Где применяется явление электромагнитной индукции – В каких устройствах используется явление электромагнитной индукции. Применение электромагнитной индукции. Понятие о токе смещения

Содержание

Электромагнитная индукция | white-santa.ru


Электромагнитная индукция
– это словосочетание сразу же наводит мысль на что-то космическое и невесомое, можно даже сказать неощутимое и невесомое, и ваш разум практически прав.

Конечно же электромагнитная индукция никак не связана с космосом или невесомостью, но веже какая-то магия в этой области присутствует. Все электрические машины, работа которых основывается на явлении электромагнитной индукции на первый взгляд просто не мыслимы. К примеру трансформатор – преобразует электрическую энергию одной величины в другую, при том, что его обмотки не связаны друг с другом, фактически по воздуху.

А асинхронные двигатели, работа которых так же объясняется явлением электромагнитной индукции. С кокой силой вращается его ротор, какие механизмы он способен вращать, а ведь этот ротор так же ни с чем не связан, он свободно вращается вокруг своей оси.
Но от куда берется эта сила? Давайте копнем глубже, а рассмотрим детально электромагнитную индукцию.электромагнитная индукция


Для более глубокого понимания явления электромагнитной индукции давайте рассмотрим следующий опыт:
   

   Между двух полюсов постоянного магнита расположим некий проводник, к концам которого будет подключен гальванометр (чувствительный измерительный прибор).

явление электромагнитной индукции, опыт с проводником подключенным к гальванометру и перемещаемым в постоянном магнитном поле


Обратим внимание, что стрелка прибора находится в среднем положении, когда проводник между полюсов магнита находится в состоянии покоя, стоит только переместить проводник, как стрелка тут же отклонится, при прекращении движения проводника стрелка проводника возвратится в среднее положение. Если проводник переместить в обратном направлении, то стрелка прибора так же отклонится на время движения проводника, но уже направление отклонения стрелки гальванометра будит противоположным.

явление электромагнитной индукции, опыт с проводником подключенным к гальванометру и перемещаемым в постоянном магнитном поле


Изменение положения стрелки гальванометра, в момент движения проводника в магнитном поле указывает на то, что в этом проводнике наводится некая электродвижущая сила сокращенно э.д.с.
Появление этой силы, можно объяснить тем, что под действием магнитного поля, свободные электроны, находящиеся в проводнике, начинают упорядоченно двигаться по проводнику.

Так как к нашему проводнику подключен измерительный прибор, то эта система из перемещаемого проводника и гальванометра с соединительными проводами представляет собой замкнутую цепь, а в этом случаи по цепи протекает электрический ток, на что и указывает стрелка гальванометра.


Обратите внимание, что электрический ток, а ему предшествует наведение электродвижущей силы возникает лишь в момент движения проводника в магнитном поле постоянного магнита. А величина наведенной электродвижущей силы зависит от скорости перемещения проводника.

явление электромагнитной индукции, опыт с катушкой и магнитом

Закон электромагнитной индукции Фарадея

И так, мы знаем, что наведенная электродвижущая сила в проводнике, движущемся в некотором магнитном поле, с определенной скоростью, а её величина зависит от скорости передвижения проводника. Но это еще не все, электродвижущая сила так же зависит от длины проводника, важна именно длина, которая находится под действием магнитного поля магнита, а еще зависит от индукции магнитного поля и от направления передвижения самого проводника.


М.

Фарадей сформулировал закон электромагнитной индукции следующим образом:

«Индуцируемая электродвижущая сила прямо пропорциональна индукции магнитного поля B, длине проводника l и скорости его перемещения v в направлении, перпендикулярном силовым линиям поля.»

Этот закон можно выразить формулой, где электродвижущая сила обозначается буквой

e:
Закон Фарадея
Когда проводник движется не под прямым углом по отношению к магнитному полю, то формула имеет следующий вид:
Закон Фарадея
Где:
e – электродвижущая сила; B – индукция магнитного поля; l – длина проводника; v – скорость перемещения проводника в магнитном поле;
Sin ϕ – синус угла под которым производится перемещение относительно магнитного поля.

Индуцирование электродвижущей силы в проводнике происходит лишь тогда, когда он перемещается в магнитном поле, то есть пересечение магнитными силовыми линиями не должно быть постоянным, а всегда изменятся.
Электродвижущая сила в этом проводнике будит индуцироваться не зависимо от того, замкнута цепь проводника или нет.
Как для протекания электрического тока, основным условием является наличие замкнутой цепи, так и для электродвижущей силы, главное условие ее наведения – это изменение силовых магнитных линий, пересекающих проводник.
Заметьте, что движение проводника в магнитном поле не является основополагающим фактором индуцирования электродвижущая сила. Допускается и то, что проводник неподвижен, а перемещаться будит лишь магнитное поле, в котором находится этот проводник.

Правило правой руки

Вы, наверное, обратили внимание, что при изменении направления перемещения проводника в магнитном поле изменяется и направление отклонения стрелочки гальванометра, следовательно, и индуцируемая электродвижущая сила изменила свое направление.
Существует правило, благодаря которому можно определить направление индуцируемой электродвижущей силы, это правило называется «Правило правой руки».
Правило правой руки звучит следующим образом:

«Если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец совместить с направлением движения проводника, то вытянутые четыре пальца укажут направление индуцированной электродвижущей силы»

Применение электромагнитной индукции

Электромагнитная индукция это — серьёзное основание (база), понимание и овладение которым, открывает большинство дверей в мире электрических машин.
Работа всех электрических машин переменного тока основывается на явлении электромагнитной индукции.
К таким машинам относят всем давно известные трансформаторы, различные типы двигателей, в основном это асинхронные двигатели с короткозамкнутым ротором, а также с фазным ротором, различные типы и виды генераторов: асинхронные, синхронные.


Многие, наверное, слышали о индукционных печах, индукционный способ плавки, а индукционные счетчики электрической энергии уже устаревшие.
Принцип работы многих электрических аппаратов основывается на явлении магнитной индукции, это такие как магнитные пускатели, контакторы, различные типы реле и современные датчики положения.
В современной технике данное явление применяется в беспроводных зарядках для телефонов, в микроволновых печах и так далее.
Но существует и обратная сторона медали. Из-за явления электромагнитной индукции в электроэнергетике существуют колоссальные потери на всем известные вихревые токи, которые наводятся практически везде. Хотя с этим видом потерь активно борются и находят те или иные способы уменьшения таких потерь, но все же они вещественны и ощутимы.

Явление индукционного тока. Практическое применение явления электромагнитной индукции

Явление электромагнитной индукции (ЭМИ) было обнаружено Фарадеем в 1831 году и заключается в возникновении в замкнутом проводящем контуре электрического тока при изменении магнитного потока через поверхность ограниченную контуром. Ток в этом случае называют индукционным . Возникновение тока указывает на то, что в контуре действует некоторая ЭДС которую назвали ЭДС индукции . Фарадей установил, что величина не зависит от способа изменения магнитного потока и определяется только скоростью его изменения.

Направление индукционного тока определяется правилом Ленца : индукционный ток всегда направлен так, чтобы противодействовать причине его вызывающей , т.е., другими словами, так, чтобы создаваемое при протекании тока изменение магнитного потока компенсировало (хотя бы частично), его исходное изменение .

Природа возникновения ЭДС индукции

Рассмотрим ситуацию, когда ЭДС индукции возникает в контуре, показанном на рисунке при перемещении подвижной стороны контура с некоторой скоро-

стью . Вместе с перемычкой с той же скоростью движутся все электроны внутри нее, и на каждый в магнитном поле действует сила Лоренца, направленная вдоль перемычки:

Действие этой силы эквивалентно действию силы со стороны электрического поля с напряженностью

Это поле не имеет электростатической природы , и циркуляция вектора напряженности по контуру дает величину ЭДС, действующей в контуре :

. (20.2)

При вычислении интеграла в (20.2) примем за положительное направление обхода контура направление по часовой стрелке. Тогда положительная нормаль к контуру будет направлена так же, как вектор индукции магнитного поля. Элементы в подвижной рамке, в которых собственно действует поле, создающее ЭДС в сумме дают вектор . Векторное произведение является постоянной величиной в пределах подвижной части контура. Поэтому

. (20.3)

В смешанном произведении векторов в соотношении (20.3) можно провести циклическую перестановку векторов:

. (20.4)

Умножим и разделим это выражение на . Тогда для ЭДС индукции получим:

. (20.5)

Вектор по модулю равен площади, описанной подвижной частью за время , однако направлен «к нам». Вектор направлен по направлению нормали к контуру. Поэтому

. (20.6)

Соотношение (20.7)

. (20.7)

называют обычно законом Фарадея или законом ЭМИ .

Таким образом, в рассматриваемом случае, т.е. при движении проводника в магнитном поле, возникновение ЭДС индукции объясняется действием силы Лоренца на носители заряда в проводнике. В этом объяснении имеется существенный недостаток: индукционный ток проходя по проводникам совершает некоторую работу, а сила Лоренца работы совершать не может.

Это противоречие является кажущимся . Электроны под действием силы Лоренца приходят в движение со скоростью , направленной по вектору . Это движение вызывает появление второй составляющей силы Лоренца , направленной навстречу скорости движения подвижной части контура . Для поддержания движения со скоростью к подвижной стороне необходимо будет прикладывать силу. Эта сила и совершает ту работу, которая выделяется в проводах контура при протекании по нему индукционного тока.

Сила совершает отрицательную работу, равную положительной работе составляющей силы Лоренца . Действительно, за время полная работа силы Лоренца

. (20.8)

Часто бывает так, что контур образован не одним витком, а несколькими. По сути дела именно такая ситуация реализуется, например, во всех трансформаторах. Витки соединяются последовательно, и ЭДС в таком контуре равна сумме ЭДС в каждом из витков:

. (20.8)

Величина

(20.9)

называется потокосцеплением.

Токи Фуко

Индукционные токи могут возникать не только в контурах, но и в сплошных массивных проводниках. Действительно, всякий сплошной проводник можно представить состоящим из большого количества замкнутых контуров. В этом случае индукционные токи называют вихревыми или токами Фуко .

По правилу Ленца вихревые токи направлены так, чтобы противодействовать причине их вызывающей. Поэтому движущиеся в магнитном поле сплошные проводники испытывают сильное торможение, величина которого зависит от скорости движения. Это используют, например, для торможения подвижных частей стрелочных приборов. При этом торможение уменьшается по мере приближения стрелки к положению равновесия.

В индукционных печах вихревые токи обеспечивают разогрев металлов до плавления.

Однако в трансформаторах индукционные токи приводят к дополнительным потерям энергии на разогрев сердечника, и с ними борются, набирая сердичники из изолированных пластин.

При протекании по проводам тока создается магнитное поле, и носители заряда движутся в этом поле. Если ток переменный, то возникающие токи Токи Фуко увеличивают его вблизи поверхности провода и уменьшают в центре. В результате большая часть переменного тока протекает по поверхности проводника. Это явление называют поверхностным, или скин-эффектом.

Явление самоиндукции

Явление самоиндукции является частным случаем явления электромагнитной индукции. Если в некотором контуре протекает электрический ток, то он создает магнитное поле и магнитный поток через поверхность контура. При изменениях тока изменяется магнитный поток, и возникает ЭДС индукции противодействующая этому изменению по правилу Ленца. Ее и называют ЭДС индукции .

Величина индукции магнитного поля, а значит и магнитный поток через его поверхность, пропорциональны протекающему току:

. (20.10)

Коэффициент пропорциональности в формуле (20.10) называется индуктивностью контура. Единицей индуктивности является 1 генри (Гн).

Индуктивность определяется геометрическими параметрами контура и магнитными свойствами окружающей среды. Для того, чтобы более конкретно представить влияние на величину индуктивности этих факторов вычислим индуктивность соленоида, близкого к идеальному, т.е. с длиной , большой по сравнению с геометрическими размерами сечения, имеющего площадь (). Индукция магнитного поля соленоида при силе тока в нем

где — количество витков на единицу длины соленоида;

Магнитная проницаемость среды внутри соленоида.

Количество витков в соленоиде , и через каждый из них магнитное поле создает поток

. (20.12)

Потокосцепление (полный поток)

Очевидно, что индуктивность соленоида выражается соотношением

где есть объем соленоида.

Если в области действия магнитного поля ферромагнетики отсутствуют, то магнитная проницаемость остается постоянной и ЭДС индукции

. (20.15)

20.5. Токи при замыкании и размыкании цепи с индуктивностью

Влияние самоиндукции на протекание тока в цепи очень наглядно демонстрируется характером изменения тока в цепи, содержащей индуктивность и активное сопротивление при ее подключении и отключении от источника тока. В положении переключателя, показанном на рисунке, в цепи идет ток

Предположим, что в некоторый момент времени переключатель мгновенно отключает источник тока и замыкает индуктивность на резистор. В отсутствие источника сила тока в цепи начнет убывать, но возникнет ЭДС самоиндукции, которая будет ее поддерживать. Падение напряжения на резисторе должно быть равно ЭДС самоиндукции :

. (20.17)

Разделим на :

Разделим в (20.17) переменные:

После интегрирования получаем:

. (20.20)

Потенцирование этого соотношения дает зависимость тока от времени:

. (20.21)

При ток равен начальному значению , поэтому и константа равна этому току:

. (20.22)

Графически эта зави

Электромагнитная индукция: применение индукции

 

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле. На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты. Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток. Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции , вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри  замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Нужна помощь в учебе?



Предыдущая тема: Действие магнитного поля на проводник с током: схема простого электродвигателя
Следующая тема:&nbsp&nbsp&nbspСвет: свойства, источники света, распространение света

Все неприличные комментарии будут удаляться.

В каких устройствах используется явление электромагнитной индукции. Применение электромагнитной индукции. Понятие о токе смещения

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле . На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты . Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

Схема одного закрывается гальванометром. Без генератора в электрической цепи игла гальванометра не отклоняется. При вставке магнита в катушку найдена игла гальванометра. отклоняться, пока магнит входит в катушку, но возвращается к нулю, когда магнит останавливается. При извлечении магнита из катушки игла гальванометра отклоняется в противоположном направлении к предыдущему. Поэтому при перемещении магнита в катушку генерируется электрический ток. Такой ток называется индуцированным током.

Те же результаты получены, если магнит остается неподвижным и движется. катушки. Изменение магнитного потока индуктивности может быть произведено разными. методы. Например, магнитный поток изменяется через цепь, которая остается. неподвижным в переменном магнитном поле. Магнитный поток может изменяться, перемещая постоянный контур. Из вышеизложенного следует, что т. вызванное только длится до тех пор, пока его причина, вариация длится. поток индуктора.

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток . Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Как мы уже упоминали ранее, существуют и другие способы изменения магнитного потока индуктора. Мы можем вывести общее выражение закона электромагнитной индукции. основанный на энергосбережении. Напряжение е между концами проводника. Соотношение между изменением магнитного потока и временным интервалом в. что заставляет этот варикоз представлять количество, с которым оно изменяется. индуктивность в единицу времени. Этот доклад называется изменением магнитного потока индукции. Итак, закон электромагнитной индукции сформулирован следующим образом.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

Напряженное напряжение электродвигателя пропорционально скорости. изменение индуктивного магнитного потока. Индукционный ток определяется наличием электрического поля. Таким образом, прямой эффект изменения потока — это появление поля. электрически индуцированных в области схемы. Максвелл продемонстрировал теоретически и подтвердил опыт.

Так что в более широком смысле явление электромагнитной индукции. понятно, что переменное электрическое поле возникает в области, где имеется переменный магнитный поток. Если этот проводник образует замкнутый контур, то индуцированный ток генерируется как эффект электродвижущего напряжения. индуцированный. При вращающемся индукционном токе при изменении потока. магнитных через поверхность шпиля. Переменный поток может быть получен либо путем относительного движения магнита против шпиля, либо через него. изменение тока в соседней цепи.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции , вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Это также может быть вызвано изменением электрического тока в самой индуцированной спирали, которая также играет роль индуктора. В цепи из-за изменения тока, протекающего через него. цепи. Автоиндукция происходит не только тогда, когда ток установлен или прекращен, но всякий раз, когда меняется интенсивность тока. схемы.

Индукция схемы численно равна потоку, создаваемому поверхностью схемы, когда она есть. путешествовал единицей интенсивности. Некоторая мощность, подаваемая источником автоматического выключателя, рассеивается электрическим сопротивлением цепи. а другая сторона — магма магнитного поля тока. В связи с этим ток увеличивается медленнее при замыкании цепи или при увеличении интенсивности. Когда цепь разрушается или интенсивность падает, интенсивность поля исчезает или уменьшается. магнитный, поэтому он выпускает электромагнитную энергию. который приводит к продлению существования. тока.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Искра, возникающая при прерывании цепи, рассеивает эту энергию. В заключение, противопоказано явление самоиндукции. любое изменение интенсивности электрического тока, т.е. оно проявляется. как электромагнитная инерция. Потому что т. само-индульгенция увеличивается пропорционально индукции. цепи, проводник в виде растянутого провода приведет к незначительной автоиндукции.

П. самоиндуцированным, когда цепь была прервана. Вот что происходит с рычажным переключателем. Чтобы избежать частичного плавления и разрушения кусков, между которыми сделан контакт, подключен конвектор, параллельный контактам переключателя. Конжектор поглощает энергию, выделяемую магнитным полем. самонаводящий ток, зарядка. Две связанные цепи могут передавать энергию от одного. к другому. В последнем случае каждая катушка находится в магнитном поле, генерируемом другим. Электромагнитная индукция является физическим явлением электрического тока. через вариацию магнитного поля, которая имеет бесчисленные приложения, капитализируется. для генерирования электрического тока и для его передачи, для работы. катушки для изготовления индукционных пластин поверхностных кухонных приборов. керамическое стекло, для индукционных ламп, но также и для большого количества эффектов. включая вихревые токи.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше ген

Токи Фуко или практическое применение электромагнитной индукции

На практике широкое применение явления электромагнитной индукции проявляется в электрических машинах, где происходит процесс преобразования механической энергии (движение проводника в магнитном поле) в электрическую (индуцирование электрического тока). Такие машины называют генераторами.

Генератор состоит из вращающегося электромагнита ротора и неподвижного  статора. На статоре расположена обмотка (провода), в которой при вращении ротора в магнитном поле будет наводиться ЭДС. Индуцируемый таким образом ток называется переменным, так как наводимые ЭДС непостоянны по направлению и величине. Если используется генератор постоянного тока, то при помощи коллекторного узла можно получить постоянное напряжение.

Если в магнитном поле находится проводник с током, то согласно закону Ампера на него будет действовать сила:

Сила действующая на проводник в магнитном поле

Данная сила и перемещает его в пространстве. В результате и происходит преобразование механической энергии в электрическую и наоборот.

Б.С. Якоби в 1834 году изобрел первый электродвигатель. Явление электромагнитной индукции используется в трансформаторах, электромагнитах и других электрических устройствах.

Переменное магнитное поле способно индуцировать электрический ток не только в линейных проводниках и контурах, но и в сплошных проводящих средах. В сплошных проводящих средах под воздействием переменного магнитного поля возникают замкнутые токи, которые называют вихревые токи или токи Фуко. Вихревые токи, протекая в проводнике, нагревают его согласно закону Джоуля – Ленца и снижают КПД электрических машин, трансформаторов, а также прочих электромагнитных механизмов и аппаратов. Более того, вихревые токи оказывают размагничивающее действие в электромагнитах.

Чтобы уменьшить потери, связанные с токами Фуко, вместо сплошных сердечников применяют сердечники, набранные из изолированных тонких листов, или изготавливают их из магнитодиэлектриков, то есть диэлектриков, обладающих магнитными свойствами.

Методы индукционного нагрева металла основаны на вихревых токах, с помощью которого осуществляется плавление или нагрев проводящих материалов (особенно в вакууме).  

Явление электромагнитной индукции. Открытие, опыт, применение :: SYL.ru

Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.

Шелк

явление электромагнитной индукции

Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.

В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.

Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.

Компас и звезда

закон электромагнитной индукции фарадея

На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.

Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход – вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.

Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.

От компаса к магниту

закон фарадея для электромагнитной индукции

Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.

Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой – на юг.

Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.

Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.

Магнитное или электрическое?

магнитное или электрическое?

В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

Опыты Фарадея

Опыты Фарадея

Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит – стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

Продолжение опытов

Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

Формула

Закон Фарадея для электромагнитной индукции выражается формулой

ε = -dΦ / dt.

Расшифруем символы.

ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.

Φ – это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.

Для более полного понимания формулы мы советуем вспомнить отличие вектора от скаляра и простейшую тригонометрию.

Последствия открытия

Последствия

За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.

И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.

А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.

Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.

Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.

«Применение явления электромагнитной индукции в бытовых приборах

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2»

Реферат

по физике на тему:

«Применение явления электромагнитной индукции в бытовых приборах» hello_html_m6ccc644f.png

Выполнила ученика 9 «Б» класса

Абдурагимова Расита Бакриевна

г. Южно-Сухокумск. 2018 г.

Предысторияhello_html_655c0b31.jpg

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

В 1821 году М. Фарадей сделал запись в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Итак, Майкл Фарадей (1791−1867) — английский физик и химик.

Один из основателей количественной электрохимии. Впервые получил (1823) в жидком состоянии хлор, затем сероводород, диоксид углерода, аммиак и диоксид азота. Открыл (1825) бензол, изучил его физические и некоторые химические свойства. Ввел понятие диэлектрической проницаемости. Имя Фарадея вошло в систему электрических единиц в качестве единицы электрической емкости.

Многие из этих работ могли сами — по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

Когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле.

Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой — с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

электромагнитная индукция. электрический ток и поле.

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе.

Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат. inductio — наведение) — явление порождения вихревого электрического поля переменным магнитным полем. Если внести в переменное магнитное поле замкнутый проводник, то в нем появится электрический ток. Появление этого тока называют индукцией тока, а сам ток — индукционным.

Опыт, позволяющий наблюдать явление электромагнитной индукции

/

Примером на применение явления электромагнитной индукции в моей работе стал индукционный генератор переменного тока.

Индукционный генератор переменного тока

В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки с внешней цепью (см. рисунок на след. стр.).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью. Магнитный поток, пронизывающий виток, меняется по закону, здесь S — площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

,

где N — число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? — якобы удивился Фарадей. — Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Заключение

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения.

А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире…

В настоящее время все больше появляется техники с использованием явления электромагнитной индукции: плиты, зарядные устройства, электросчетчики, кофеварки, водонагреватели, тостеры, миксеры, утюги, настольные лампы и приборы для приготовления пищи и т.д. Чем же они отличаются от «добрых» старых электрических плит, проводных зарядных устройств? В чем их плюсы? А может они, тоже имеют свои недостатки? Современному потребителю все сложнее сделать выбор между техникой с использованием явления электромагнитной индукции и обычной. Возникает противоречие между желанием покупателя приобрести современный, надежный, энергоэкономичный продукт и отсутствием у него необходимой информации для совершения осознанного выбора конкретной модели из огромного количества аналогов. В своей работе я хочу помочь потребителю решить эту проблему.

Практическое применение явления электромагнитной индукции

Радиовещание

hello_html_1f85918e.jpg

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве

электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг

друга, эти поля образуют единое переменное электромагнитное поле — электромагнитную волну.

Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве

со скоростью света -300000 км/с.

Магнитотерапия

hello_html_m5d794d0b.jpg

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие

электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой

электрическими и магнитными полями.

Синхрофазотроны

hello_html_m1c20e19b.jpg

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц.

В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их

изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой

Лоренца.

Расходомеры — счётчики

hello_html_m62639ef7.jpg

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей

жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая

электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

hello_html_208cdb6.jpg

hello_html_m2996704b.jpg

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора

имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном

поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу «правой

руки». При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам

генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы

hello_html_4e92bc0.jpg

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния,

распределении ее между приемниками, а также в различных выпрямительных, усилительных,

сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор

представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются

две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник

электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки — вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле,

созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше

напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить

пониженное напряжение

hello_html_6ca92922.jpg

hello_html_4aa3f680.jpg

Как работает интернет?

Ну а теперь давайте рассмотрим самое интересное, как работает интернет.

Нас уже не удивляет то, что за пару секунд мы получаем веб-страницу на своем экране.
Но не многие знают, как это происходит. Сейчас об этом и поговорим.

Итак, у нас есть человек, кто угодно – я, вы, или ваш дальний родственник. У этого человека есть доступ к компьютеру, который он с радостью включает. Человек хочет зайти в интернет и для этого запускает браузер, т.е. программу-клиент, установленную на его компьютере. В адресной строке браузера он вводит доменное имя сайта, допустим, info-line.net.

Это мы все знали. А что же происходит в те милисекунды, которые мы не замечаем? Что же скрыто от наших глаз?

После ввода доменного имени в браузер, программа-клиент связывается с провайдером  и сообщает ему о том, что она хочет запросить сайт info-line.net

На провайдере установлен DNS сервер, который преобразует доменное имя интернет-ресурса info-line.net в IP-адрес (IP – это межсетевой протокол) вида 178.162.144.134.

IP-адрес  выдается провайдером каждому компьютеру при подключении к интернету, естественно веб-сайты тоже имеют свои ip-адреса. На данный момент существует две версии IP – 4-ая (IPv4) и 6-ая (IPv6). Была еще и 5-ая версия, но она не была принята для публичного пользования. В настоящее время наиболее широко используется 4-ая версия IP.

IP-адреса нужны для нахождения компьютеров в сети. Ведь нужно знать, куда отправлять пакет. На почте, вам нужно указать адрес получателя. В сети вместо адреса выступает IP.

После этого, IP переводится из десятичной системы исчисления в двоичную и принимает привычный машинный вид в виде цифр 0 и 1.

Далее,  провайдер пересылает ваш запрос сайта на маршрутизатор (или по-другому — Роутер).
Маршрутизатор – это устройство, которое согласно таблицам маршрутов направляет передаваемые пакеты информации по указанному адресу. Маршрутизатор – это что-то вроде аналога GPS-навигатора в реальной жизни, он знает маршрут и указывает рабочий путь передаваемому пакету информации.

Пакеты передаются от одного маршрутизатора к другому, пока не достигают сервера, т.е. того IP-адреса, который был указан клиентом в виде получателя.

На web-сервере обрабатывается вся полученная информация и выдается результат в виде html-страницы, то есть обычной веб-страницы, которые мы так часто видим на экране.

Данный результат отправляется по обратной цепочке через маршрутизаторы и провайдера к нашему компьютеру, после чего встает вопрос, а куда дальше-то пакеты посылать? В какую программу?

Для этого предназначены порты.

Что такое порт?

Порт – это системный ресурс, выделяемый приложению для связи с другими приложениями в сети. Все программы для связи между собою посредством сети, используют порты.

Если провести аналогию с домом, то дом – это IP, а квартира – это порт. Список портов можно посмотреть, открыв файл services по адресу: C:\Windows\System32\drivers\etc (ваш адрес может отличаться)

Как мы видим, портов здесь достаточно много. Например, порт 25 служит для отправки почты, порт 110 для ее получения. Веб-сайты работают на порту номер 80, а система DNS, о которой мы уже говорили – на порту 53.

Мы можем проверить работу портов в браузере. Если мы введем веб-сайт и после него, укажем :80, то у нас откроется веб-сайт, а если укажем :53, то получим сообщение об ошибке следующего содержания: «Данный адрес использует порт, который, как правило, не используется для работы с веб-сайтами. В целях вашей безопасности Firefox отменил данный запрос».

Порт номер 21 используется для FTP, как мы уже знаем из прошлых уроков. Порты 135-139 используются системой Windows для доступа к общим ресурсам компьютера – папкам, принтерам. Эти порты должны быть закрыты фаерволлом для Интернета в целях безопасности. Порты 3128, 8080 используются в качестве прокси-серверов. Прокси – это компьютер-посредник, например, между моим компьютером и веб-ресурсом, на который я хочу зайти. Прокси используются для самых разных целей. Бывают бесплатные и платные прокси. Настроить их можно в настройках браузера. В браузере Firefox это делается следующим образом:

  1. Заходим в настройки

  2. Переходим в «Дополнительные»

  3. Открываем вкладку «сеть»

  4. В блоке «соединение» жмем кнопку «настроить»

  5. Переходим на ручную настройку прокси-сервера

  6. Указываем данные прокси.

ЗАКЛЮЧЕНИЕ

Явление электромагнитной индукции и его частные случаи широко применяются в электротехнике. Для преобразования механической энергии в энергию электрического тока используются синхронные генераторы. Для повышения или понижения напряжения переменного тока применяются трансформаторы. Использование трансформаторов позволяет экономично передавать электроэнергию от электрических станций к узлам потребления.

СПИСОК ЛИТЕРАТУРЫ:

1. Электрические машины, Л.М. Пиотровский, Л., «Энергия», 1972.

2. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.:Энергоиздат 2004.

3. Конструирование трансформаторов. А.В. Сапожников. М.: Госэнергоиздат. 1959.

4. Расчёт трансформаторов. Учебное пособие для вузов. П.М. Тихомиров. М.: Энергия, 1976.

5. Физика-учебник для 11 класса, авторы: Г.Я. Мякишев и Б.Б. Буховцев М. Просвещение, издание 2017.

Добавить комментарий

Ваш адрес email не будет опубликован.