Где катод у диода: Катод у диода на схеме

Содержание

ДИОДЫ

   Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

   На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. 

Иллюстрация прямой обратный ток диода

   Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

   В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Диод полупроводниковый

   Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.  

 

Плоскостной и точечный диод

Какие бывают типы диодов ?


Схематическое изображение диодов


Фото выпрямительного диода

   А) На фото изображен рассмотренный нами выше диод.

Стабилитрон изображение на схеме

   Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.


Двуханодный стабилитрон — изображение на схеме

   В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Туннельный диод

   Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Обращенный диод

   Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Варикап

   Е) Варикап, применяется как конденсатор переменной ёмкости.

Фотодиод

   Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок. 

 

Светодиоды

   З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только. 

   Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Схема диодного моста

   Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

Фото диодный мост

   А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

   Светодиоды существуют в разных корпусах, в том числе и SMD.

smd светодиод фото

   Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Подключение RGB ленты

   Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

   Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

   Форум по радиодеталям

Диоды. Устройство и работа. Характеристики и особенности

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:
  • Корпус. Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод. Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель. Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод. Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл. Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

Похожие темы:

Принцип работы диодов для чайников

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Статья была полезна?

0,00 (оценок: 0)

Как работает диод? Применение диодов

Как работает полупроводниковый диод

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми тебе в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая типа n. На рис. 1, а дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т. е. положительным электродом, является область типа р, а катодом, т. е. отрицательным электродом, — область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода.

Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т. е. с областью типа р, а отрицательный — с катодом, т. е. с областью типа n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи пойдет ток, значение которого зависит от приложенного к нему напряжения и свойств диода/ При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно-дырочным переходом или, короче, р-n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование.

Рис. 1. Схематическое устройство и работа полупроводникового диода

Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок.

В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.

Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.

А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.

001

Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.

На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току.

Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Так, например, уже при прямом напряжении Uпр = 0,5 В ток Iпр равен 50 мА (точка а на характеристике), при Uпр = 1 В он возрастает до 150 мА (точка б на характеристике), а при обратном напряжении Uобр = 100 В обратный ток Iобр не превышает 0,5 мА (500 мкА). Подсчитай, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видишь, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов.

Примерно такие вольт-амперные характеристики имеют все германиевые диоды. Вольт-амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1–0,2 В, а кремниевый при 0,5–0,6 В.

Прибор, на примере которого я рассказал тебе о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2–4 мм2 и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис.

3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р-n переход. Контактами электродов диода служат капелька индия и металлический диск (или стержень) с выводными проводниками.

Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на рис. 3, б.

Рис. 3. Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б)

Приборы заключены в цельнометаллические корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств.

Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, — заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными диодами.

Схему простейшего выпрямителя переменного тока ты видишь на рис. 4, а. На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямленного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке

Рис. 4. Схемы однополупериодного выпрямителя



При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диод закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть выпрямление переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока.

Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутки между импульсами, поэтому никаких мерцаний света мы не заметим.

А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор большой емкости, как это показано на рис. 4, б. Заряжаясь от импульсов тока, конденсатор Сф в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на рис. 4, б сплошной волнистой линией. Но и таким, несколько приглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы.

В выпрямителе, с работой которого ты сейчас познакомился, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление.

Рис. 5 Двухполупериодный выпрямитель с сетевым трансформатором

В выпрямителе на рис. 5 четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1–2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Следи внимательно! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40 %. Именно такой выпрямитель я позже буду рекомендовать тебе для питания транзисторных конструкций.

Теперь о точечном диоде

Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на рис. 6.

Рис. 6. Схематическое устройство и внешний вид точечного диода серии Д9

Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Такой или ему подобный диод, например Д2, тебе уже знаком — я рекомендовал использовать его в твоем первом приемнике в качестве детектора.

Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм2) пластина полупроводника германия или кремния n типа и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов.

После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно-дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50 мкм2. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами.

Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р-n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В.

Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.

А теперь, чтобы лучше закрепить в памяти твое представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л и лампочки накаливания, рассчитанной на напряжение 3,5 В и ток накала 0,28 А, включи любой плоскостной диод из серии Д226 или Д7, но так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод с отрицательным выводом (рис. 7, а). Лампочка должна гореть почти так же, как если бы диода не было в цени. Измени порядок включения электродов диода в цепь на обратный (рис. 7, б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р-n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался.

Рис. 7. Опыты с плоскостным диодом

Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпр, сопротивление диода было мало и через него протекал прямой ток Iпр, значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр, равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр, который не мог накалить нить лампочки.

В этом опыте лампочка выполняла двоякую функцию. Она, во-первых, была индикатором наличия тока в цепи, а во-вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

См. также:


Диод на схеме где плюс. Основные способы определения полярности у светодиода. Другие способы определения полярности

Все диоды обязательно имеют положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется анодом , а отрицательный — катодом . Катод диода легко опознать по полоске красного или черного цвета, расположенной у этого вывода на корпусе.

На рис. 4.8 как раз показан диод с подобной маркировкой полярности . Полоска, таким образом, соответствует вертикальной линии схемотехнического символа данного элемента. Важно, чтобы, «читая» принципиальную схему какого-либо устройства, вы правильно трактовали расположение в ней диода и направление протекающего тока


Рис. 4.8. Используя диоды, всегда помните об их полярности. Полоска на одном из концов корпуса диода указывает его

Внимание
Как уже говорилось в самом начале этого раздела, диоды позволяют проходить через них току в прямом направлении и блокируют ток, протекающий в обратном. Таким образом, если вставить диод в схему неправильно, схема или не заработает, или некоторые элементы рискуют выйти из строя. Всегда внимательно проверяйте полярность диодов в схеме — лучше дважды перепроверить, чем один раз устранять последствия!

Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.

Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.

Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.

Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.

Особенности функционирования

Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.

Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.

На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.

Способы определения полярности

Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:

  • Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
  • Проверка посредством мультиметра, включённого в режим прозвонки;
  • Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.

Рассмотрим каждый из перечисленных подходов отдельно.

Визуальный осмотр

Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.

Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.

По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.

Применение измерительного прибора

Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.

После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.

В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.

Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.

Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.

Включение в схему

В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.

При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.

В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.

Видео

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

Применение мультиметра

Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

Катод и анод — это плюс или минус: как определить

Анод и катод — два физических термина прикладной электроники, гальванотехнике и химии. Уяснив эти термины, можно понять, почему, например, греется аудиоплеер. Путаница в терминологии спровоцирует аварийные ситуации.

Что это такое

Катоды и аноды — электрические проводники, которые имеют электронную проводимость. Посредством анода электрический заряд втекает в аппаратуру, а катода — наоборот, истекает. На первом возникает окислительная реакция (называют восстановитель) и отсылает заряженные частицы, на втором — восстановительная реакция (называют окислитель) и принимает заряженные частицы.

Анод и катод в диоде

Если перемещение электрических проводников проходит от восстановления к окислению по цепи извне, возникает источник электроэнергии. Прибор, с помощью которого преобразовывается химическая энергия в электроэнергию, получил название «гальванический элемент».

Чтобы не возникло путаницы, стоит четко усвоить и запомнить отличие плюса и минуса в разных процессах:

В гальванотехнике химические реакции происходят внутри элемента. В электричестве извне не нуждается, так как заряд сам потечет во внешнюю цепь из элемента. В этом случаев катод — положительный, анод — отрицательный.

Схема гальванического элемента

В электролизе необходим внешний источник тока, включенный в разрыв проводника внешней цепи. Внешний источник создаст разность потенциалов между электрическими проводниками, и вне устройства будет вкачивать ток в элемент. На аноде будет плюс, а на катоде — противоположно.

Важно! Чтобы определить, катод и анод — это плюс или минус, нужно запомнить: в гальванотехнике отрицательным становится анод, а катод — положительный. У электролитов — противоположно.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет.

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.
Определение полюсов с помощью лампочки

Заряд аккумулятора

Если взглянуть на аккумулятор или обычные батарейки, то можно заметить терминалы, отличающиеся обозначением «+» и «-», которые расположены на противоположных концах.

Аккумулятор имеет металлический или пластиковый каркас. Внутри катод сведен с положительной полярностью, а анод подключен к отрицательной полярности. Отделяет их друг от друга заслон, поэтому они не соприкасаются, а электрический заряд свободно протекает между ними. Помогает этому электролит — специальный раствор серной кислоты.

Схема заряда АКБ

Когда проходит химическая реакция заряда с электролитом на одном из электрических проводников, возникнет окислительная реакция. Если включить гальванический компонент в электросеть, электроны с анода перетекут на катод, производя функционирование пока в электролите возникают химические взаимодействия. Работать химический источник электрического тока прекратить только тогда, когда химические составляющие электролита израсходуются.

На заметку. Когда происходит разряд гальванического элемента, то анод является «-», когда заряд — катод имеет знак «+».

Применение в электронике

В электронике применяют особенности диодов впускать заряд по прямому маршруту, но не отпускать обратно.

Р-n переход тока

Работа светодиода заключается в свойстве кристаллов, которые светятся при пропускании через p-n переход тока по прямой.

В электрохимии электрические проводники необходимы при создании автономных источников питания (аккумуляторные батареи), а также при воспроизведении технологических процессов. Аноды, катоды участвуют в электролизе, электроэкстракции, гальваностегии и гальванопластике.

Гальваника — восстановления металла при химических процессах под воздействием электротока. Такая процедура приводит к устойчивости от коррозии узлов и агрегатов механизмов.

Катод и анод в теории и практике. Назначение диода

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

Применение в электрохимии

В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

  • цинковые;
  • кадмиевые;
  • медные;
  • никелевые;
  • оловянные;
  • золотые;
  • серебряные;
  • платиновые.

Чаще всего на производстве используют цинковые аноды. Они бывают:

  • катанные;
  • литые;
  • сферические.

Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

Применение в вакуумных электронных приборах

Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

m.katod-anod.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром — Практическая электроника

В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Анод в электрохимии

Аноды — множественное число слова «анод»; эта форма применяется преимущественно в металлургии, где применяются аноды для гальваники, используемые для нанесения на поверхность изделия слоя металла электрохимическим способом, либо для электрорафинирования, где металл с примесями растворяется на аноде и осаждается в очищенном виде на катоде . Основное распространение получили аноды из цинка (бывают сферические, литые и катаные, чаще используются последние), никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия (применение которых сокращается из-за экологической вредности), бронзы, олова (применяются при производстве печатных плат в радиоэлектронной промышленности), сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах

Знак анода и катода

В литературе встречается различное обозначение знака анода — «+» или «-», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод — тот, где протекает окисление . При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.

В электротехнике анод — положительный электрод, ток течет от анода к катоду, электроны , соответственно, наоборот.

См. также

  • Мнемонические правила запоминания знака анода

Литература

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). — СПб. , 1890-1907.
  • Рекомендации ИЮПАК по выбору знака для величин анодного и катодного токов

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое «Анод» в других словарях:

    — (греч. anodos восходящая дорога). В гальваническом элементе, одна из двух пластинок или проволок, по которой вступает или выходит из жидкости электрический ток. Противоположность катоду. Словарь иностранных слов, вошедших в состав русского языка … Словарь иностранных слов русского языка

    анод — а, м. anode f., англ. anode <гр. anodos путь вверх, восхождение. физ. Положительно заряженный электрод. В действии таких приборов, как гальваническая батарея, полярности нет и быть не может.. <положительный и отрицательный полюс..… … Исторический словарь галлицизмов русского языка

    Отрицательный электрод Словарь русских синонимов. анод сущ., кол во синонимов: 1 электрод (10) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    анод — электровакуумного прибора; анод; отрасл. коллектор Электрод, основным назначением которого обычно является прием основного потока электронов при электрическом разряде … Политехнический терминологический толковый словарь

    анод — (устройства) электрод, через который электрический ток входит в среду, имеющую удельную проводимость, отличную от удельной проводимости анода [СТ МЭК50(151) 78] анод EN anode electrode capable of emitting positive charge… … Справочник технического переводчика

    — (от греческого anodos движение вверх, восхождение), электрод электронного или электротехнического прибора (например, электронной лампы, гальванического элемента, электролитической ванны), характеризующийся тем, что движение электронов во внешней… … Современная энциклопедия Толковый словарь Ожегова

    — (от греч. anodos движение вверх), 1) электрод электронного или ионного прибора, соединяемый с положит. полюсом источника. 2) Положит. электрод источника электрич. тока (гальванич. элемента, аккумулятора). 3) Положит. электрод электрич. дуги.… … Физическая энциклопедия

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…


Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Как найти анодный катод диода: 3 метода тестирования по шагам

ОПРЕДЕЛЕНИЕ ДИОДА

Диод — это электронный компонент с двумя выводами, который проводит ток в основном в одном направлении .

Структура и обзор диода

Диоды имеют высокое сопротивление в одном направлении (обратное смещение) и почти нулевое сопротивление в другом направлении (прямое смещение).

Полупроводниковые диоды широко используются в настоящее время, и две клеммы соединены p-n переходом.В основном диоды сделаны из полупроводников (обладающих свойствами между проводником и изолятором).

Полупроводниковые материалы, относящиеся к группе 4 с 4 валентными электронами, такие как кремний и германий, широко используются (кроме углерода).

Символ и полярность диода

Как найти анодный катод диода?

Анод-катод диода можно легко идентифицировать по его внешнему виду. Рядом с катодной (отрицательной) клеммой есть серебряное или черное кольцо вокруг диода.Таким образом, клемма с серебряной или черной полосой является катодом, а другая клемма — анодом (положительным).

Полярность диода также можно определить по его символу. Диод имеет два вывода: положительный и отрицательный. В этом символе это стрелка, которая указывает от положительной (анодной) стороны к отрицательной (катодной) стороне. Как найти анод и катод в диоде

Характеристика диода ВАХ

Поскольку диод является нелинейным устройством, он имеет нелинейная характеристическая кривая.График зависимости тока от напряжения представляет собой кривую, а не прямую линию. Напряжение диода должно превышать напряжение барьера, чтобы провести ток, и этот потенциал барьера создает изгиб кривой, который известен как напряжение изгиба кривой. Коленное напряжение (напряжение включения) составляет около 0,7 В для кремниевых диодов и около 0,3 В для германиевых диодов.

Характеристика диода ВАХ

Типы диодов

  1. Стабилитрон
  2. PN-диод
  3. Светоизлучающий диод
  4. Обратный диод
  5. Диод Шоттки
  6. Точечный диод
  7. Варакторный диод
  8. Лазерный диод
  9. Фотодиод Туннельный диод

Что такое

ZENER DIODE ?

Стабилитрон — это специальный кремниевый полупроводниковый диод, который может проводить ток в обратном направлении, когда он достигает определенного напряжения (напряжения Зенера)

Тесты диодов

Как проверить диод с помощью цифрового мультиметра

Цифровой мультиметр — самый подходящее оборудование на случай, как найти анод и катод в диоде.Есть два теста, которые можно реализовать.

  1. Нахождение анодного катода диода с помощью режима тестирования диода
  2. Нахождение катода анода диода с помощью тестирования режима с омметром (сопротивления)
Как найти анод и катод в диоде с помощью тестирования в режиме диода в цифровой мультиметр
  • Поверните центральную ручку туда, где отображается символ диода, который соответствует режиму проверки диодов в цифровом мультиметре.
  • Держите красный свет (+) и черный свет (-) на любом из выводов диода.
  • Проверьте показания на дисплее.
  • Если отображается значение напряжения, то диод смещен в прямом направлении, и вывод, на котором u удерживал красный световой импульс, является анодом, а вывод, на котором u удерживал черный световой импульс, является катодом диода. (Если отображаемое напряжение составляет примерно 0,6–0,7, то это кремниевый диод с прямым смещением и это значение равно 0.25 — 0,3 для германиевых диодов)
  • Если на дисплее не отображается какое-либо значение или отображается «OL», это означает, что через диод не протекает ток, и он находится в состоянии обратного смещения, когда красный фоб находится на катод.
Как найти анод-катод диода с помощью омметра (сопротивления) режима тестирования в цифровом мультиметре.
  • Установите центральную ручку в режим проверки сопротивления, где отображается символ Ом.
  • Держите красный и черный свет по обе стороны от диода.
  • Проверьте показания на дисплее, повернув центральную ручку из режима низкого сопротивления в режим высокого сопротивления.
  • Если на дисплее отображается низкое значение сопротивления в режиме проверки низкого сопротивления, то он смещен вперед, и красный световой импульс находится на аноде, а черный световой импульс — на катоде.
  • Если на дисплее отображается очень высокое значение сопротивления или «OL», это означает, что диод смещен в обратном направлении, где красный световой импульс находится на катоде, а черный световой импульс находится на аноде.При обратном смещении диоды создают очень высокое сопротивление.

Как найти анод и катод в диоде с помощью аналогового мультиметра

  • Подключите положительный световой сигнал к положительной клемме диода (анода), а отрицательный световой сигнал — к отрицательной клемме диода (катода)
  • Затем показания должны давать низкое значение сопротивления, следовательно, оно смещено в прямом направлении.
  • Затем подключите положительный световой сигнал к катоду, а отрицательный — к аноду.
  • Тогда показания должны отображать высокое значение сопротивления (состояние OL), следовательно, диод вызывает очень высокое сопротивление при обратном смещении.

FAQ:

Почему прямое сопротивление диодов не одинаково при измерении в разных шкалах цифрового мультиметра?

Диод — нелинейное электронное устройство. изменения шкалы цифрового мультиметра приведут к изменению силы тока и результирующего прямого сопротивления.Поэтому он дает разные значения сопротивления с разными шкалами.

Что такое коленное напряжение диода?

Напряжение на диоде должно превышать напряжение барьера, чтобы провести ток, и этот потенциал барьера создает изгиб кривой, который известен как напряжение изгиба кривой. Изгибное напряжение (напряжение включения) составляет около 0,7 В для кремниевых диодов и около 0,3 В для германиевых диодов

Как установить режим сопротивления в цифровом мультиметре?

Поверните центральную ручку в режим проверки сопротивления, где отображается символ Ом «Ω».Цифровые мультиметры, установленные в режим «сопротивления», указывают на разрыв, отображая на дисплее «OL» (разомкнутый контур) или пунктирные линии.


ЗНАЕТЕ ЛИ ВЫ, КАК правильно определять 3 контакта транзистора?

ПРОЧИТАЙТЕ ЗДЕСЬ


Фильтр

— диоды катода на схемах

На мой взгляд, это не очень хорошо спроектированная схема, особенно я сомневаюсь в части понижающего преобразователя.

Также он не очень хорошо прорисован, например вокруг светодиодов D6, D8 и D9: нет причин, по которым провода должны пересекать друг друга.Если светодиоды были расположены слева направо: D9, D6, D8, то пересекать провода не нужно. Еще одно: узел между Q2 и Q3 можно нарисовать проще.

C6: используется для фильтра выходного напряжения делителя напряжения (R1, R2) напряжения солнечной панели. Могут быть небольшие помехи (шум) на напряжении, поступающем на вход A0 Arduino, C6 отфильтровывает их, делая чтение этого напряжения более стабильным. Значение C6 устанавливает частотную характеристику этой фильтрации.Это не очень критическое значение. Если бы C6 был 47 нФ, 1 мкФ или 10 мкФ, это все равно работало бы так же хорошо.

D1, D2 и D11, D12: в основном ничего не делают , когда это диоды 1N4148, как указано. Диоды соединены встречно-последовательно, поэтому на этих диодах должно быть не менее 75 В, чтобы один из диодов начал проводить. Эти 75 В уже разрушили некоторые другие компоненты, поэтому использование 1N4148 является бессмысленным .

Если бы 1N4148 был заменен TVS-диодами или стабилитронами, тогда можно было бы предложить некоторую защиту от перенапряжения в сочетании с предохранителями (они перегорят).

L1, R6, C2, D5, C9 выглядит (в сочетании с Q2 и Q2) как очень странный понижающий преобразователь постоянного тока постоянного тока. Но кто бы ни разработал его, не «понял», поскольку наличие Q2 и Q3 предполагает, что это синхронный понижающий преобразователь, тогда диод D5 не понадобится. Но D5 все еще существует. Также: Q3 также имеет встроенный диод, который подключен параллельно D5. Этот диод Drain-Bulk намного «мускулистее», чем D5

.

Наличие R6 и C2 на катушке индуктивности L1 также, мягко говоря, необычно.

Кроме того, наличие 2 NMOS последовательно (Q1 и Q2), в то время как оба используют более или менее одинаковый сигнал стробирования, ускользает от меня.Похоже на «хитрость, пока не заработает» дизайн и не продуманный до мелочей.

Диод

Обзор

Диод — это электронный компонент с двумя выводами, который проводит электричество только в одном направлении. Этот термин обычно используется для обозначения полупроводникового диода . Действительно, диоды были первыми электронными компонентами, которые были построены с использованием полупроводниковых материалов (в настоящее время используется в основном кремний, хотя германий также используется для некоторых приложений).Направление, в котором диод пропускает ток, известно как прямое направление диода . В другом направлении (известном как обратное направление диода ) диод предотвращает протекание тока. Полупроводниковый материал в диоде состоит из двух смежных областей , каждая из которых «легирована» химическими примесями для придания ей определенных электрических характеристик.

Одна из областей содержит большое количество отрицательных носителей заряда (свободных электронов) и называется полупроводниковым материалом n-типа.Другая область характеризуется отсутствием электронов (часто называемых «дырками») во многих химических связях между атомами внутри области. Эти отверстия действуют как носителей положительного заряда , и область называется полупроводниковым материалом p-типа . Один вывод диода, известный как катод , подключен к области n-типа. Другой вывод, известный как анод , подключен к области p-типа. Электроны текут от катода к аноду.Обычный ток, конечно, имеет противоположное направление, поэтому обычный ток выходит из диода через катод. Сама природа диода означает, что он должен быть правильно включен в цепь. По этой причине большинство дискретных компонентов диода маркируются таким образом, чтобы идентифицировать катод (обычно с черной или белой окрашенной полосой). Типичный диод вместе с обозначением его принципиальной схемы показан ниже. Обратите внимание, что направление стрелки в символе цепи указывает направление обычного тока, протекающего через диод.


Типовой диод и обозначение его принципиальной схемы


В двух схемах, показанных ниже, типичный диод включен последовательно с лампой и батареей. В левой версии положительный полюс батареи подключен к аноду диода, так что обычный ток будет течь в направлении, указанном стрелкой (то есть от анода к катоду).Свойства диода означают, что он пропускает ток в этом направлении, и лампа загорается. В правом варианте аккумулятор подключается наоборот, то есть отрицательной клеммой подключена к аноду диода. Диод не будет проводить ток в этом направлении, поэтому ток в цепи не течет, и лампа не горит.


Диод позволяет току течь только в одном направлении.


Свойства полупроводниковых материалов

Чтобы помочь вам понять, как работает диод, мы попытаемся объяснить свойства полупроводниковых материалов, начав с рассмотрения природы связей , образованных между атомами, из которых состоят различные материалы.Первое, что нужно понять, это то, что для каждого элемента в периодической таблице будет определенное количество электронов, вращающихся вокруг ядра атома. Число электронов, вращающихся вокруг атома, будет разным для каждого элемента, но во всех случаях атомы будут расположены на одной или нескольких орбитах, известных как оболочки . Каждая оболочка требует определенного количества электронов, чтобы считаться завершенной, а электроны во внешней оболочке атома известны как валентных электронов.Именно эти валентные электроны придают атому электрические свойства, которые, в свою очередь, определяют, как атом может сочетаться с другими атомами. Валентные электроны образуют ковалентных связей с валентными электронами других атомов. В твердых телах атомы обычно объединяются в регулярно повторяющуюся трехмерную структуру, известную как кристаллическая решетка . Полупроводниковые материалы, такие как кремний или германий, имеют четыре валентных электрона. Структура атома кремния проиллюстрирована ниже.


Модель атома кремния (слева) и в упрощенном виде (справа)


На внешней оболочке атома кремния четыре электрона. Чтобы оболочка была полной (и, следовательно, стабильной), внешней оболочке потребуется восемь электронов. В структуре кристаллической решетки кремния каждый валентный электрон совместно с ближайшим атомом кремния образует четыре ковалентные связи, как показано ниже.Таким образом, каждый атом имеет «половину» восьми валентных электронов. Такое количество валентных электронов придает кристаллической решетке очень стабильную структуру, а также очень затрудняет выход электронов из своих атомов. В результате полупроводниковые элементы, такие как кремний и германий, в чистом виде являются очень хорошими изоляторами. Структура кристаллической решетки чистого полупроводникового материала проиллюстрирована ниже.


Ковалентные связи в кристаллической решетке


При нормальных температурах атомы в кристаллической решетке будут вибрировать, вызывая разрыв некоторых ковалентных связей и освобождение валентных электронов.Когда электрон таким образом разрывает свою связь, во внешней оболочке атома, откуда он пришел, создается область положительного заряда (называемая дыркой ), как показано ниже. Атом становится положительным ионом . Дырку можно представить как положительный заряд, равный по величине отрицательному заряду электрона. Свободные электроны в полупроводниковом материале будут притягиваться к дыркам из-за их противоположного (положительного) заряда, и если электрон падает в дыру и заполняет ее, ион снова становится нейтральным атомом.


Кристаллическая решетка кремния со свободными электронами и дырками


Когда батарея подключается через чистый полупроводниковый материал, она притягивает свободные электроны внутри кристаллической структуры к положительному выводу и поставляет больше свободных электронов на отрицательный вывод. Свободные электроны от разорванных ковалентных связей движутся через полупроводник, «прыгая» от одного отверстия к другому в направлении положительного вывода, заставляя его казаться , как если бы положительно заряженные дырки движутся к отрицательному выводу.Ток, протекающий в чистом полупроводниковом материале, очень мал, и его можно рассматривать как потоки свободных электронов и дырок, идущие в противоположных направлениях, как показано ниже. Этот поток тока называется собственной проводимостью , потому что носители заряда (свободные электроны и дырки) приходят изнутри самого материала. Степень возникновения проводимости также зависит от температуры, поскольку ковалентные связи легче разрываются при повышении температуры, создавая больше свободных электронов и дырок и снижая сопротивление полупроводникового материала.


Ток в собственном полупроводнике


Использование полупроводниковых материалов для создания таких устройств, как диоды, требует увеличения проводимости материала. Это может быть достигнуто путем добавления примесей в полупроводник контролируемым образом — процесс, известный как легирование . Легированный полупроводниковый материал известен как примесный полупроводник , потому что добавленные к нему примеси вводят дополнительные носители заряда.Необходимо тщательно выбирать материалы, используемые в процессе легирования. У них должны быть атомы примерно того же размера, что и атомы кремния или германия, которые они заменяют, чтобы они могли вписаться в кристаллическую решетку. У них также должно быть правильное количество валентных электронов для достижения желаемого результата, заключающегося в увеличении количества либо отрицательных носителей заряда (электронов), либо положительных носителей заряда (дырок).

Чтобы создать полупроводник, который имеет большое количество отрицательных носителей заряда (известный как полупроводник n-типа ), чистый полупроводниковый материал легируют таким материалом, как фосфор, который имеет пять валентных электронов (и, таким образом, говорится быть пятивалентной ).На диаграмме ниже показано, что происходит, когда атом фосфора вводится в решетку кристалла кремния. Четыре его валентных электрона образуют ковалентные связи с четырьмя соседними атомами кремния, но пятый валентный электрон не может образовывать связь и, таким образом, не связан прочно с молекулярной структурой кристаллической решетки. Этот «запасной» электрон может относительно легко перемещаться внутри кристаллической структуры и, следовательно, доступен для проводимости. Примесный атом называется донорным атомом , потому что он обеспечивает электрон для проводимости.


Структура кристаллической решетки кремния n-типа


«Загрязненный» кремний является полупроводником n-типа, поскольку основных носителей заряда являются отрицательно заряженными электронами (обратите внимание, что общий заряд в кристалле остается нулевым, потому что каждый атом в структуре остается электрически нейтральным). Правильное количество примесных атомов добавляется к кремнию (или германию) для получения необходимого увеличения проводимости.Несколько положительно заряженных дырок останутся в материале n-типа и будут действовать как собственные носители заряда. Эти дыры образуются при разрыве ковалентных связей между атомами кремния. Из-за относительно небольшого количества дырок, присутствующих по сравнению с количеством свободных электронов в материале, их называют неосновными носителями . На приведенной ниже диаграмме показана проводимость в полупроводнике n-типа.


Основными носителями заряда в материале n-типа являются электроны.


Чтобы создать полупроводниковый материал, в котором основными носителями заряда являются положительно заряженные дырки (известный как полупроводник p-типа ), кремний или германий легируют таким материалом, как бор, который имеет три валентных электрона (и, таким образом, является Говорят, что это трехвалентный ).На схеме ниже показано, что происходит, когда атом бора вводится в решетку кристалла кремния. Его три валентных электрона образуют ковалентные связи с тремя соседними атомами кремния. Связь между атомом бора и четвертым атомом кремния остается неполной, дырка действует как положительный заряд, который может захватывать свободный электрон, движущийся через кристаллическую решетку. Примесный атом называется акцепторным атомом , потому что он легко примет электрон, чтобы завершить свою связь с атомом кремния.


Структура кристаллической решетки кремния p-типа


«Загрязненный» кремний является полупроводником p-типа, поскольку большинство носителей заряда являются положительно заряженными дырками (обратите внимание, что, как и в случае материала n-типа, общий заряд в кристалле остается нулевым, потому что каждый атом в структуре остается электрически нейтральным) . Правильное количество примесных атомов добавляется к кремнию (или германию) для получения необходимого увеличения проводимости.Несколько отрицательно заряженных электронов останутся в материале p-типа и будут действовать как собственные носители заряда. Эти электроны освобождаются при разрыве ковалентных связей между атомами кремния. Из-за относительно небольшого количества присутствующих электронов по сравнению с количеством дырок в материале именно электроны теперь становятся неосновными носителями. Обратите внимание, что для полупроводниковых материалов как n-типа, так и p-типа повышение температуры приведет к увеличению количества неосновных носителей, присутствующих в материале, потому что ковалентные связи между атомами кремния (или германия) легче разрываются.На приведенной ниже диаграмме показана проводимость в полупроводнике p-типа.


Основными носителями заряда в материале p-типа являются дырки.


P-n переход

Работа многих полупроводниковых устройств, в том числе диодов, зависит от эффектов, возникающих на стыке полупроводниковых материалов n-типа и p-типа (p-n переход ).Такой переход, который может быть сформирован внутри той же структуры непрерывной кристаллической решетки с использованием соответствующих методов легирования, показан ниже. После создания перехода свободные электроны в материале n-типа рядом с переходом могут перемещаться через переход (посредством процесса, известного как диффузия ) в материал p-типа, где они занимают дырки. В результате этого процесса диффузии область n-типа рядом с переходом становится положительно заряженной из-за потери электронов, в то время как область p-типа на другой стороне перехода становится отрицательно заряженной из-за приобретения электронов.В то же время кажется, что дырки диффундируют через переход в противоположном направлении (на самом деле они создаются в области n-типа в результате миграции электронов в область p-типа), и эти дырки могут захватывать любые оставшиеся свободные электроны. в непосредственной близости.


Электроны и дырки рядом с переходом мигрируют через него.


Движение отрицательных и положительных носителей заряда через переход прекращается довольно быстро, потому что увеличение отрицательного заряда в материале p-типа препятствует дальнейшему потоку электронов в область p-типа, в то время как накопление положительного заряда в материал n-типа препятствует созданию большего количества отверстий в области n-типа.Области n-типа и p-типа, непосредственно прилегающие к переходу, становятся относительно свободными от основных носителей заряда (см. Ниже) и вместе образуют новую область, называемую обедненным слоем . Слой истощения, хотя и менее 10 -3 мм в ширину, эффективно становится изолятором. Между переходом существует небольшая разность потенциалов, называемая напряжением перехода, которая действует от n-типа к p-типу. Напряжение перехода составляет около 0,1 В для германия и 0,6 В для кремния.


Слой обеднения создается миграцией носителей заряда.


Если батарея подключена через pn переход, положительный вывод которого подключен к стороне p-типа, а отрицательный вывод — к стороне n-типа, напряжение перехода будет увеличиваться по мере того, как свободные электроны и дырки отводятся от перехода, и сопротивление соединения станет еще больше.Переход называется с обратным смещением . Электроны и дырки будут более сильно отталкиваться p-n-переходом, и слой обеднения станет шире (см. Ниже). Только очень небольшое количество электронов и дырок (созданных ковалентными связями, разрывающимися с обеих сторон перехода при нормальных температурах) будет обмениваться через p-n переход, вызывая протекание крошечного тока (известного как ток утечки ).


Показанный здесь переход имеет обратное смещение.


Если батарея подключена через p-n переход с противоположной полярностью, т.е.е. с его положительным выводом, подключенным к стороне n-типа, а его отрицательным выводом к стороне p-типа, переход называется с прямым смещением . Слой обеднения будет сужаться по мере того, как свободные электроны и дырки подталкиваются к переходу, и если приложенное напряжение превышает напряжение перехода, ток будет течь через переход, потому что большинство носителей смогут пересечь его. Электроны будут мигрировать со стороны n-типа на сторону p-типа, а дырки будут мигрировать в противоположном направлении (см. Ниже).И снова будет ток утечки из-за обмена неосновными носителями, создаваемого нормальным разрывом ковалентных связей по обе стороны от перехода. Однако на этот раз ток утечки способствует протеканию тока основной несущей, и сопротивление перехода очень низкое.


Прямое смещение


Переходный диод — это широко используемый тип диода, который использует свойства p-n перехода.Он состоит из p-n-перехода, один вывод которого подключен к p-стороне (анод), а другой — к n-стороне (катоду). Упрощенный вид кремниевого диода «планарной» конструкции показан ниже. Тонкий слой кремния n-типа припаян к металлической основе, которая соединена с катодом. Тонкая пленка из оксида кремния образуется на верхней поверхности ломтика при нагревании его паром до температуры около 1100 ° C и действует как изолирующий материал. Затем в оксидной пленке химически вытравливается «окно», и пар, содержащий соответствующий легирующий агент, может диффундировать через него, превращая открытую область среза в кремний p-типа.Затем алюминий испаряется на область p-типа, позволяя припаивать к ней анодный вывод. Наконец, диод герметичен во внешнем кожухе, чтобы защитить его от влаги и света.


Секция через кремниевый диод


Характеристики диодов

Диоды проявляют определенное поведение, которое делает их очень полезными в электронных приложениях.Когда диод смещен в обратном направлении, он позволяет только очень небольшому току утечки течь в обратном направлении, даже когда обратное напряжение относительно высокое. Поскольку диод позволяет току течь только в одном направлении, он является жизненно важным компонентом в цепях, преобразующих переменный ток в постоянный (процесс, известный как выпрямление ). Другой интересной характеристикой диода является то, что при прямом смещении его прямое напряжение не увеличивается значительно, даже когда через диод протекают относительно большие токи.Типичные кривые характеристик кремниевых и германиевых диодов при 25 ° C показаны ниже. Обратите внимание, что для обоих типов прямой ток ( I F ) невелик до тех пор, пока прямое напряжение ( В, F ) не составит около 0,6 В для кремния и около 0,1 В для германия. После этого небольшое изменение V F вызывает большое увеличение I F .


Характеристики кремниевых и германиевых диодов


Обратный ток I R пренебрежимо мал и остается таким, когда обратное напряжение В R увеличивается.Однако если V R увеличить в достаточной степени, изоляция истощающего слоя разрушится, и I R резко и быстро возрастет. Если это происходит, результатом обычно является необратимое повреждение диода. Напряжение пробоя может варьироваться от нескольких вольт до 1000 вольт для кремния и 100 вольт для германия, в зависимости от конструкции диода и степени используемого легирования (спасибо моему другу Клаусу Польманну за то, что он указал, что моя исходная диаграмма не показал точки пробоя кремниевой кривой!).Двумя важными электрическими характеристиками диода являются средний прямой ток и максимальное обратное напряжение , которые не должны превышаться при нормальных условиях.

Преобразование мощности

Электроэнергия вырабатывается как переменный ток, потому что это наиболее экономичная форма для выработки и распределения больших объемов электроэнергии.Электроэнергия, поступающая в ваш дом (если вы живете в Великобритании), — это переменный ток 230 В с частотой 50 Гц. Однако для работы многих электронных устройств требуется постоянный ток относительно низкого напряжения. Диоды могут использоваться для создания цепей, которые выпрямляют переменный ток для получения постоянного тока. Переменный ток называется так, потому что ток течет сначала в одном направлении, а затем в противоположном. Это изменение направления происходит много раз в секунду, в зависимости от частоты a.c. поставка. Простейший вид выпрямительной схемы называется полуволновым выпрямителем и позволяет использовать только половину переменного тока. форма волны для прохождения через цепь. В полуволновом выпрямителе используется единственный диод, который проводит электричество, когда ток течет в одном направлении, но не в другом. Базовая схема однополупериодного выпрямителя показана ниже.


Базовый однополупериодный выпрямитель


В показанной схеме выпрямленный ток эффективно освещает лампу, подавая ей импульс с одним полупериодом переменного тока для каждого полного цикла, который имеет место (только половина a.c. форма волны может проходить через диод). Если бы диод был удален, лампа будет получать ток в течение обоих полупериодов и, следовательно, горела бы ярче. Хотя свет горит относительно тускло, он не мигает и не гаснет, потому что нить накала не успевает остыть и снова нагреться между полупериодами. Однако для большинства приложений оба полупериода переменного тока потребуется форма волны, и простого однополупериодного выпрямления, обеспечиваемого одним диодом, будет недостаточно.Схема преобразования, которая делает оба полупериода переменного тока. Источник постоянного тока называется двухполупериодным выпрямителем . В одной из наиболее часто используемых схем двухполупериодного выпрямителя используются четыре диода в схеме, называемой двухполупериодным мостом . Схема показана ниже.


Двухполупериодный мостовой выпрямитель


На двух схемах ниже показано, как обычный ток течет в цепи и через нагрузку на каждом полупериоде a.c. форма волны. В каждом случае ток, протекающий к нагрузке от источника переменного тока. источник показан красными стрелками, а обратный ток (от нагрузки обратно к источнику) показан синими стрелками. Обратите внимание, что независимо от полярности полупериода ток всегда течет через нагрузку в одном и том же направлении. В каждом полупериоде другая пара диодов будет смещена в прямом направлении и позволит току проходить в прямом направлении (диоды, показанные серым цветом для каждого полупериода, имеют обратное смещение и будут блокировать ток в обратном направлении. направление).


Обычный ток в положительном полупериоде



Обычный ток в отрицательном полупериоде


Точечный диод

Конструкция германиевого точечного диода показана ниже.Острие золотой или вольфрамовой проволоки прижимается к таблетке германия n-типа. Во время изготовления через диод пропускается кратковременный ток, который образует крошечную область p-типа в таблетке вокруг наконечника, образуя p-n-переход с очень маленькой площадью.


Конструкция точечного диода


При обратном смещении обедненный слой в диоде действует как изолятор, зажатый между двумя проводящими «пластинами» (областями p-типа и n-типа).В результате диод действует как конденсатор. Тема конденсаторов рассматривается в другом месте, но, по сути, конденсатор — это устройство, которое может накапливать электрический заряд. Конденсаторы также обладают свойством блокировать постоянный ток, позволяя протекать переменному току, особенно на высоких частотах, например, в радиосигналах (чем выше частота переменного тока, тем меньше конденсатор препятствует прохождению тока). Точечные диоды (иногда называемые кристаллами ) часто используются в качестве сигнальных диодов для обнаружения радиосигналов.

Точечный диод часто используется для обнаружения высокочастотного сигнала из-за его крошечной площади перехода и, следовательно, малой емкости, что делает его чувствительным к маломощным высокочастотным токам, присутствующим в радиосигналах. Германиевые точечные диоды обычно используются в качестве детекторов в радиосхемах из-за их относительно низкого прямого напряжения (около 0,2 В), что позволяет им обнаруживать более низкие напряжения сигнала. Радиосигналы по существу состоят из сигналов звуковой частоты, модулированных на несущей радиочастоты.Детектор работает, эффективно действуя как полуволновой выпрямитель, превращая радиосигнал переменного тока в колебательный сигнал постоянного тока. Затем этот сигнал отправляется через фильтр нижних частот для извлечения исходного сигнала звуковой частоты.

Стабилитрон

В нормальном диоде с переходом работа диода при напряжении пробоя или выше приведет к разрушению обедненного слоя и необратимому повреждению диода. Стабилитроны — это диоды, которые могут проводить ток в обратном направлении при определенном фиксированном опорном напряжении (их напряжение пробоя) без повреждений. Каждый стабилитрон имеет определенное напряжение обратного пробоя (от 2,4 В и выше), при котором он будет проводить ток в обратном направлении, и имеет максимальную номинальную мощность (типовые значения — 400 мВт и 1,3 Вт). Стабилитрон может использоваться отдельно для обеспечения чувствительного к напряжению переключателя или последовательно с токоограничивающим резистором для регулирования напряжения.Символ принципиальной схемы стабилитрона показан ниже вместе с характеристической кривой типичного стабилитрона.


Условное обозначение принципиальной схемы стабилитрона



Характеристическая кривая напряжения и тока стабилитрона


Из кривой видно, что увеличение обратного напряжения оказывает незначительное влияние на обратный ток, пока не будет достигнуто напряжение пробоя В Z (также известное как напряжение стабилитрона ).В этот момент ток может быстро увеличиваться в широком диапазоне с небольшим изменением напряжения или без него. Обратите внимание, что наклон кривой между точками A и B на графике почти вертикальный. Если обратное напряжение снова упадет ниже напряжения пробоя, обратный ток снова станет незначительным. Чтобы ограничить обратный ток и предотвратить перегрев стабилитрона, нельзя превышать номинальную мощность стабилитрона. Максимальный обратный ток, который может быть перенесен, можно рассчитать по следующей формуле:

куда:

I MAX = максимальный обратный ток

P = номинальная мощность диода

В = напряжение стабилитрона

Стабилитроны производятся с определенными значениями напряжения стабилитрона от 2.От 4 В до 200 В, и стабилитрон с заданным напряжением стабилитрона можно использовать последовательно с соответствующим резистором в цепи регулятора источника питания для поддержания постоянного выходного напряжения, даже если само напряжение питания подвержено колебаниям. В простой схеме регулятора напряжения, показанной ниже, используется один стабилитрон (Z), соединенный последовательно с резистором (R) и постоянным током. источник питания (в данном случае сухой аккумулятор на 12 В, напряжение которого со временем может упасть). Требуемое выходное напряжение составляет 8 В, а нагрузочное устройство потребляет ток 100 мА.


Простая схема регулятора питания


В этой схеме, пока напряжение питания превышает требуемое выходное напряжение (или, точнее, напряжение стабилитрона) на несколько вольт, напряжение на стабилитроне будет стабильным. Если мы выберем резистор подходящего номинала, падение напряжения на резисторе ( В, R ) всегда должно быть разницей между напряжением стабилитрона диода ( В, Z ) и напряжением питания ( В, ). ПОСТАВКА ).Ближайшее стандартное напряжение стабилитрона к требуемому выходному напряжению (8 В) составляет 8,2 В, что достаточно близко к целевому напряжению. В дополнение к току нагрузки стабилитрон будет потреблять как минимум еще 5 мА, поэтому максимальное значение тока ( I MAX ) в 110 мА должно удовлетворять нашим требованиям (хорошее практическое правило — допускать от 10% до 20% сверх тока нагрузки). Мы также должны выбрать стабилитрон с подходящей номинальной мощностью, чтобы он мог выдерживать максимальный ток, который может протекать через него ( I MAX ).Максимальную мощность, рассеиваемую диодом, можно рассчитать как:

В Z × I МАКС = 8,2 В × 0,110 A = 0,902 Вт

Наименьшая стандартная номинальная мощность стабилитрона, превышающая это значение, составляет 1,3 Вт, что должно быть вполне достаточным. Как уже упоминалось, падение напряжения на резисторе будет разницей между напряжением источника и напряжением стабилитрона (12 В — 8.2 В = 3,8 В). Используя закон Ома, мы можем рассчитать необходимое значение сопротивления следующим образом:

В R = 3,8 В = 34,545 Ом
I MAX 0,110 A

Ближайшее значение стандартного резистора, превышающее 34,545 Ом, составляет 39 Ом. Мы также должны убедиться, что номинальная мощность резистора соответствует работе.Мы можем рассчитать мощность, рассеиваемую в резисторе, как:

В R × I MAX = 3,8 В × 0,110 A = 0,418 Вт

Если бы мы могли быть разумно уверены, что напряжение питания никогда не превысит 12 В, мы, вероятно, могли бы обойтись резистором номиналом 0,5 Вт, хотя было бы разумно выбрать резистор номиналом 1 Вт или 2 Вт на всякий случай. .Фактически, всегда стоит учитывать возможность возникновения ситуации перенапряжения при работе с относительно нестабильными источниками питания и учитывать это при выборе компонентов схемы.


В чем разница между диодами, анодами и катодами?

Полупроводящий диод — базовый компонент огромного количества электрических систем. Эти компоненты имеют два вывода: один для подачи электричества, а другой — для его вывода.Этот процесс работает одним способом; если терминал принимает электричество, он не пропускает электроэнергию обратно. Катод — это часть диода, которая пропускает мощность, а анод — это часть, которая позволяет ей поступать. Комбинация этих двух элементов позволяет диоду функционировать.

Физическая конструкция диода незначительно меняется в зависимости от цели его использования, но некоторые факторы остаются неизменными.Диод имеет два вывода, катод и анод, которые соединены небольшим количеством полупроводящего материала. Этим материалом обычно является кремний, но можно использовать широкий спектр различных материалов. Вся сборка окружена стеклянным или пластиковым покрытием. Диоды могут быть любого размера, и хотя большинство диодов не очень большие, они могут быть почти микроскопическими.

Анод принимает электричество.Этот терминал получил свое название от отрицательно заряженных анионов, которые движутся к нему во время обычной электрохимической реакции. Заряд анода зависит от функции устройства. Если устройство использует питание, заряд отрицательный, а если он вырабатывает энергию, его заряд положительный. Этот сдвиг полярности позволяет электричеству правильно течь от терминала.

Катод по существу противоположен аноду.Катод позволяет мощности вытекать из устройства. Этот терминал получил свое название от положительно заряженных катодов, которые он привлекает во время реакции. Когда устройство использует питание, катод является положительным, а когда он генерирует энергию, — отрицательным.

Материал в середине диода — полупроводник.Полупроводники — это материалы, которые не проводят электричество, как стандартный проводник, но не препятствуют ему, как изолятор. Эти материалы подходят посередине и обладают очень специфическими свойствами, когда через них проходит электричество. В большинстве серийно выпускаемых диодов используется кремниевый полупроводник, но диоды из германия не редкость.

С момента своего изобретения в конце 1800-х годов основные диоды практически не изменились.Материалы, которые использовались для их изготовления, были улучшены, а базовый дизайн стал намного меньше, но это действительно все, что изменилось. Ни принципы их изготовления, ни их конструкция не сильно отличаются от оригинального творения.

Самая большая инновация с диодами — альтернативные версии, вдохновленные первоначальным изобретением.Существуют десятки различных типов диодов, которые работают немного по-разному. Эти разные диоды имеют всевозможные дополнительные функции, помимо методов ввода-вывода базовой формы. Они варьируются от туннельного диода, который работает в квантовом масштабе, до светодиода (LED), используемого в качестве источника света во многих современных электронных устройствах.

диод | Викитроника | Фэндом

Материал, изготовленный из комбинации полупроводника P-типа и полупроводника N-типа, известен как диод.Часть диода N-типа имеет электроны, а часть P-типа имеет электронные дырки. Между этими двумя полупроводниками существует нейтральная область, известная как переходной барьер. Часть диода P-типа известна как анод , а часть N-типа известна как катод . Обычно в диоде есть поток электронов. Для протекания тока необходим внешний потенциал в правильном направлении и количестве.

Ток в диоде []

Диод может быть подключен к батарее двумя способами: с прямым или обратным смещением.Во-первых, это обратное смещение, анод диода к отрицательной клемме батареи и катод к положительной клемме батареи. Второй метод — это прямое смещение, чтобы подключить анод диода к положительной клемме батареи, а катод — к отрицательной клемме батареи. Чтобы прояснить прохождение тока через диод, эффекты соединения диода с батареей первым и вторым способом, соответственно, поясняются с помощью рисунка, приведенного ниже.

  • Первый метод : Соединение отрицательного полюса на аноде и положительного полюса на катоде. Глядя на этот рисунок, становится ясно, что отрицательная клемма батареи будет притягивать отверстия P-типа, а электроны N-типа будут притягиваться к положительной клемме батареи. В результате этого процесса отверстия P -типа собираются на конце P-типа, а электроны собираются на конце N-типа, как показано на рисунке. Теперь, если фигура видна четко, то видно, что переходной барьер рядом с переходом будет расширяться и, как следствие, между переходом не будет тока.Полупроводник N-типа диода.

Из этого метода исключено, что при подключении анода к отрицательной клемме и катода к положительной клемме батареи ток через диод не протекает. Такой способ подключения батареи известен как обратное смещение диода.

  • Второй метод : При подключении положительной клеммы к аноду и отрицательной клеммы батареи к катоду диода. Из приведенных выше рисунков видно, что электроны N-типа отталкиваются отрицательной клеммой батареи в сторону перехода, и точно так же отверстия P-типа отталкиваются к переходу положительной клеммой батарея.Когда положительное и отрицательное напряжения батареи на полупроводниках типа P и N увеличиваются до такого уровня, что отверстия P-типа начинают заполняться электронами N-типа, значит, сопротивление перехода N-типа устраняется, чем ток проточный диод.

При снижении давления от определенного давления ток через диод не будет протекать из-за сопротивления перехода. Соединение диода с батареей в этом положении, в котором положительный полюс батареи соединен с анодом, а отрицательный полюс к катоду называется прямым смещением диода.В прямом смещении сопротивление перехода очень низкое.

Что такое исправление? []

Отв. В основном электрическая энергия используется в форме переменного тока, но в некоторых местах она используется в форме постоянного тока. процесс получения постоянного тока из переменного тока известен как выпрямление.

Почему диод называется выпрямителем? []

Отв. Зная характеристики диода, становится ясно, что только при прямом смещении через диод протекает ток. При обратном смещении через диод не протекает ток.В одном цикле переменного тока первая половина цикла положительна, а вторая половина цикла отрицательна.

Типы диодов []

Приложения []

Демодуляция радио []

Первым применением диода была демодуляция радиопередач с амплитудной модуляцией (AM). История этого открытия подробно рассматривается в статье radio . Таким образом, AM-сигнал состоит из чередующихся положительных и отрицательных пиков напряжения, амплитуда или «огибающая» которых пропорциональна исходному звуковому сигналу, но среднее значение которого равно нулю.Диод (первоначально кристаллический диод) выпрямляет сигнал AM, оставляя сигнал, средняя амплитуда которого является желаемым звуковым сигналом. Среднее значение извлекается с помощью простого фильтра и подается в преобразователь звука, который генерирует звук.

Преобразование мощности []

Выпрямители состоят из диодов, где они используются для преобразования электричества переменного тока (AC) в постоянный ток (DC). Точно так же диоды также используются в умножителях напряжения Кокрофта-Уолтона для преобразования переменного тока в очень высокие напряжения постоянного тока.

Защита от перенапряжения []

Диоды часто используются для отвода высокого напряжения от чувствительных электронных устройств. Обычно они имеют обратное смещение (непроводящие) в нормальных условиях и становятся смещенными в прямом направлении (проводящими), когда напряжение поднимается выше своего нормального значения. Например, диоды используются в схемах шагового двигателя и реле для быстрого обесточивания катушек без разрушительных скачков напряжения, которые в противном случае могли бы возникнуть. Многие интегральные схемы также включают диоды на соединительных контактах, чтобы предотвратить повреждение чувствительных транзисторов внешним напряжением.Специализированные диоды используются для защиты от перенапряжения при более высокой мощности (см. Типы диодов выше).

Логические вентили []

Диоды можно комбинировать с другими компонентами для создания логических вентилей И и ИЛИ. Это называется диодной логикой.

Детекторы ионизирующего излучения []

Помимо света, упомянутого выше, полупроводниковые диоды чувствительны к более энергичному излучению. В электронике космические лучи и другие источники ионизирующего излучения вызывают шумовые импульсы и одиночные или множественные битовые ошибки.Этот эффект иногда используется детекторами частиц для обнаружения излучения. Одна частица излучения с энергией в тысячи или миллионы электрон-вольт генерирует множество пар носителей заряда, поскольку ее энергия вкладывается в полупроводниковый материал. Если слой истощения достаточно велик, чтобы уловить весь ливень или остановить тяжелую частицу, можно провести довольно точное измерение энергии частицы, просто измерив проводимый заряд и без сложностей, связанных с магнитным спектрометром и т. Д.Эти полупроводниковые детекторы излучения требуют эффективного и равномерного сбора заряда и низкого тока утечки. Их часто охлаждают жидким азотом. Для частиц с большим радиусом действия (около сантиметра) им нужна очень большая глубина истощения и большая площадь. Для частиц с коротким радиусом действия им необходимо, чтобы любой контактный или не обедненный полупроводник по крайней мере на одной поверхности был очень тонким. Напряжения обратного смещения близки к пробою (около тысячи вольт на сантиметр). Германий и кремний — обычные материалы.Некоторые из этих детекторов определяют положение, а также энергию. У них ограниченный срок службы, особенно при обнаружении тяжелых частиц, из-за радиационного повреждения. Кремний и германий совершенно разные по своей способности преобразовывать гамма-лучи в электронные ливни.

Полупроводниковые детекторы частиц высоких энергий используются в большом количестве. Из-за колебаний потерь энергии точное измерение выделенной энергии менее полезно.

Измерение температуры []

Диод можно использовать в качестве прибора для измерения температуры, поскольку прямое падение напряжения на диоде зависит от температуры.Эта температурная зависимость следует из приведенного выше уравнения идеального диода Шокли и обычно составляет около -2,2 мВ на градус Цельсия.

Устройства с зарядовой связью []

В цифровых камерах

и аналогичных устройствах используются матрицы фотодиодов, интегрированные со схемой считывания.

Советы по определению и идентификации катодов

Катод — это электрод, от которого отходит электрический ток. Другой электрод называется анодом. Имейте в виду, что обычное определение тока описывает направление движения положительного электрического заряда, в то время как большую часть времени электроны являются истинными переносчиками тока.Это может сбивать с толку, поэтому мненомный ПЗС для катодного тока отклоняется от может помочь укрепить определение. Обычно ток уходит в направлении, противоположном движению электрона.

Слово «катод» было придумано в 1834 году Уильямом Уэвеллом. Оно происходит от греческого слова kathodos , что означает «путь вниз» или «спуск» и относится к заходящему солнцу. Майкл Фарадей консультировался с Уэвеллом по поводу идеи названия для статьи, которую он писал по электролизу. Фарадей объясняет, что электрический ток в электролитической ячейке движется через электролит «с востока на запад, или, что усиливает память, чтобы помочь памяти, это то, в чем кажется, что солнце движется».«В электролитической ячейке ток покидает электролит на западной стороне (движется наружу). До этого Фарадей предложил термин« экзод », отказавшись от« дизиода »,« вестода »и« окциода ». Во времена Фарадея. , электрон не был открыт.В современную эпоху один из способов связать это имя с током — представить катод как «путь вниз» для электронов в ячейку.

Катод положительный или отрицательный?

Полярность катода по отношению к аноду может быть положительной или отрицательной.

В электрохимической ячейке катод — это электрод, на котором происходит восстановление. Катионы притягиваются к катоду. Обычно катодом является отрицательный электрод в электролитической ячейке, подвергающейся электролизу, или в перезаряжаемой батарее.

В разряжающемся аккумуляторе или гальваническом элементе катодом является положительный полюс. В этой ситуации положительные ионы движутся от электролита к положительному катоду, а электроны движутся внутрь к катоду. Движение электронов к катоду (которые несут отрицательный заряд) означает, что ток уходит от катода (положительный заряд).Итак, для гальванического элемента Даниэля медный электрод является катодом и положительной клеммой. Если ток в ячейке Даниэля меняется на противоположное, образуется электролитическая ячейка, и медный электрод остается положительной клеммой, но становится анодом.

В вакуумной лампе или электронно-лучевой трубке катод является отрицательной клеммой. Здесь электроны попадают в устройство и попадают в трубку. Из устройства вытекает положительный ток.

В диоде катод обозначен заостренным концом символа стрелки.Это отрицательный вывод, от которого течет ток. Несмотря на то, что ток может течь в обоих направлениях через диод, название всегда основано на направлении, в котором ток течет наиболее легко.

Мнемоника в память о катоде в химии

В дополнение к мнемонике ПЗС есть и другие мнемоники, помогающие идентифицировать катод в химии:

  • AnOx Red Cat означает окисление на аноде и восстановление на катоде.
  • Оба слова «катод» и «восстановление» содержат букву «c.«Восстановление происходит на катоде.
  • Это может помочь ассоциировать «кошку» в катионе как акцептор и «an» в анионе как донор.

Связанные термины

В электрохимии катодный ток описывает поток электронов от катода в раствор. Анодный ток — это поток электронов из раствора в анод.

Как определить анод и катод

Как определить анод и катод

Как определить анод и катод
Джон Денкер

* Содержание

1 Определение

  • Определение: анод устройства — терминал, через который ток течет от вне.Катод устройства — это клемма, на которой ток вытекает. Это проиллюстрировано на рисунке 1.

    Полезная мнемоника — ACID: Anode Current Into Device. В настоящее время мы означают положительный условный ток. Поскольку электроны отрицательно заряженный, протекающий положительный ток такой же, как электроны вытекают.

    Вот и все.

2 Некоторые примеры

Наше определение легко и правильно применимо к любой ситуации, которую я могу подумайте (с одним отвратительным исключением, как обсуждалось в пункте 11 ниже).

  1. Гальванические элементы и батареи.
  2. Горячий катод в электронно-лучевой трубке, обнаруженный в телевизор старого образца или осциллограф.
  3. Горячий катод в лампе электронного усилителя («Флеминг клапан»).
  4. Горячий катод в рентгеновской трубке, как на рисунке 2.
  5. Вращающийся анод в рентгеновской трубке, как на рисунке 2.
  6. Светодиодная матрица с общим анодом, например, 7-сегментная цифра множество, хотя это не оптимальная терминология по причинам, обсуждаемым в пункт 8.
  7. Жертвенный анод в лодке; см. пункт 16.
  8. Анодная пластина и катодная пластина (а также анодный раствор) в ячейка электролитического рафинирования; см. пункт 9.

Важно отметить, что наше определение прекрасно подходит для таких вещей, как аккумуляторная батарея, в которой нельзя идентифицировать анод и катод пока вы не увидите, как работает устройство, как описано в пункт 6.

Наше определение также применимо в тех случаях, когда оно относительно легко отличить анод от катода, просто посмотрев, как обсуждается в пункте 7.

Существует одно ужасное исключение, как описано в пункте 11 ниже.

3 Обсуждение

Наше оригинальное, проверенное временем определение. Это согласуется с этимологией, как обсуждается в пункте 17. Другого разумного определения нет. Я видел несколько попыток определения, но если они не были эквивалентны нашему определению (как приведенные в разделе 1), они были гротескно чрезмерно сложными, неправильно, или и то, и другое.
По устоявшемуся соглашению (возвращаясь к Бен Франклин), когда мы говорим о нынешнем , мы имеем в виду обычные положительный ток.В металлических проводах ток передается по электронов движутся в направлении, противоположном току. Этот усложняет понятие тока, но необходимо, потому что электрон заряжен отрицательно.
Для подавляющего большинства людей нет Пункт в запоминании значения анода и катода. Условия просто не очень полезны, если вы не устроитесь на работу в электрохимии лаборатория или какая-нибудь сравнительно узкая специальность. Если когда-нибудь ты сделаешь нужно знать значения, вы можете найти их сегодня утром и забыть их снова в тот вечер.
Обратите внимание, что когда мы говорим ток-вход, мы имеем в виду ток поступающий в устройство из внешнего контура. Точно так же, когда мы скажем, ток, мы имеем в виду ток, текущий из устройства в сторону внешняя цепь. Мы относимся к устройству как к черному ящику, и мы категорически не говорят о токах, протекающих в устройство. Эта терминология черного ящика является стандартной во всех отраслях инженерное дело и наука, если контекст явно не требует иначе.

Если вы настаиваете на том, чтобы заглянуть внутрь черного ящика, история получит больше сложно, как вы можете видеть на рисунке 2.Тем не мение, это не меняет ни буквы, ни духа определения, которое основан на поведении черного ящика, если смотреть снаружи.

Важно помнить, что анод / катод различие основано на токе, а не на напряжении. Анод / катод не то же самое, что и положительный / отрицательный, или наоборот. Наглядный пример: для разряженной батареи положительный полюс — катод, в то время как для той же аккумуляторной батареи положительный полюс анод.
Имейте в виду, что анод и катод относятся к функции, а не к структуре. Есть много из устройства, где было бы безумием постоянно маркировать структуры как анод или катод, потому что их функция время от времени меняется. Перезаряжаемые батареи — распространенный и очень важный пример, как указано в пункте 5.
Хотя анод и катод фундаментально определен в терминах функция не структура, там некоторые исключительные устройства, функция которых практически заблокирована к структуре.В таком случае, возможно, допустимо пометить структурирует как анод и катод, потому что только одно направление тока имеет смысл. В списке в разделе 2 все примеры , за исключением аккумуляторной батареи , находятся в этом категория.

В любом случае имейте в виду, что эту категорию нужно считать рискованное исключение, а не общее правило. Верное общее правило объяснено в пункте 6.

Даже в тех случаях, когда это возможно можно идентифицировать определенный анод и катод, обычно есть более простые и лучшие способы обозначения терминалов.В частности, для аккумулятор (аккумуляторный или нет), он обычный и разумный говорят о положительной клемме и отрицательной клемме. Для диода это условно и разумно говорить о стороне, легированной фтором, и о N-легированная сторона. В частности, для модуля светодиодного дисплея так называемый конфигурацию с общим анодом правильнее было бы назвать общая конфигурация стороны P.
Вот интересный и важный пример. Рассмотрим электролитическое рафинирование металлов, таких как медь.

При нормальной работе через элемент протекает большой ток, навязывается извне. Ток проталкивается в ячейку на анод, и вынутый на катоде. Клеммы обозначены в соответствии с их нормальной функцией, в соответствии с определением приведено в разделе 1.

В начале работы анодом является грязная медь. На В конце операции катод — это медь гораздо более высокой чистоты. Пытаться поиск в Google анода грязь.

Если какой-нибудь умник временно изменил направление тока, нормальный анод станет временным катодом и наоборот.Однако эта возможность настолько странная, что обычно даже не считается. Клеммы имеют маркировку в соответствии с их нормальными функция.

Обратите внимание на контраст:

Ячейка электролитического рафинирования. Аккумулятор обыкновенный
В ячейке рафинирования напряжение ячейки холостого хода, если таковое имеется, очень маленький и совершенно неуместен. В батарее есть определенная положительная клемма и определенная отрицательная клемма.
Падение напряжения на ячейке примерно пропорционально электрический ток. Во время работы анод будет находиться под положительным напряжение относительно катода. Падение напряжения на ячейке равно качественно одинаково, вне зависимости от того, положительный ли ток, отрицательный, или ноль. Положительный вывод — это катод во время разряд, но во время перезарядки это анод.
Во всех случаях вы можете использовать описательные термины ток-сток и ток-источник как синонимы анода и катода.Описание обычно предпочтительнее жаргона.
Можно купить массив стабилитронов. Увы, согласно устоявшемуся, но нелогичному соглашению, так называемая конфигурация с общим анодом конструктивно аналогична матрица светодиодов с общим анодом в том смысле, что стороны, легированные P, являются связаны вместе. Это мерзость, потому что при обычном использовании Зенера сторона, легированная P, — это то место, где выходит ток, и, по логике, она должна быть называется катодом. Очевидно, кто-то был под неправильным впечатлением этот анод / катод относится к структуре, а не к функции.

Никогда не используйте термины анод или катод для описания конструктивные части стабилитрона, по той же причине не следует Используйте такие термины для обозначения конструкции аккумуляторной батареи. Анод и катод относится к функции, а не к структуре. Вместо этого вам следует обратиться к сторона с примесью P и сторона с примесью азота, и вы должны настаивать на том, чтобы другие делают то же самое.

Обратите внимание, что изменение правил маркировки матриц стабилитронов не решит проблему в каком-либо фундаментальном смысле, потому что там являются вполне разумными схемами, в которых — часть времени — Стабилитрон смещен в прямом направлении, так что он ведет себя так же, как и любой другой. другой диод.Это та же ситуация, с которой мы сталкиваемся в связи с с аккумуляторными батареями: если вы прикрепите постоянный анод / катод метки к структуре, вы будете ошибаться, по крайней мере, часть времени.

Термины «анод» и «катод»
правильно относятся к функции, а не к конструкции.
Электрохимическое следствие: в любом электрохимическом на аноде протекают реакции окисления, а на аноде протекают реакции восстановления. реакции происходят на катоде.(Если вы не знаете, что это означает, не беспокойтесь об этом.) Это включает в себя зарядку батарей. (анод = положительный), а также разряжаются батареи (анод = отрицательный). Это следствие, вытекающее из нашего определения, и с традиционной точки зрения, что ячейка — это черный ящик, а все внешнее по отношению к ячейке — это внешняя цепь.

Ситуация резюмируется в следующей таблице:

905 905 905 905 905 905 905 катод 905 905 окисленный 9055 9055 905 905 905 905 окисленный 9055
зарядка разрядка
— пластина:
+ пластина: анод
окисляется
катод
восстанавливается
Сделаем краткое исключение из черного ящика. точки зрения и рассмотрим, что происходит внутри электрохимической ячейки.Внутри клетки катионы (положительно заряженные частицы) движутся в направлении катод вносит положительный вклад в обычный ток внутри ячейки , как показано на рисунке 3. Точно так же анионы (отрицательно заряженные частицы), движущиеся к аноду вносят положительный вклад в условный ток внутри ячейка . На рисунке не показаны анионы. Правило анионы на анод, катионы на катод применяются только внутри ячейки. Это правило требуется из-за того, что ток подчиняется закону сохранения закон; ток, который течет в ячейку на аноде, должен протекать через ячейку, а затем катод.За пределами клетки течет ток к аноду; внутри ячейки ток течет от анода. (Кстати, обычно предполагается, что вне клетки нет подвижные анионы или катионы, просто электроны, переносимые металлическими проводами в внешняя цепь.)
Рисунок 3: Анод и катод: внутри Черный ящик

Говоря об ионах, нужно помнить, что катионы положительно заряженный. Мнемоника катионов состоит в том, чтобы рассматривать «t» как знак плюс: ca + ion. Между тем, мнемоника для анионов является чем-то вроде аббревиатура: A Negative ION = ANION.

Помня о правиле катионов на катоде, нужно помнить что внутри ячейки катионы идут на катод (а не с него): ионы ca + + o ca + hode. Соответствующее правило отношения анионов к аноду одинаково действительно, но вам нужно работать усерднее, чтобы помнить, что анионы уходят в (не от) анода.

Помните, что правило «катионы-катод» подлежит несколько предостережений. В лучшем случае это химическое следствие настоящего определение. Это не может служить определением катода, потому что катод хорошо определен для всех видов устройств, которые нет подвижных катионов, например.грамм. полупроводниковые диоды, электронно-лучевые трубки и т. д. Еще одно предостережение: это правило применяется к тому, что происходит внутри ячейки, тогда как для большинства целей (включая определение анода / катода) обычно и целесообразно фокусировать на свойствах черного ящика, если смотреть снаружи. (Похожий вопросы возникают по пунктам 14 и 16.)

Существует небольшая вероятность путаницы, когда думая об электронно-лучевых трубках и рентгеновских трубках, из-за соблазн отклониться от точки зрения черного ящика.(Подобные вопросы возникают в п. 13 и п. 16.) В Рентгеновская трубка, внутри устройства происходит интересная физика, тогда как определение анода выражается в терминах обычных ток течет во внешний терминал, течет в черный ящик снаружи. Помните, снаружи устройства мы видим позитив обычный ток, выходящий из катода и идущий в анод, в соответствии с нашим определением, как показано на рисунке 1 в разделе 1. Правило: КИСЛОТА: Анод Ток в устройство.(Если заглянуть внутрь устройства, мы увидим электроны вытекает из катода, но это только следствие определение, а не определение как таковое .)
Еще больше возможностей для путаницы, если вы пытаетесь объяснить или дать определение анода / катода с точки зрения электрохимических ячеек хотя бы потому, что мало кто понимает, как такие вещи Работа. См. Ссылку 1 и ссылки в ней. Как говорится Итак, обучение происходит от известного к неизвестному. Наше определение анода / катода, как указано в разделе 1, прост и полезен.Внутренний механизм батареи непростой. Это не имеет никакого смысла «объяснить» первое через второе.

Клеммы аккумулятора помечены как положительный и отрицательный. Они помечены в зависимости от напряжения, а не от заряда или тока. Это условно и вполне уместно, потому что положительный вывод остается на положительное напряжение (относительно другой клеммы) во время всех нормальных условия, в том числе когда аккумулятор разряжается, заряжается или просто сидеть там в равновесии без тока.

Напротив, как упоминалось в пункте 5, это было бы дико неуместно маркировать клеммы аккумулятора как анод и катод. Это потому, что вывод, который является катодом во время разряда становится анодом во время перезарядки … и не является ни анодом, ни катодом в равновесной (нетекущей) ситуации.

Кроме того, нет смысла определять анод и катод в терминах электрохимия, потому что эти термины используются во всевозможных ситуациях там, где нет электрохимии, в том числе полупроводниковой диоды, рентгеновские трубки и т. д.

Лодки и другие конструкции, контактирующие с соленая вода может вызвать некоторую путаницу об аноде по сравнению с катодом. На первый взгляд это может быть неочевидно что считается «черным ящиком» и что считается «Внешняя цепь». Традиционная точка зрения такова:
  • О воде и о соприкасающихся с ней металлах следует подумать. как гигантская электрохимическая ячейка. Есть анионы и катионы в вода внутри черного ящика.
  • Конструкция лодки (или чего-то еще) считается внешняя цепь. Нет анионов или катионов. Текущий переносятся электронами, протекающими внутри металлов.

То есть принято считать лодку внешней по отношению к вода … хотя может показаться более логичным думать о вода как внешняя по отношению к лодке. Это может показаться произвольным, но по крайней мере это согласуется с вышеупомянутым электрохимическим следствием (пункт 12), чтобы реакции окисления происходили на аноде, на катоде протекают реакции восстановления.Это приводит нас к полезная концепция расходуемого анода , который является просто дешевый, легко заменяемый электрод, который помещается в воду и расположены так, чтобы иметь большое положительное напряжение по отношению к остальной части лодка. Это делает все остальное на лодке катодом, в значительной степени уменьшение коррозии, потому что большинство форм коррозии связаны с окислением реакции. Другими словами, то же самое в воде, высококоррозионные анионы, такие как OH и Cl , текут в направлении анод и прочь от всего остального, в соответствии с правило анионов к аноду.Анод, конечно, быстро корродирует, и необходимо время от времени заменять.

Этимология: слова анод и катод были введен в 1834 году Майклом Фарадеем по совету Уильяма Уэвелл, ученый-эрудит и плодовитый мастер слова. Уэвелл немного понял по-гречески и нашел ему применение:
  • Анод происходит от греческих корней ἀνά + ὀδός (означает восходящий путь).
  • Катод происходит от греческих корней κατά + ὀδός (означает нисходящий путь).

Никогда не следует уделять слишком много внимания этимологии, потому что значения могут дрейфовать со временем. Действительно ἀνά и κατά отошли от своих древних корней. Однако ὀδός не имеет, и это ключ. Английские слова, когда были придуманы, явно предназначались для описания расхода, а не напряжения. Эти же корни используются в других греческих языках. и псевдогреческие термины на английском языке, например анаболический, катаракта, одометр, и так далее.

4 Резюме

Меня удивляет, что некоторые люди принимают простую и понятную концепцию. неважно, усложняйте его излишне и притворяйтесь важным.

Имея дело с батареями, не думайте об аноде и катод; думайте с точки зрения положительной клеммы и отрицательной клеммы.

При работе с полупроводниковыми диодами не беспокойтесь об аноде и катод; думайте в терминах стороны, легированной фтором, и стороны, легированной азотом.

Общее правило: анод означает ток в черный ящик и катод означает ток из черного ящика. Стабилитроны дают подняться до отвратительного исключения, которого следует избегать, как чума.

Существует множество свидетельств того, что даже люди, называющие себя эксперты не могут придерживаться терминологии анод / катод. В любой практическая ситуация, всегда есть способ разобраться, как зацепить вещи без глубокого понимания анода по сравнению с катодом.

Термины анод и катод иногда удобны в ситуациях где имеет смысл только одно направление тока.

В других ситуациях обычно лучше избегать терминов анод и катод. Есть лучшие способы сказать то, что нужно сказать.Конструктивное предложение: лучше поговорить о текущем (а не электрод). Лучше поговорить о том, что ток делает (а не то, что «есть» у электрода).

5 Ссылки

Джон Денкер, «Как работает аккумулятор»
www.av8n.com/physics/battery.htm
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *