Где катод и анод у светодиода: 3 способа определить плюс и минус

Содержание

Назначение диода, анод диода, катод диода, как проверить диод мультиметром


Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.


Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду.

А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром


Выводы диода

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов.

Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.


Почему резистор должен быть на аноде светодиода?

Посмотрите снова на книгу Форрест Мимс III . Это не утверждает, что резисторы должны быть на аноде и есть примеры, где они находятся на катоде. В моей редакции книги 1988 года серия защиты светодиодов представлена ​​на стр. 69:

ЦЕПЬ ПРИВОДА СИД — Поскольку светодиоды зависят от тока, обычно необходимо защитить их от чрезмерного тока с помощью последовательного резистора. Некоторые светодиоды имеют встроенный последовательный резистор. Большинство нет .

Затем дается формула о том, как рассчитать сопротивление по напряжению питания и прямому току светодиода. На сопровождающей диаграмме резистор установлен на аноде, пренебрегая объяснением, что выбор является произвольным.

Однако на той же странице представлено устройство «индикатор полярности светодиодов», в котором два светодиода «спина к спине» совместно используют резистор, который обязательно находится на аноде одного и катоде другого. В «индикаторе полярности трех состояний» ограничительный резистор находится на стороне питания, а не на стороне заземления.

Обычно в некотором смысле лучше (если есть выбор) подключить важное устройство к земле, а окружающие принадлежности, такие как резисторы смещения, находиться на стороне питания.

В высоковольтных цепях выбор между нагрузкой на стороне питания или на стороне заземления имеет значение с точки зрения безопасности. Например, следует ли установить выключатель света на горячей стороне лампы или на нейтрали? Если вы подключите выключатель так, чтобы свет выключался путем прерывания возврата нейтрали, это означает, что розетка лампочки постоянно подключена к горячей! Это означает, что если кто-то выключит выключатель перед заменой лампочки, это не будет более безопасным; главная панель должна использоваться для разрыва горячего соединения с розеткой.

В цепи аккумуляторной батареи нет защитного заземления: минусовая клемма произвольно обозначена как общая обратная связь, и для этой общей частоты используется слово «земля».

То, находится ли нагрузочное устройство на стороне заземления или на стороне питания, также имеет значение, если напряжение от устройства передается на какую-либо другую цепь, где оно используется для какой-либо цели. Светодиод 1,2 В, анод которого подключен к 5 В, обеспечит считывание 3,8 В с катода, если ток течет. Если вместо этого катод заземлен, то анод будет показывать напряжение 1,2 В. Таким образом, размещение резистора не имеет значения, если в схеме не существует такой ситуации: нет третьего соединения с переходом между резистором и светодиодом, которое влияет на какую-то другую схему.

Светодиод [База знаний]

Светодиод

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Светодиод — вид диода, представляет собой полупроводниковый прибор, способный излучать свет при пропускании через него электрического тока в прямом направлении, от анода (+) к катоду (-).

Для того чтобы правильно включить светодиод в электрическую цепь, необходимо отличать катод от анода
. Сделать это можно по двум признакам:
  1. анод (+) светодиода имеет более длинный проводник;
  2. со стороны катода, корпус светодиода немного срезан.

В современной микроэлектронике применяются миниатюрные светодиоды для поверхностного монтажа (SMD). Такие индикаторы, например, имеются на Arduino Uno для информирования пользователя о состоянии системы.


Основные характеристики

Падение напряженияVFВольт
Номинальный токIАмпер
Интенсивность (яркость)IV
Кандела
Длина волны (цвет)λНанометр

Схема подключения

Собственное сопротивление светодиода после насыщения очень мало, и без резистора, ограничивающего ток через светодиод, он перегорит. Порядок «резистор до» или «резистор после» — не важен.


Расчет токоограничивающего резистора

Рассчитаем, какой резистор R в приведённой схеме нам нужно взять, чтобы получить оптимальный результат. Предположим, что у нас такой светодиод и источник питания:

VF = 3.3 В
I = 20 мА
Vcc

= 5 В

 

Найдём оптимальное сопротивление R и минимально допустимую мощность резистора PR.

Сначала рассчитаем, какое напряжение должен взять на себя резистор:

UR = Vcc – VF = 5 В – 3.3 В = 1.7 В

 

По закону Ома найдём значение сопротивления, которое обеспечит такое падение:

R = UR / I = 1.7 В / 0.02 А = 85 Ом

 

Таким образом:

  • при сопротивлении более 85 Ом яркость будет ниже заявленной;
  • при сопротивлении менее 85 Ом срок жизни светодиода будет меньше.

Далее рассчитаем мощность, которую при этом резистору придётся рассеивать:

PR = I2 × R = (0.02 А)2 × 85 Ом = 0.034 Вт

 

Это означает, что при мощности резистора менее 34 мВт резистор перегорит.

 


Калькулятор

Расчет токоограничивающего резистора:

 


как определить где плюс и минус, анод и катод, лучшие способы

Область использования светодиодов обширна. Любой элемент в своей конструкции имеет 2 выхода – катод и анод. Подключать его следует правильно, поэтому необходимо знать полярность светодиода.

Общие сведения о полярности светодиода и почему это важно

Чтобы диод светился, ток должен в нем двигаться по прямой, а это невозможно, если прибор будет установлен без учета катода и анода. Светодиод относится к полупроводниковым оптическим приборам, пропускающим ток только в прямом направлении.

Читайте также: Как отремонтировать энергосберегающую лампу своими руками.

Как определить, где плюс и минус

Практически невозможно выявить полярность диода визуально. Если ошибиться, то схема не будет работать. Расположение полюсов у диода может определяться такими способами:

  • визуально;
  • с помощью мультиметра;
  • по технической документации;
  • путем монтажа по простой схеме.

Определяем зрительно

Чтобы точно отличать катод от анода, производитель диодных лампочек стал делать катодный контакт короче анодного. Также возле катода имеется маленькая буква «к». Но понять, где что, по длине проволочек возможно только в новых диодах, в старых, уже использованных, деталях проволочки могут быть обломаны. Некоторые производители возле катода ставят точку. Если пустить ток обратно, произойдет пробой и аппарат придется выбросить.

У диодов в корпусе SMD также можно определить расположение катода и анода. У них имеется скос угла, значит, расположенный выход является минусовым.

Удобно определять полярность у диодов цилиндрической формы. Это можно сделать по таким признакам. В корпусе имеются электроды с разной площадью. У катода величина электрода намного больше, чем у анода. Выход с большим электродом минусовой.

Легче всего полярность определяется у мощных диодов. Они большие и на их корпус легко можно нанести плюс и минус.

Читайте также: Почему энергосберегающая лампочка мигает при выключенном/включенном свете: основные причины.

Используем мультиметр

Более надежный способ – провести тест с помощью мультиметра. В приборе выбирается режим работы «омметр». Теперь мультиметр может измерять уровень сопротивления. Прибор имеет 2 ножки, их необходимо поднести к плюсу и минусу. Черный соприкасается с минусом, красный – с плюсом.

Если контакты диода определены правильно, то прибор покажет 1,7 кОм. При ошибке прибор выдаст показатель намного выше. Если сопротивление будет меньше, чем 1,7, то диод испорчен и его необходимо заменить. В некоторых таксировщиках есть специальный режим, позволяющий проверять светодиоды. Данный способ проверки срабатывает только с красными и зелеными диодами.

Синие и белые отреагируют, только если подать на них напряжение в 3 вольта. Тестировать эти лампочки можно только с помощью специальных мультиметров типа DT830.

Интересное видео по теме:

Путем подачи питания

В тех случаях, когда у вас отсутствует мультиметр, плюс и минус у светодиода выявляют простым, но не менее действенным способом. Для теста нужны батарейка и резистор. Батарейку можно заменить аккумулятором. Резистор в данном случае будет защищать элемент от пробоя. Некоторые умельцы используют специальную панельку, ее предназначение состоит в том, чтобы проверять исправность транзисторов.

В ситуации, когда ни на глаз, ни мультиметром нельзя определить анод и катод диода, прибегают к еще одному методу. Диод подключают кратковременно в электрическую схему. Затем все просто. Если лампочка загорелась, то выходы определены правильно, если нет – все останется без изменений.

По технической документации

На многих схемах светодиод рисуют как кружок с треугольником внутри, причем катод отображается как минус, анод обозначают плюсом. В схемах обязательно обозначаются все выводы для того, чтобы тот, кто будет собирать данную схему, знал, как диод подключать к цепи.

Определение полярности светодиода по техническим документам всегда просто, но не всегда на руках они есть. Особенно когда данные изделия приобретаются пользователями через магазины. Но есть еще один способ, для этого необходимо знать номер светодиода. В интернете много информации не только по устройству диодов. Там имеются подробные схемы и чертежи с обозначением всех параметров. В этих схемах будет обязательно указано расположение диодов.

Что еще важно знать

Некоторые диодные лампочки подвержены влиянию статического электричества. Все они нуждаются в защите. Тестирование изделия должно происходить быстро, при касании мультиметром выходов в течение продолжительного времени произойдет пробой.

Если все правильно делать и соблюдать правила обращения со светодиодом, можно продлить время службы детали.

В заключение

Каждый из методов тестирования светодиодов имеет свои достоинства и недостатки. Тот, кто решил заниматься радиодеталями, должен уметь определять полярность всеми способами. На практике выбор того или иного способа тестирования зависит от условий и возможностей радиолюбителя. Главное – быть осторожным.

Как работают светодиоды и их виды, полярность и расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.   

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.   

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

     

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

     

  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.   Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды.  Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

     

  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев.  Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии.  Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.   
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.   

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Какова правильная полярность подключения светодиода – АвтоТоп

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.

Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

Подробно о полярностях светодиодных ламп

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Способы выявления полярности

Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

Использование мультиметра

Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

  • На аппарате устанавливают режим измерения сопротивления.
  • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
  • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

  • Выставляют нужный режим.
  • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

Если минус светодиода подключен к коллектору, лампочка даст свет.

Метод подачи напряжения

Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

Действуют таким образом:

  • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
  • Если полярности элемента соблюдены правильно, светодиод даст колер.
  • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

Определение полярности с помощью техдокументации

Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

  • масса;
  • цоколевка светодиодов;
  • габариты;
  • электрические параметры:
  • иногда распиновка (схема подключения).

При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

Когда требуется определение полярностей LED-лампочек

Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

  • уличное освещение: рекламные вывески, парковые подсветки;
  • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
  • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
  • детские игрушки;
  • пульты ДУ и многое другое.

На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

  • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
  • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.

Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).

В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.

Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.

Визуальный метод определения полярности

Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.

Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.

Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).

Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.

Тестирование с применением мультиметра или аккумулятора

Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.

При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.

В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.

Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.

Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.

Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.

И еще несколько советов:

  • если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
  • некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
  • при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.

для чего нужны, катоды и аноды, классификация и назначение


Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Электровакуумные диоды

Вакуумный диод – это устройство в виде стеклянной лампы или металлокерамического баллона. Из него откачивают воздух и помещают внутрь два электрода с нитью накаливания – проводником. Она соединяется с катодом и нагревается внешним током.

Принцип работы

У диода принцип работы основан на односторонней проводимости. В электровакуумных приборах это достигается следующим образом:

  1. Нить накаливания нагревается, передавая тепло катоду, который начинает испускать электроны.
  2. Анод притягивает частицы только на «плюсе».
  3. Анод, подключенный к «минусу»,начнет отталкивать электроны, и тока в цепи не будет.

Благодаря принципу действия диода, основанному на управлении потоком электронов, такие устройства также называют ламповыми.

Конструкция прибора предполагает наличие выводов электродов, соединенных с контактными областями. У диода может быть два состояния: открытое и закрытое.

Полярность светодиодов


Полярность светодиодов
При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

Полярность моно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

Прямое включение диода

Принцип работы УЗО

К аноду диода подают положительное напряжение, на катод – отрицательное. Что получается:

  • электроны двигаются к месту p-n границы;
  • сопротивление в месте перехода уменьшается, проводимость увеличивается;
  • как следствие возникает прямой ток.

При соблюдении полярности диод будет считаться включенным прямо.


Прямое включение диода

Виды напряжения

Принцип работы синхронного генератора

Соответственно состояниям различают два типа напряжения: прямое и обратное. Главный определяющий параметр – сопротивление границы областей электродов.

Вольт-амперная характеристика (ВАХ)

Один из ответов на вопрос о том, что такое диод, – зависимость проходящего через границу p-n тока от полярности подаваемого напряжения и его величины.

Ее показывают на графике:

  • вертикальная ось – прямой и обратный ток (верхняя и нижняя часть) в Амперах;
  • горизонтальная – обратное и прямое напряжение (левая и правая сторона).

Образуется кривая, показывающая значения пропускного и обратного тока.

Полупроводниковые диоды

Как работает диод полупроводник? Его работа основана на взаимодействии заряда с электромагнитным полем. Условная конструкция:

  • элемент из полупроводникового материала;
  • сторона, принимающая электроны, – анод, проводимость p-типа;
  • катод, отдающий частицы (проводимость n-типа).

Между двумя слоями формируется граница – p-n переход.


Полупроводниковый диод

Вольт-амперная характеристика

На графике кривая имеет ветви в обеих его частях:

  1. Прямая – в правой части графика. Направлена вверх, показывает возрастание прямого тока при увеличении напряжения.
  2. Обратная – в левой стороне. Показывает рост обратного тока – меньше, чем прямого, поэтому ветвь расположена близко к оси напряжения.

Чем ближе ветвь к вертикальной оси справа и к горизонтальной слева, тем лучше выпрямительные свойства.

Предельные значения параметров

На графике каждого прибора есть момент, когда ток нарастает сильнее. Это зависит от устройства диода – разные материалы «открываются» при разных показателях. Ток возрастает, и происходит нагревание кристалла полупроводника.

Тепло либо рассеивается само по себе, либо отводится при помощи радиаторов. Если ток превышает допустимый параметр, проводник разрушается под воздействием высокой температуры. Поэтому по назначению диода, а также материалу определяют максимально допустимые параметры.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Виды полупроводниковых диодов

Полупроводниковый – широкое определение, оно описывает саму идею и общее устройство. На практике существует множество узкоспециализированных разновидностей.

Выпрямители и их свойства

Иногда нужно преобразовать ток в цепи, для чего нужен диод с выпрямительными свойствами либо диодный мост. Благодаря принципу работы, переменный ток на входе прибора даст лишь одну полуволну – в открытом состоянии.

Полупроводниковые стабилитроны

Задача этих устройств – стабилизация напряжения. Как это происходит:

  • в обычном состоянии у перехода высокое сопротивление, ток почти не проходит;
  • если наступает пробой, проходимость увеличивается, сопротивление падает.

Устройства работают в условиях пробоя и часто применяются для профилактики перенапряжения.


Диод-стабилитрон

Диод Зенера

Часто можно встретить название «диод Зенера», что это такое? Это лишь еще одно название стабилитрона – в честь ученого Кларенса Зенера, открывшего туннельный пробой. Это эффект прохождения заряженных частиц через p-n барьер, когда перекрываются зоны электродов. Открытие позволило разработать первые стабилитроны, отсюда название.

Принцип работы детекторов

На основе обычного выпрямителя можно собрать простейший амплитудный детектор. Как устроена работа диода (например, с барьером Шоттки):

  • если полупериоды выше напряжения на конденсаторе, начинается зарядка;
  • как только амплитуда становится меньше его значения, диод закрывается.

Конденсатор разряжается, происходит восстановление низкочастотного сигнала.

Светодиод

В отличие от обычного прибора, СД создают оптическое излучение при прохождении тока. Это происходит при рекомбинации носителей заряда с излучением фотонов на границе электродов. Впервые эффект был открыт в 1907 году, технология продолжает совершенствоваться до сих пор.

Особенности светодиода

Спектр оптического излучения узкий – нужный цвет изначально заложен в кристалле диода. Однако диапазон может отличаться в зависимости от состава материала-полупроводника:

  • зеленый – фосфид галлия;
  • синий – карбид кремния;
  • красный – арсенид галлия.

При этом светодиоды обладают высокой световой отдачей, спектральной чистотой, прочностью и долговечностью.


Обычные светодиоды

Туннельный

Работает на основе одноименного эффекта. При изготовлении применяют вырожденные полупроводники. Встречается в качестве усилителя.

Обращенный диод

Обладают высокими показателями обратного тока, превосходящими прямой. Отличаются низкой чувствительностью к ионизирующему излучению.

Варикап

Проще всего объяснить на примере конденсатора с переменной толщиной диэлектрического слоя. При низком напряжении на p-n переходе толщина слоя при высокой емкости мала, при высоком – слой должен увеличиваться. Для чего нужны такие диоды? Их используют как элементы с управляемой емкостью, например, в системах автонастройки частоты в радиоприборах.

Фотодиод

Устройства, в которых обратный ток возникает при попадании фотонов. По принципу действия схожи с обычным солнечным элементом.

Маркировка

Современная маркировка диодов содержит четыре элемента:

  • материал изготовления;
  • обозначение класса диода;
  • назначение или свойства;
  • номер разработки.

Например, КД202А – кремниевый (К), выпрямительный (Д) диод.

Триоды

Раньше использовались вместо транзисторов; в современной электротехнике почти не используются. Состоят из трех электродов: катода прямого либо косвенного накала, анода и сетки. В зависимости от напряжения, регулируется поток электронов, создавая эффект усилителя.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Плюсы и минусы

Полупроводниковые диоды имеют как преимущества, так и недостатки. К первым можно отнести:

  • доступность – элементы стоят недорого;
  • взаимозаменяемость – при выходе из строя легко подобрать и установить аналогичный;
  • высокая пропускная способность;
  • простой принцип работы.

Из недостатков – уязвимость к внешним воздействиям и возможные неисправности. Это могут быть:

  • обрыв перехода;
  • нарушение герметичности;
  • пробой перехода.

Однако устранить повреждения и заменить устройство несложно, поэтому минусы можно считать несущественными.

Основные неисправности диодов

Главная проблема, с которой сталкиваются при использовании диодов, – эффект пробоя. Есть несколько видов неисправности.


Пробой на графике ВАХ

Пробой p-n-перехода

При пробое происходит уменьшение сопротивления, образуется обратный ток. Различают лавинный пробой, которой сопровождается цепочкой прорывов, и полевой.

Электрический пробой

Главное в электрических пробоях – они обладают обратимой природой (состояние возвращается к нормальному). Это значит, что переход не повреждается. Это позволяет использовать пробой как основополагающий принцип работы – как в стабилитронах.

Тепловой пробой

Возникает при повышении температуры. Отличается возникновением необратимых повреждений: разрушается кристаллическая решетка полупроводника.

Несмотря на простоту конструкции, диод по-прежнему используется в современных устройствах. Найти ему альтернативу удается не всегда. Тем более продолжаются работы по технологическому совершенствованию диодов для различных задач.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Катод и анод Объяснение светодиодов

Когда дело доходит до катодов и анодов, сначала необходимо понять, что такое электрод. Электрод — это то, что помогает проводить электричество. Электрический ток либо покидает неметаллическую среду, либо входит в нее. По сути, электрод помогает создать электрический контакт с неметаллической частью цепи.

Электрод состоит из двух точек, которые направляют ток в цепи. Ток просто означает движение внутри электрического заряда.Эти две точки известны как общий катод и общий анод. Обе точки определяются протеканием электрического тока, сила которого измеряется в омах внутри резистора.

Катод, который, как мы теперь знаем, является электродом, позволяет току выходить из поляризованного электрического устройства. С другой стороны, анод, который также является электродом, позволяет току проникать в поляризованное электрическое устройство.

Итак, что такое катод, а что анод? Чем они похожи и чем отличаются? Прочтите, чтобы объяснить эти два термина, а также узнать больше о светодиодных лампах в целом.

Что такое светодиодный свет?

LED означает светодиод. Они существуют с 1962 года и полностью изменили источники света к лучшему. Их можно использовать для многих целей, например для лампочек, праздничных огней, компьютеров, телевизоров и других электронных продуктов и устройств.

Светодиод известен как полупроводниковый источник света. Это означает, что для испускания света через него должен протекать ток.Итак, как именно они работают? Когда образуется электрический ток, он проходит через микрочип. Этот микрочип используется для освещения источника света, в данном случае светодиодных ламп.

Одна из самых больших проблем с другими источниками света — это стоимость. Они действительно могут ежемесячно повышать стоимость вашего счета за электроэнергию. Лучшим вариантом, который поможет сэкономить деньги и снизить общие затраты на электроэнергию, является переход на светодиодное освещение. Эта форма освещения может помочь производить свет на 90% более эффективно по сравнению с лампами накаливания.

Вот несколько причин, по которым светодиодные лампы отличаются (в лучшем смысле) от других источников (например, лампы накаливания и лампы накаливания):

  • Одно из различий заключается в том, насколько крошечные светодиоды сравниваются к другим лампочкам. Обычно их ширина составляет всего пару миллиметров.
  • Еще одно отличие светодиодных ламп состоит в том, что они излучают свет только в одном определенном направлении. Другие типы освещения фактически отражают свет, чтобы идти в нужном направлении.
  • В целом, светодиодные фонари более эффективны, экономичны, экономичны и универсальны по сравнению с любыми другими источниками света. Они действительно лучший выбор во всех аспектах освещения.
  • Наконец, еще одно отличие состоит в том, что они практически не выделяют тепла при производстве электроэнергии. Это огромно, особенно по сравнению с лампами накаливания, которые фактически выделяют 90% своей энергии за счет тепла.

Чтобы светодиоды работали с такими вещами, как видеоигры и рождественские огни, они должны быть разных цветов.Обычно используются зеленые, красные и синие светодиоды (RGB-светодиоды с общим катодом / RGB-светодиоды с общим анодом). Если свет должен быть белым, необходимо использовать несколько полупроводников. Кроме того, вам понадобится комбинация красного, зеленого и синего цветов, чтобы получить белый свет.

Благодаря своему размеру светодиоды отлично подходят для уникального дизайна и сложных световых ситуаций. При использовании светодиодных ламп в светильниках вы можете использовать их в качестве постоянных ламп, сделать их похожими по конструкции на традиционные источники света, и вы можете использовать их в виде сменных ламп.Существуют бесконечные возможности использования светодиодных ламп в ваших осветительных приборах.

Катод LED

Катод занимается восстановлением. С другой стороны, катод притягивает положительный заряд. Другой термин для заряда положительной полярности — катион. Хотя он притягивает положительные заряды, сам электрод заряжен отрицательно. Катоды помогают генерировать электроны и, следовательно, также помогают генерировать заряд, который перемещается от катода к аноду.

Анод LED

Анод — это место, где происходит окисление. Он притягивает отрицательный заряд. Несмотря на то, что анод притягивает отрицательный заряд, он является положительно заряженным электродом. Он является источником положительного заряда и действует как акцептор электронов.

Различия

Вот некоторые ключевые отличия, которые следует учитывать при понимании катодов и анодов:

  • Анод — это электрод, в который подается электричество, а через катод выходит электричество. в обратном направлении.
  • Анод находится на положительной стороне электрода, а катод — на отрицательной стороне.
  • Анод действует как донор электронов, а катод действует как акцептор электронов.
  • Окисление происходит на аноде, а восстановление — на катоде.

Где я могу найти светодиодные фонари?

Светодиодные фонари можно найти прямо здесь, в Boundery. Мы производим различные продукты, в которых в качестве источника света используются светодиоды.Будь то для повседневной жизни или для экстренного использования, чтобы обезопасить вас или вашу семью, нашим продуктам можно доверять в выполнении своей работы.

Дождь или солнце, отключения электроэнергии и перебои в электроснабжении или просто повседневное освещение — эти светодиодные фонари ярко светят.

Boundery LED Favorites

Лампа аварийного питания Boundery EBULB : Эта лампа питается от светодиода и обеспечивает такое же количество света, как 60-ваттная лампа накаливания, при потреблении всего 9 Вт. энергии.Это делает его идеальным средством экономии денег и энергии. Идеально подходит для отключения электроэнергии, он даст вам четыре часа света. Он включается автоматически при отключении электричества и может заряжаться при обычном использовании. Это первая в мире самозарядная лампа, которая избавит вас от проблем, связанных с отключением электроэнергии.

Интеллектуальная безопасная лампа Boundery Night2Day : Эта лампа гарантирует, что вам никогда не придется оставаться в темноте, когда вы снова вернетесь домой. Он имеет встроенный датчик, который включает лампочку в ночное время и выключает лампочку в дневное время.Огромным плюсом является то, что он потребляет на 80% меньше энергии, чем стандартные лампочки. Он подходит для внутренних помещений, но особенно хорош для открытых площадок, таких как патио и веранды.

Наружный солнечный защитный светильник Boundery LumiGuard : Это идеальный светодиодный уличный светильник. Он активируется движением и отключается через 20 секунд, если не обнаруживается никакого другого движения. Он устойчив к атмосферным воздействиям, чрезвычайно прочен и долговечен. Поскольку он работает от солнечной энергии, он заряжается в собственном ящике, и вам никогда не придется беспокоиться о том, что он потеряет мощность.Хотя он отлично подходит для целей безопасности, он также отлично подходит для любых собраний на открытом воздухе, которые проходят ночью.

Заключение

Катод и анод — это две разные точки в электроде, который действует как электрический проводник для неметаллической части электрической цепи.

Светодиодный свет — это полупроводниковый источник света, который может иметь разные цвета. Чаще всего это красный, синий, зеленый и белый цвета.Чтобы получить белый свет, у вас должна быть комбинация из трех цветных огней. Эти фонари можно использовать для большинства электронных устройств, а также для лампочек.

Использование светодиодных фонарей сэкономит вам много денег на ежемесячных счетах, поскольку они потребляют значительно меньше энергии, чем другие типы света. Есть еще несколько отличий между светодиодными лампами и другими источниками света, например лампами накаливания.

Boundery продает различные светодиодные светильники, такие как солнечные фонари и защитные лампы.Они отлично подходят для использования в экстренных случаях или просто как экономия денег для вашего дома. Эти инновационные и экономичные продукты обеспечат свет и душевное спокойствие вам и вашей семье.

Источники:

  1. ‍https: //www.energy.gov/energysaver/save-electricity-and-fuel/lighting-choices-save-you-money/led-lighting
  2. ‍ https: / /byjus.com/chemistry/cathode-and-anode/
  3. ‍https: //www.oughttco.com/how-to-define-anode-and-cathode-606452
  4. ‍https: // www.energystar.gov/products/lighting_fans/light_bulbs/learn_about_led_bulbs

Светодиодный анод против катода: что вам нужно знать

Если вы только начали изучать светодиодные фонари и диоды в целом, вас могут смутить некоторые используемые термины. Это вполне понятно, поскольку в этой области есть довольно много терминов, которые вы, возможно, раньше не слышали. Будьте уверены, полярность светодиода, а также вопрос анода и катода в целом довольно просты

Что такое светодиоды?

«Светодиод» в светодиодных лампах означает «светодиоды» — это лампочки, которые состоят из нескольких крошечных диодов, через которые проходят электрические токи, заставляющие их излучать свет.

Эти светодиоды представляют собой разновидность стандартных диодов, которые находят применение во многих других отраслях промышленности. Простейшее описание диода — это «электронный компонент с двумя выводами, который проводит ток в основном в одном направлении». Светоизлучающий диод — это обычный диод, который использует ток, проходящий через него, для излучения света.

Какая полярность светодиодов?

Термин «полярность светодиода» относится к вопросу, в каком направлении электрический ток протекает через диод? Поскольку диоды представляют собой односторонние токи, важно знать, с какой стороны ток входит, а с какой уходит.Идентификация полярности светодиода осуществляется с помощью различных обозначений, расположенных вокруг анодов и катодов диода.

Что такое аноды и катоды?

Анод и катод — это две клеммы на каждом диоде, через которые протекает электрический ток. Анод — это положительная сторона светодиода (где ток входит в диод), а катод — отрицательная сторона (где ток покидает диод).

Знание того, какая клемма является анодом, а какая катодом, важно для маркировки полярности светодиода, если вы хотите правильно подключить диод к светодиодной лампе или другому устройству.

Как отличить аноды от катодов?

Теперь, когда мы знаем, что анод положительный, а катод отрицательный, нам нужно знать, что есть что. В зависимости от типа и модели диода могут быть разные идентификаторы, позволяющие узнать, какая сторона светодиода положительная, а какая отрицательная. Вот несколько вещей, на которые стоит обратить внимание:

  • У большинства диодов обычно есть линия, нарисованная рядом с выводом катода диода, которая соответствует вертикальной линии в символе диодной цепи.
  • В светодиодах различие между анодом и катодом осуществляется по длине каждого вывода на конце каждого диода — более длинный вывод обычно является анодом, а более короткий вывод — катодом.
  • Если штыри обрезаны и имеют одинаковую длину, посмотрите на края внешнего корпуса диода — один должен быть плоским и совпадать с диодом, а другой должен немного выступать. Штифт возле плоского края должен быть катодом.
  • Если вы все еще не уверены, вы можете просто использовать мультиметр, чтобы проверить, какой конец диода является его анодом, а какой — катодом.Просто поверните мультиметр в положение диода (он должен обозначаться символом в форме диода) и прикоснитесь каждым щупом мультиметра к контактам диода. Если диод загорается, значит, вы успешно сопоставили положительный датчик с анодом, а отрицательный датчик — с катодом. Если нет — переключите их и попробуйте еще раз.

Все о светодиодах — Учебное пособие Австралия

Здравствуйте и добро пожаловать в наш учебник, в котором мы рассмотрим все, что касается светодиодов. Прежде всего, что такое светодиод? Светодиод расшифровывается как Light Emitting Diode и представляет собой электронный компонент, используемый для преобразования электрической энергии в энергию света.Этот процесс называется электролюминесценцией. Светодиодные технологии повсюду вокруг нас, индикаторы на бытовой электронике, автомобильные стоп-сигналы, экраны телевизоров, почти каждый электронный продукт будет использовать светодиоды в той или иной форме или форме. Широкое распространение светодиодной технологии объясняется энергоэффективностью, компактной формой, прочностью и простотой использования по сравнению с традиционными формами освещения. Итак, теперь, когда мы знаем, что они полезны, как они на самом деле работают?

В этой статье мы будем использовать основную теорию и термины в области электроники, поэтому, если вы не знакомы с законом Ома, напряжением, током и другими подобными терминами, сначала прочтите наш ускоренный курс по аналоговой электронике.

Принцип работы светодиодов

Светодиод, как следует из названия, представляет собой диод особого типа, который при активации излучает электромагнитную энергию (свет). Мы не будем вдаваться в подробности физики полупроводников, но диод состоит из P-N перехода. PN-переход представляет собой два полупроводниковых материала, один из которых обрабатывается (« легируется »), чтобы иметь большое количество электронов (N для отрицательных, поскольку электроны являются отрицательно заряженными частицами), а другой, который легирован, чтобы иметь меньше электронов или дырок. ‘где электроны отсутствуют (P означает положительный, поскольку отсутствие электронов создает положительный заряд).Когда через этот переход проходит ток, электроны прыгают со стороны N на сторону P, чтобы заполнить дырки, когда электроны движутся по цепи, и когда электроны пересекают этот зазор, выделяется энергия (в случае светодиодов, световая энергия) . Физика нижнего уровня немного сложнее, но достаточно сказать, что вы можете контролировать длину волны излучаемой энергии (длина волны соответствует цвету видимого света), изменяя конструкцию светодиода и материалы, используемые для создания светодиода. PN переход.

Пользователь: S-kei — Файл: PnJunction-LED-E.PNG, CC BY-SA 2.5

Говоря о цветах, светодиоды доступны в самых разных цветах, формах, размерах и интенсивности (яркости), однако людей часто сбивает с толку то, почему синие светодиоды обычно дороже светодиодов других цветов. Это связано с тем, что в то время как цвета, такие как красный, зеленый и инфракрасные светодиоды, существуют уже почти полвека, синие светодиоды существуют только десять или два года, потому что для их изготовления требуется другой материал и другой процесс (нитрид галлия GaN).Однако в настоящее время вы можете получить светодиоды практически любого цвета, включая светодиоды невидимого спектра, такие как инфракрасные (используемые в пультах дистанционного управления) и ультрафиолетовые.

Конструкция светодиода

Светодиод — довольно простое устройство, оно состоит из эпоксидного корпуса (прозрачного или цветного) с полупроводниковым кристаллом посередине, прикрепленным к двум выводам. Два вывода диода известны как анод и катод. Анод светодиода — это положительный вывод, а катод — отрицательный вывод. На стандартных светодиодах со сквозным отверстием корпус будет иметь плоский край с одной стороны, вывод на этой стороне является катодом и обычно также является более коротким выводом.Светодиоды, как и диоды, являются поляризованными устройствами, что означает, что они пропускают ток только в одном направлении. Если вы неправильно вставите светодиод в свою схему, он не сломается, просто не загорится.

By Inductiveload — собственная работа загрузчика, нарисованная в Solid Edge и Inkscape., Public Domain

Приятно знать и все такое, но как на самом деле использовать светодиоды? Давайте взглянем.

Использование светодиодов

Несмотря на то, что существует множество различных типов светодиодов для различных приложений, включая автомобильное и домашнее освещение, сегодня мы сосредоточимся конкретно на стандартных типах светодиодов, используемых в электронике.Эти светодиоды доступны в различных формах, таких как пакеты со сквозными отверстиями 10–3 мм и корпуса SMD, однако принцип тот же. При использовании светодиодов необходимо учитывать 2 важные характеристики, чтобы они работали должным образом. Поскольку светодиоды — это просто особый тип диодов, многие из обсуждаемых здесь принципов применимы и к диодам.

Автор Afrank99 — Собственная работа, CC BY-SA 2.0

прямое напряжение:

Чтобы светодиод излучал свет, необходимо приложить к нему определенное напряжение.Это известно как «прямое напряжение», или, другими словами, светодиод вызывает потерю фиксированного напряжения на нем, что необходимо для генерации света. Для большинства светодиодов это значение составляет 1,7–3,3 В в зависимости от цвета излучаемого света (для синего светодиода требуется более высокое прямое напряжение, чем для красного светодиода).

прямой ток:

Как и в случае с электронным компонентом, светодиод является нагрузкой в ​​цепи, и когда цепь замыкается, течет ток. Прямой ток светодиода относится к количеству тока, который он будет потреблять при работе с заданной яркостью.Для большинства светодиодов это значение находится в диапазоне 15-20 мА, и важно принять это к сведению, поскольку если светодиоды потребляют слишком большой ток, он значительно сократит его срок службы (синий светодиод, подключенный напрямую к источнику питания 12 В без ограничения тока, будет разрушен в несколько секунд). Из-за чрезвычайно низкого потребления тока в зависимости от яркости светодиоды заменяют традиционные формы освещения почти во всех областях благодаря своей эффективности.

Защита светодиодов с помощью токоограничивающего резистора:

Итак, прямой ток и напряжение важны, так как же обеспечить безопасное и эффективное питание наших светодиодов? Что ж, поскольку большинство источников питания будут иметь напряжение больше, чем прямое напряжение, и быть кабелем для подачи большего, чем прямой ток, нам нужно создать дополнительную нагрузку на нашу схему, поэтому мы используем резистор.

Если вы прочитали наш ускоренный курс по аналоговой электронике, вы получите хорошее представление о том, как работают резисторы, но давайте быстро подведем итоги. Задача резисторов — (как вы уже догадались) противостоять потоку электронов (току), и любая резистивная нагрузка вызовет падение напряжения на ней. Таким образом, мы можем использовать резистор для ограничения тока, подаваемого на наш светодиод, и вычислить необходимое сопротивление — это простой вопрос применения закона Ома: V = IR (напряжение = ток x сопротивление). Так что давайте копаться!

Рассмотрим следующие характеристики типичного красного светодиода с прямым напряжением 1.8 В и прямой ток 20 мА. Для моделирования мы будем использовать источник питания 9 В.

Итак, мы будем использовать закон Ома, чтобы найти значение сопротивления, которое нам нужно, поэтому мы изменим формулу так, чтобы R = V / I, нам просто нужно найти падение напряжения на резисторе и ток, чтобы получить сопротивление. Если на светодиоде падает 1,8 В, еще 7,2 В упадет на остальную часть цепи (наш резистор), поэтому V = 7,8. Поскольку мы хотим ограничить ток в цепи до 20 мА, I = 0.02 (Амперы). Итак, теперь мы можем разделить 7,2 на 0,02 и получить: 360. Следовательно, нам нужен ограничивающий ток резистор на 360 Ом.

Вот и все, теперь вы можете рассчитать номинал резистора, необходимого для питания любого светодиода. Попробуйте решить другую проблему, используя V = IR, где у светодиода прямое напряжение 2,2 В, прямой ток 18 мА, а источник питания — 12 В, и опубликуйте свои ответы в комментариях ниже!

Управление яркостью

Если вы хотите отрегулировать яркость светодиода, вы можете увеличить резистор ограничения тока, чтобы уменьшить ток светодиода и уменьшить яркость, однако убедитесь, что вы не опускаетесь ниже расчетного значения резистора.Это нормально для постоянной фиксации яркости, однако, в отличие от ламп накаливания (традиционных световых шаров, использующих многожильную нить накала), вы не можете отрегулировать яркость, просто изменив напряжение на светодиодах. Вы получите странный ответ, и это не будет приятным плавным изменением. Вместо этого для управления яркостью светодиода вы используете ШИМ.

PWM более подробно обсуждается в других наших руководствах, однако концепция довольно проста. Вы включаете и выключаете светодиод быстрее, чем человеческий глаз может воспринимать как отдельные вспышки, а соотношение времени включения / выключения на определенной частоте воспринимается человеческим глазом как увеличение / уменьшение яркости.Для получения более подробной информации о том, как работает PWM, ознакомьтесь с этим руководством по DAC для Raspberry Pi.

Использование нескольких светодиодов: последовательное и параллельное

Итак, использование одного светодиода — это нормально, но как насчет того, чтобы подключить более одного светодиода к источнику питания, и все они загорятся? Вы могли подумать, что мы могли бы просто соединить один за другим с помощью резистора на конце, это называется последовательным соединением. Однако, если мы это сделаем, у каждого светодиода будет падение напряжения, что означает, что каждый последующий светодиод будет иметь все меньше и меньше доступного напряжения, а это означает, что светодиоды будут становиться тусклее и тусклее по мере того, как вы спускаетесь по цепи.Что нам нужно сделать, так это соединить их параллельно, как показано:

Таким образом, каждый светодиод находится в своем собственном контуре цепи, и ни один светодиод не получает больше энергии, чем другой. Но будьте осторожны, скажем, вам нужен резистор на 360 Ом для одного светодиода, как показано выше, вы не можете использовать один резистор на 360 Ом для всех светодиодов, потому что это значение предназначено для ограничения тока до 20 мА, но если у вас есть несколько светодиодов, подключенных параллельно, ток, потребляемый для них, складывается, поэтому нам нужно пересчитать текущее потребление всех светодиодов вместе взятых.

RGB и цифровые светодиоды

Каким бы захватывающим ни был одноцветный светодиод, большим преимуществом светодиодов является то, что из-за их небольшого размера вы можете объединить несколько светодиодов в один корпус для создания светодиода RGB (красный, синий, зеленый), который создает цвета в видимом диапазоне. спектр благодаря аддитивному свету. Использовать эти светодиоды просто: у них есть общий вывод (катод или анод) и отдельный вывод для каждого цвета, который вы можете использовать для независимого управления каждым цветовым каналом.Это здорово, но представьте, что вы используете их много и сколько контактов потребуется для их управления. В последние годы мы стали свидетелями разработки светодиодов с цифровой адресацией, которые объединяют светодиод RGB и крошечный чип контроллера в стандартный корпус и позволяют управлять огромными их полосами с помощью одного вывода микроконтроллера! Для получения дополнительной информации об этих типах светодиодов ознакомьтесь с нашим руководством по NeoPixels with Particle.

Что теперь?

Это почти все основы использования светодиодов. Вы можете пойти и создать свои собственные впечатляющие устройства с использованием света и чудес.Если у вас есть другие вопросы, дайте нам знать в комментариях ниже. Удачи!

Привет и добро пожаловать в наш учебник, в котором мы рассмотрим все, что касается светодиодов. Прежде всего, что такое светодиод? Светодиод означает Light E …

Что такое светодиод?

Кажется, что в наши дни во всем есть светодиод. Но что такое светодиоды и почему они так популярны? Давайте взглянем.

Светодиоды или светодиоды — это особый тип диодов, преобразующих электрическую энергию в свет.По сути, это крошечные лампочки, которые можно использовать в электрической цепи. Два из многих преимуществ светодиодов по сравнению с традиционными лампочками заключаются в том, что они требуют намного меньше энергии для зажигания и более энергоэффективны, что означает, что они превращают большую часть энергии, которая проходит через них, в свет и меньше — в тепло.

Как работают светодиоды?

Если вы когда-нибудь смотрели на светодиод, то могли заметить, что «выводы» или ножки бывают двух разной длины. Более длинная ветвь — это положительная сторона светодиода, называемая «анодом», а более короткая ветвь — это отрицательная сторона, называемая «катодом».”

Внутри светодиода ток может течь только от анода (положительная сторона) к катоду (отрицательная сторона) и никогда в обратном направлении. Это означает, что если подключить обратную схему, светодиод не загорится. Фактически, задний светодиод может помешать правильной работе всей схемы, блокируя прохождение тока через эту точку. Первое, что вы должны попробовать, если светодиод не загорается при включении в цепь, это перевернуть его.

Да будет свет

Яркость светодиода напрямую зависит от того, сколько тока он потребляет.Это означает, что сверхяркие светодиоды разряжают батареи намного быстрее, чем более тусклые светодиоды. К счастью, яркость светодиода можно регулировать, контролируя, сколько тока проходит через него. Фактически, управление током с помощью светодиода важно по нескольким причинам.

При прямом подключении к источнику тока светодиод будет пытаться рассеять столько энергии, сколько ему позволено потреблять. Когда для светодиода имеется слишком большой ток, он перегорает и умирает.По этой причине важно ограничить количество тока, протекающего через светодиод.

Сопротивляйтесь силе

Для управления мощностью, протекающей через светодиод, решающее значение имеют резисторы. Резисторы ограничивают поток электронов в цепи и предотвращают попытки светодиода потреблять слишком большой ток. Мы углубимся в резисторы в другом посте, но пока важно знать, что базовый шаблон для схемы светодиода включает в себя последовательное подключение источника питания, резистора и светодиода, как показано ниже.

Для определения наилучшего номинала резистора можно использовать некоторую базовую математику, но для целей этого обсуждения и для большинства светодиодов 330 Ом — хорошее место для начала. Таким образом, вот удобная блок-схема, которая поможет вам разработать схему светодиода и выбрать правильное значение резистора методом проб и ошибок.

Самая простая схема

Самый простой способ зажечь светодиод — это подключить его к батарейке типа «таблетка». Этот метод работает без резистора, потому что батарейки типа «таблетка» не вырабатывают достаточно энергии, чтобы повредить светодиод.Это отличный способ продемонстрировать важность правильного размещения светодиода в цепи — если он расположен обратной стороной, светодиод не загорится. Просто поместите длинный конец светодиода (положительная сторона) напротив «+» стороны батареи и поместите короткий конец светодиода (отрицательная сторона) напротив «-» стороны батареи, и ваш светодиод загорится. вверх.

Чтобы узнать больше о светодиодах, ознакомьтесь с нашим руководством по светоизлучающим диодам.

Хотите узнать, как производятся светодиоды? Несколько лет назад у нас была возможность посетить завод по производству светодиодов.

Идентификация светоизлучающих диодов (СИД)

Светоизлучающие диоды, обычно известные как светодиоды, украшают большинство наших электронных устройств, таких как телефоны, автомобили и компьютеры. Они бывают разных форм, типов и цветов для соответствующего применения. Прежде чем мы углубимся в светодиоды, давайте рассмотрим основные диоды. Светодиоды — это диоды, преобразующие электрическую энергию в свет.

Диоды имеют два вывода, анод и катод. Диоды контролируют протекание тока в цепи.Анод — это положительная сторона, а катод — отрицательная сторона диода. Ток течет от анода к катоду, но не в обратном направлении в обычных диодах. Один из способов запомнить это — мнемоническая КИСЛОТА, Anode Cathode Is Diode или Anode Current In Diode. Общий символ схемы для диодов:


Для того, чтобы диод «включился» и ток шел в правильном направлении, необходимо приложить определенное количество положительного напряжения или прямого напряжения. Прямое напряжение важно для светодиодов, потому что оно необходимо для включения светодиода.Если на диод подается достаточно большое отрицательное напряжение или напряжение пробоя, ток действительно может течь в противоположном направлении от катода к аноду. Светодиоды

имеют такой же символ схемы, что и диоды. Они выглядят так:

Светодиодный индикатор цепи
При использовании светодиодов важно помнить, что полярность имеет значение. Если вы неправильно поместите светодиод в цепь, он не загорится и заблокирует ток через этот путь. Однако он не сломается, если включить его задом наперед, как электролитические конденсаторы.

Ток через светодиод определяет его яркость. Чем выше сила тока, тем ярче свет. Слишком большой ток может сломать светодиод, поэтому в качестве защиты используются резисторы для ограничения тока. Одно значение резистора, подходящее для большинства светодиодов, составляет 330 Ом. Sparkfun создал блок-схему ниже, чтобы упростить выбор резистора.

Блок-схема значений резисторов со светодиодами от SparkFun
Более длинные провода обычно являются стороной анода в светодиодах, показанных здесь: Анодный вывод — более длинный
Помните правильную ориентацию перед тем, как закрепить и припаять выводы, иначе вы в конечном итоге будете угадывать, какой путь правильный.Ниже показаны различные типы светодиодов. Различные типы светодиодов
Как видите, светодиоды бывают разных форм и цветов. Светодиоды могут быть мигающими, RGB, SMD, мощными и ИК-светодиодами. Мигающие светодиоды похожи на стандартные светодиоды, но они включают в себя встроенную схему мультивибратора, которая заставляет светодиод мигать в течение определенного периода времени. Обычно они мигают одним цветом, но более сложные светодиоды могут мигать несколькими цветами.

Существуют двухцветные и трехцветные светодиоды, содержащие два или три цвета, но светодиоды RGB — это специальные трехцветные светодиоды, которые можно модифицировать для создания любого спектра цветов.У них есть четыре вывода, по одному для каждого цвета: красный, зеленый и синий, а четвертый — это общий вывод трех диодов внутри, известный как общий катод или общий анодный вывод.

Светодиоды SMD упакованы иначе, чем версии типичных светодиодов для сквозных отверстий, и в основном используются, если у вас недостаточно места на вашей схеме. Светодиоды высокой мощности классифицируются как рассеивающие мощность 1 Вт и более. Они очень яркие и используются в автомобильных фарах или высококлассных фонариках.Они также рассеивают много тепла, поэтому обычно требуются радиаторы.

Специальные светодиоды, такие как инфракрасные (ИК) или ультрафиолетовые (УФ), используются по-разному. ИК-светодиоды используются на телевизионных пультах дистанционного управления для передачи небольших сигналов. УФ-светодиоды помогают сделать другие материалы флуоресцентными, подобными черному свету. Буквенно-цифровые светодиоды находятся на 7-сегментных дисплеях. Вы также можете найти их в формате точечной матрицы, как это видно на индикаторах отправления железных дорог и в формате звездообразования калькулятора. Выбор подходящего светодиода зависит от приложения.

В технических описаниях приведены характеристики светодиода. Помимо указания величины включения, прямое напряжение Vf поможет вам определить, какое напряжение нужно подавать вашей цепи, поскольку это падение напряжения на светодиодах. Прямой ток If — это величина тока, которую светодиод может обрабатывать непрерывно, в то время как пиковый прямой ток Ifp — это максимальный ток, который он может обрабатывать при коротких импульсах. Длина волны светодиода, измеряемая в нанометрах (нм), точно определяет цвет света.Вот небольшой график:

Диаграмма цвета длины волны
Яркость светодиода измеряется в милликанделах (мкд). Чем выше mcd, тем ярче интенсивность. Диапазон яркости светодиодов: 0-100 мкд стандартный, 100-1000 мкд средний, 1000+ мкд высокий. Угол обзора светодиода показывает, где он самый яркий. Некоторые светодиоды концентрируются в определенном месте, а другие можно распространять как можно шире. Вот чертеж с углами обзора: Таблица углов обзора
Спицы светодиода обозначают угол обзора освещения, а круговые линии — относительное расстояние.Синий оттенок показывает, где светится светодиод образца. Светодиод имеет узкий угол освещения около 8 ° — 20 ° с большим расстоянием освещения. В техническом описании будет указан угол обзора его светодиода.

Это некоторые из основных принципов работы светодиодов. Сообщите нам, какие светодиоды вы используете в своих приложениях, на [адрес электронной почты защищен].

Скачать PDF здесь

Как работает диод и светодиод? | ОРЕЛ

С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов.Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором. Сегодня мы поговорим о диоде, пресловутом уродливом способе управления, который позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.

Управляйте потоком

Диод хорошо известен своей способностью управлять протеканием электрического тока в цепи.В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно погружают руки в приливы и отливы тока, протекающего по нашим устройствам. Есть два способа описать, как ток протекает или не течет через диод, и они включают:

  • С опережением. Если вы правильно вставите батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
  • с обратным смещением. Когда вам удается вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.

Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме

Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель. Он либо закрыт (включен) и пропускает ток, либо открыт (выключен), и ток не может течь через него.

Полярность диодов и символы

Диоды — это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, поэтому для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона — это положительный вывод, который называется анодом . Другой вывод — это отрицательный конец, называемый катодом . Возвращаясь к нашему потоку электричества, ток может двигаться только в диоде от анода к катоду, а не наоборот.

Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод помечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, — это следить за направлением стрелки.

Стрелка на символе диода указывает направление протекания тока.

В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике — кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? С помощью небольшого волшебного трюка под названием допинг.

Легирование полупроводников

Странные полупроводниковые элементы. Возьмем, к примеру, кремний.Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.

Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать поток электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.

  • Вырасти.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
  • Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может идти двумя путями. Первый — это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Этот кремний называется кремнием n-типа или отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
  • Допинг положительно. Можно также добавить кремний в обратную сторону. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это называется кремнием p-типа или положительного типа.
  • Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.

Именно на этом перекрестке, который можно представить себе как ничейную землю, происходит вся магия диода.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?

В этом случае отрицательная клемма подключена к кремнию n-типа, а положительная клемма подключена к кремнию p-типа. А между двумя кусками кремния — нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, о котором мы говорили в начале.

Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)

Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма — к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.

Подсоедините батарею в непреднамеренном направлении, и ваш диод остановит протекание тока между n-типом и p-типом.(Источник изображения)

Прямое напряжение и пробои

Когда вы работаете с диодами, вы поймете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.

Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:

  • Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
  • Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
  • Прочие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

Я знаю, что все это время мы говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Определенная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в пределах от -50 до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

Семейство диодов — наконец вместе

Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!

Стандартные диоды

Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.

Стандартный диод для повседневного использования, доступный в компании Digi-Key. Обратите внимание на серебряную полоску, которая отмечает катодный конец. (Источник изображения)

Выпрямительные диоды

Это более мощные родственники стандартных диодов, они имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.

Более мощные братья и сестры стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.

Диоды Шоттки

Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.

Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.

Стабилитроны

Стабилитроны — это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой пробивной способностью, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенной точке цепи.

Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)

Фотодиоды

Фотодиоды — это непокорные подростки из семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.

Фотодиоды принимают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)

Светодиоды (светодиоды)

Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.

Что делает эти светодиоды настолько популярными?

  • КПД .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им экономить массу энергии.
  • Контроль. Светодиодами также очень легко управлять в электронной схеме. Пока перед ними установлен резистор, они обязательно будут работать!
  • Недорого. Светодиоды также очень недороги и рассчитаны на длительный срок службы. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.

Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение! (Источник изображения)

Наиболее распространенное применение диодов

Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же богато! Вот лишь несколько примеров использования диодов:

Преобразование переменного тока в постоянный

Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:

  • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.

    Одиночный диод в цепи однополупериодного выпрямителя, ограничивающий отрицательный полюс сигнала переменного тока. (Источник изображения)

  • Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую ​​как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.

    Двухполупериодный мостовой выпрямитель делает еще один шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)

Управляющие скачки напряжения

Вы также найдете диоды, которые используются в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.

Защита вашего тока

Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили аккумулятор неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.

Пора освободиться

Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений, от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же огласки, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.

Знаете ли вы, что Autodesk EAGLE включает в себя массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE бесплатно сегодня!

Как светодиод подключается к цепи?

Как светодиод подключается к цепи? — Обмен электротехнического стека
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 5к раз

\ $ \ begingroup \ $

Итак, я знаю, что (обычный) ток идет от + полюса батареи к аноду светодиода, уходя через катод в отрицательный полюс батареи.

Однако я читал, что катод — это отрицательный конец. Я решил, что он должен выходить через положительный конец и «традиционно отталкиваться».

В итоге получается такая схема:

  • (аккумулятор) —> + (светодиод) —> — (светодиод) —> — (аккумулятор)

Это правильно? Какой в ​​этом смысл?

Создан 15 дек.

DLADLA

21711 золотой знак44 серебряных знака1010 бронзовых знаков

\ $ \ endgroup \ $ \ $ \ begingroup \ $

Определение анода и катода отличается для разных устройств.Анод устройства считается выводом, на который втекает обычный ток, а катод — это то, откуда ток течет. Для проводящего светодиода ток течет в более длинную ветвь (положительный вывод), поэтому он считается анодом, а затем вытекает из более короткой ветви (отрицательный вывод), которая затем считается катодом. Однако для разряженной батареи катод является положительной клеммой (откуда течет обычный ток), а анод — отрицательной клеммой (где ток течет).

Вы можете посмотреть на это с другой стороны и сказать, что катод отталкивает катионы (положительный заряд), поэтому обычный ток течет от него, а аноды отталкивают анионы (отрицательный заряд), таким образом, обычный ток течет к нему.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *