскохозяйственных культур. ГеоТЭС успешно задействуются в ЖКХ, заменяя собой традиционные электростанции. Крупнейшая ГеоТЭС построена в Кении. Она подает достаточно электричества, чтобы содержать город.
Геотермальные источники энергии: плюсы и минусы
Главный минус геотермальной энергетики кроется в самом происхождении энергии: станции строятся в сейсмически активных зонах. Проблема в том, что спрогнозировать пробуждение вулкана, землетрясение или движение почв — задача непростая. Возведение станции в таких местах — это всегда риски. А с учетом того, что строительство ГеоТЭС — дело затратное, возникает вопрос о целесообразности использования силы геотермальных вод Земли. Чтобы обойти риски, для возведения ГеоТЭС выбираются «спокойные» регионы, где последняя сейсмическая активность была замечена лишь в далеком прошлом. Разведка потенциальных месторождений ведется в более чем семидесяти странах. Например, в России это Ставропольский край, Камчатка, Сахалин. В Украине — Закарпатье, Одесская область, Херсон.
Преимущества:
- Внушительные запасы геотермальной энергии. Один из главных плюсов геотермальной энергии заключается в том, что при грамотной эксплуатации этот источник можно назвать возобновляемым.
- Экономия на топливе. ГеоТЭС не нуждается в дополнительных поставках топлива для своего функционирования.
- Экологичность. Геотермальные источники и станции, их эксплуатирующие, не выбрасывают вредные вещества. А те вредные вещества, которые могут возникать во время добычи энергии, собираются и перерабатываются (например, нефть или природный газ).
- Самообеспечение. Дополнительное топливо из сторонних источников требуется только для первого запуска станции. В дальнейшем ГеоТЭС может обеспечивать электричеством сама себя. Его вырабатывается достаточно и для поставок, и для самообеспечения.
- Экономичность эксплуатации. Станция не требует больших трат на свою эксплуатацию — только на плановое техническое обслуживание, ремонт и профилактику.
- Дополнительная польза. Если электростанция стоит на берегу моря, ее можно задействовать для опреснения воды. Вода дистиллируется за счет нагревания и охлаждения пара в ходе работы ГеоТЭС. В дальнейшем эту воду можно использовать для питься или искусственного орошения земель.
- Эстетический вид. ГеоТЭС не портят пейзаж, не нуждаются в большом землеотводе, а современные проекты даже добавляют виду эстетической завершенности.
Недостатки:
- Сложности при утверждении проекта. Проблемы возникают на всех этапах проектирования: поиска подходящего места, тестирования, получения разрешения от властей и местного населения.
- Остановка работы в любой момент. Сложно предугадать извержение вулкана или землетрясение. Работа станции может остановиться даже из-за естественных изменений в земной коре. Неудачный выбор места для возведения ГеоТЭС тоже не способствует долгой стабильной работе. Еще одна причина остановки — превышение нормы закачки воды в породу.
- Если не использовать фильтры для выбросов из источника, в окружающую среду могут попасть вредные вещества.
плюсы и минусы. Геотермальные источники энергии :: SYL.ru
Среди альтернативных источников геотермальная энергия занимает значительное место – ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.
В нескольких странах – в том числе США, Исландии, Италии, Японии и других — построены и работают электростанции.
Геотермальная энергия в целом подразделяется на две разновидности – петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй — подземные воды.
Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.
Петротермальная энергетика
На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин – до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).
Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.
В основе использования энергии земных недр лежит природное явление – по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300–1500 ºС.
Гидротермальная энергетика
Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.
Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.
В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.
Основные черты геотермальной энергетики
Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов – негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.
Большое достоинство ГЭ – возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.
Но главное – это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.
Достоинства и недостатки ГЭ
В числе преимуществ этого вида энергии следующие:
- она возобновляемая и практически неиссякаемая;
- независима от времени суток, сезона, погоды;
- универсальна — с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
- геотермальные источники энергии не загрязняют окружающую среду;
- не вызывают парникового эффекта;
- станции не занимают много места.
Однако имеются и недостатки:
- геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
- при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования – из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
- постройка станции относительно дорога – это удорожает и стоимость энергии в итоге.
Сферы применения
На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.
Сельское хозяйство и садоводство
Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах – Кении, Израиле, Мексике, Греции, Гватемале и Теде.
Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.
Промышленность и ЖКХ
В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии – это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.
Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.
Известны четыре основные схемы добывания энергии на ГеоТЭС:
- прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
- непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
- бинарная – в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
- смешанная – аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.
В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму – большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).
Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.
Частный сектор
Одна из наиболее перспективных сфер – частный сектор, для которого геотермальная энергия – это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь – при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.
Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.
Страны, использующие тепло планеты
Безусловным лидером в использовании георесурсов является США – в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.
ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.
Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах – 27%, а в США – меньше 1%.
Потенциальные ресурсы
Работающие станции – только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.
Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) – штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.
В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.
На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.
Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.
ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ — это… Что такое ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ?
- ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ
- ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ, тепло, со держащееся в земных недрах. Существует вследствие радиоактивности и из-за движения тектонических пластов (см. ТЕКТОНИКА ПЛИТ). В ГЕЙЗЕРАХ и ВУЛКАНАХ проявляется естественным образом. Во многих странах, включая Россию (Камчатка), Исландию, Италию, Новую Зеландию и США, используется как мощный источник выработки электроэнергии.
Источником тепловой энергии может стать искусственно созданный горячий источник. Буровая скважина пробивается до глубины нескольких сот метров до естественной полости в толще Земли, где температура может достигать 300°С Вода, подающаяся по скважине вниз, натревается, превращается в пар и выталкивается через другую буровую скважину. Выйдя на поверхность, пар вращает турбины и, таким образом, вырабатывается электричество.
Научно-технический энциклопедический словарь.
- ГЕОСТРОФИЧЕСКОЕ ТЕЧЕНИЕ
- ГЕОТЕРМАЛЬНЫЙ
Смотреть что такое «ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ» в других словарях:
геотермальная энергия — Энергия тепла Земли в местах повышенного геотермического градиента, вызывающая появление горячей воды и пара из недр Земли, т.е. термальных источников или гейзеров … Словарь по географии
геотермальная энергия — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN geothermal energy An energy produced by tapping the earth s internal heat. At present, the only available technologies to do this are those that extract heat from hydrothermal… … Справочник технического переводчика
Геотермальная энергия — (geothermal energy)Geothermal energy, энергия, порожденная или созданная внутренним теплом Земли. Попытки создания все более совершенных установок для получения тепла от сухой породы или горячих вод, залегающих глубоко от поверхности земли,… … Страны мира. Словарь
Геотермальная энергия — … Википедия
низкоэнтальпийная геотермальная энергия — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN low enthalpy geothermal energy … Справочник технического переводчика
ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА — (Г.э.) получение тепловой или электрической энергии за счет тепла земных глубин, один из вариантов нетрадиционной энергетики. Экономически эффективна Г.э. в районах, где горячие воды приближены к поверхности земной коры в районах активной… … Экологический словарь
Геотермальная энергетика — получение тепловой или электрической энергии за счет тепла земных глубин, один из вариантов нетрадиционной энергетики. Экономически эффективна Г.э. в районах, где горячие воды приближены к поверхности земной коры в районах активной вулканический… … Словарь бизнес-терминов
Геотермальная энергетика — Несьявеллир ГеоТЭС, Исландия Геотермальная энергетика направление энергетики, основанное на производстве … Википедия
Геотермальная электростанция — ГеоЭС на Филиппинах Геотермальная электростанция (ГеоЭС или ГеоТЭС) вид электростанций, которые вырабатывают электрическую энергию из … Википедия
Возобновляемая энергия — Ветряная мельница Возобновляемая или регенеративная энергия ( Зеленая энергия ) энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принц … Википедия
Книги
- Возобновляемые источники энергии в АПК. Учебное пособие. Гриф УМО вузов России, Земсков Виктор Иванович. В учебном пособии рассмотрены вопросы использования таких возобновляемых источников энергии, как солнечная, геотермальная, энергия биомассы, энергия ветра. Дается описание устройства,… Подробнее Купить за 1967 грн (только Украина)
- Возобновляемые источники энергии в АПК. Учебное пособие, В. И. Земсков. В учебном пособии рассмотрены вопросы использования таких возобновляемых источников энергии, как солнечная, геотермальная, энергия биомассы, энергия ветра. Дается описание устройства,… Подробнее Купить за 1347 руб
- Чистая электроэнергетика, Детское издательство Елена. Для того чтобы разобраться, как добывают экологически чистую электроэнергию, Чевостик и дядя Кузя побывают в разных уголках нашей страны – на Алтае, в Калининградской области, на Кольском… Подробнее Купить за 126 руб аудиокнига