Галоген это что: Галогены — Википедия – Галогены и галогенный газ: химические особенности галогенов

Содержание

Галогены и галогенный газ: химические особенности галогенов

Элементы 17 группы таблицы Д.И. Менделеева – галогены. Классические неметаллы, в чистом виде в природе не встречающиеся. Галоген – это активный окислитель, он находится только в качестве соединений. За исключением отдельных неметаллов, с галогенами реагируют все обычные вещества.

Некоторые характеристики хлора

Некоторые характеристики хлора

О галогенах

Из галогенов лишь йод способен обладать признаками свойств, характеризующих металлы. Другие вещества (бром, хлор, астат и фтор) лишены даже косвенных признаков металлов. Когда в 1811 году И. Швейггер, немецкий химик, предложил так называть новое выделенное вещество – хлор, название не прижилось. С 1841 года галогенами стали называть всю группу «солеродов». Так переводится с греческого языка слово галогены.

Можно лучше понять, что такое галоген, если охарактеризовать каждый из элементов, входящих в этот ряд:

  • Фтор (F) – содержится в солях горных пород. Преимущественно им насыщены криолит, шпат плавиковый и минералы флюорита;
  • Хлор (Cl) – популярный из галогенов, в мире имеется в хлориде натрия, являющегося главным сырьём для хлористых соединений;
  • Бром (Br) – элемент, встречающийся в морских водах и солёных водоёмах в качестве соли калия и натрия в сочетании с сульфатами хлора;
  • Йод (I) – встречается повсеместно, больше всего йода в морской капусте и водорослях;
  • Астат (At) – искусственное вещество в природе не встречается, получают в результате оседания частиц при облучении висмута или тория.

К сведению. Хлорид натрия (NaCl) – один из источников хлора. В быту называется поваренной солью. Присутствует в водной жидкости моря, в естественном состоянии находится как серый минерал – галит.

Кристаллы каменной соли

Кристаллы каменной соли

Строение атомов и степени окисления

Электронная формула наружной орбиты атомов солеродов – ns2np5. При расположении по порядку:

  • F — 2s22p5;
  • Cl — 3s23p5;
  • Br — 4s24p5;
  • I — 5s25p5;
  • At — 6s26p5.

Атомы галогенов успешно добавляют к 7 своим электронам, имеющимся на крайней оболочке, один чужой недостающий. Потому при взаимодействии обнаруживают степень (-1) окисления. В союзах, где присутствуют элементы, имеющие электроотрицательность выше, только фтор не меняет степени (-1).

Остальные изменяют её на положительную степень: Cl (+1), Br (+3), I (+5), At (+7).

Графическая картинка электронного строения атома бора Br

Графическая картинка электронного строения атома бора Br

Распространённость элементов и получение простых веществ

Чем больше величина атомного радиуса, тем меньше наличие солеродов в теле планеты. Величина r – радиуса атома фтора, по сравнению с радиусом атома иода, говорит о том, что фтор более распространён, нежели йод. Астата в коре планеты всего лишь граммы.

Промышленность производит галоиды (устаревшее название) в больших объёмах. При этом по количеству изготовленной продукции лидирует хлор.

Простые вещества получают при помощи галогенидов, окисляя их. Для этого используется электролитическое окисление. Причём из-за того, что положительные потенциалы у фтора и хлора достаточно высокие, приходится применять сильные окислители.

Важно! Электролиз фтора осложнён невозможностью использования водных растворов. Его потенциал окисления выше, и он может вступать в реакцию с водой, поэтому используют плавиковую кислоту.

Электролиз NaCl с применением анодов из графита позволяет добывать хлор. Катоды при этом могут быть:

  • железные;
  • жидкие ртутные;
  • стальные.

Уравнение, описывающее эту реакцию, имеет вид:

2Cl- —› Cl2 (г.) + 2е-.

Выполняя химическое окисление бромида-иона из морской воды, получают бром.

Так же добывают и йод, используя насыщенные им рассолы. Оба процесса проводят, применяя хлор в виде окислителя. Воздушным потоком, проходящим через раствор, удаляются I2 и Br2.

Производство галогенов, формулы окисления

Производство галогенов, формулы окисления

Физические свойства галогенов

Это характеристики, описывающие цвет, запах, температуры изменения свойств, а также агрегатное пребывание в нормальных условиях.

Физические свойства простых двухатомных веществ

Физические свойства простых двухатомных веществ

Внимание! Такие токсичные вещества, как галогены, образовывают взаимные соединения: BrCl, ICl, IBr и иные. Три состояния (твёрдое, жидкое и газообразное) присущи солеродам при комнатной температуре.

Химические свойства галогенов

Способность вступать в реакцию с разными веществами под воздействием сторонних факторов индивидуальна для каждого из рассматриваемых элементов.

Химические особенности солеродов

Химические особенности солеродов

При вступлении галогенов в связь с медью (малоактивный металл) получаются галогениды с формулой:

CuHal2, где Hal2 – солероды Br, Cl, F.

Когда галогениды вступают в реакцию с галогенами, то тот солерод, который активнее, вытесняет малоактивный из его же раствора. Хлор, являясь окислителем, вступает во взаимодействие в смесях солей йода и брома. Бром не реагирует на хлориды, но может из иодидов выдавить йод.

При воздействии на органические соединения при хлорировании воды или йодировании соли происходит галогенирование. При этом атом галогена вводится в соединение. Галогенирование может осуществляться замещением, расщеплением или присоединением атома солерода к атомной структуре органических соединений.

Интересно. Йод, имея низкие окислительные способности, не выдавливает из солей галогены. С фтором реакции водных сульфитов вообще не получаются, он вступает в содействие с Н2О.

Особенности добычи и использования галогенов

Приём электролизного окисления с участием окислителей применяется при добывании галогенов, исходя из того, что в натуральных условиях они – анионы. Например, гидролиз смеси поваренной соли необходим для выработки хлора. В основном, сначала добываются галогениды, из них электрохимическим путём изымаются солероды.

Применение галогенов и их соединений

Использование солеродов находит широкое применение в жизни человека. Быт, медицина, химическая промышленность, военное производство – далеко не все области использования солеродов.

По каждому элементу можно рассмотреть следующие моменты:

  1. F – значимая часть состава фторополимеров, имеющих высокую химическую, коррозионную и термическую стойкости. Фторсодержащие хлорфторуглероды раньше использовались в хладагентах и в аэрозолях.
  2. Cl – в натуральном виде газ жёлто-зелёного цвета. Хлор употребляется для обеззараживания скважин, воды для питья и искусственных водоёмов. Наиболее частое применение хлора в быту – отбеливание вещей и очищение загрязнённых поверхностей сантехники. Соляная (муриевая) кислота также содержит хлор.
  3. Br – негорючее вещество, применяется для тушения огня в огнетушителях. Применим бром и в медицине, в качестве успокоительных препаратов и мегалитических средств. В военных целях входит в состав химии отравляющих веществ.
  4. I – применяется в виде антисептика, является необходимым элементом в организме человека для работы щитовидной железы.
  5. At – применения не находит ввиду своей сильной радиоактивности.
Спектр применения галогенов

Спектр применения галогенов

Добавленный в баллон лампы накаливания газ галоген позволяет повысить температуру встраиваемой нити и качество отдачи света. Пары брома или йода, закачанные в колбу, послужили созданию галогенных ламп и светильников.

Важно! У таких источников света реже сгорают спирали, лампы имеют компактные размеры и могут питаться как переменным, так и постоянным напряжением.

Галогеновый свет используется в лампах автомобильных фар, причём конструкция позволяет выполнять установку, как галогенных ламп накаливания в фару, так и обычных. В соревнованиях светодиодного источника в фаре или галогенового пока лидирует последний.

Галогенные соединения и их роль в организме человека

В человеческом организме в разных процентных содержаниях присутствуют соединения солеродов. Превышение концентраций, как и их уменьшение, существенно влияет на состояние организма.

Биологическая миссия галогенов

Биологическая миссия галогенов

Токсичность галогенов

Галогены в опасной концентрации и соединениях действуют на человека следующим образом:

  1. Хлор имеет 2 класс опасности. Концентрация в атмосфере от 1*10-4% уже вызывает раздражение слизистой, доза 0,01% приводит к острому отравлению и остановке дыхания. Это сильный канцероген, вызывающий туберкулёз и способствующий образованию злокачественных опухолей;
  2. Фтор в соединении фторида натрия – приводит к смерти, попадая внутрь через органы дыхания или пищеварения. Смертельная концентрация – 4-9 г. Первичные симптомы – слюнотечение, рвотные позывы. Вторичные признаки отравления – поражения нервной и сердечно-сосудистой систем.
  3. Бром вызывает спазмы и удушье при дыхании уже при концентрации 1*10-3 в объёме воздуха. Токсичная доза – 3 г., смертельная – от 34 г., при попадании внутрь человека.
  4. Йод, при случайном попадании в организм в количестве 3 г. и более, поражает почки и сердечно-сосудистую систему, блокирует рецепторы щитовидной железы.

Применение галогенов и галогенидов в промышленности и в быту приносит больше пользы, чем вреда. Знание допустимых значений концентрации и правил пользования продуктами, в которых применяются солероды, позволяет пользоваться только их положительными качествами.

Видео

Галогени — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

H   He
Li Be   B C N
O
F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs
Mt
Ds Rg Cn Uut Fl Uup Uuh Ts Uuo
 
  * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  ** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Група 17 періодичної таблиці (Галогени)

Галоге́ни (від грец. ἅλς — «сіль» або «море», та γεν-, від γίγνομαι — «стає») — хімічні елементи групи 17, або за старою класифікацією, VII групи головної підгрупи. періодичної системи елементів: Флуор (F), Хлор (Cl), Бром (Br), Йод (I), Астат (At) і Теннессін (Ts).

Молекули їхніх простих речовин — двоатомні. Назви простих речовин галогенів відповідають назвам елементів, окрім фтору. За звичайних умов фтор і хлор — гази, бром — рідина, йод і астат — тверді речовини.

Галогени реагують з більшістю елементів, утворюючи галогеніди. Вони мають окиснювальні властивості, які зменшуються від Флуору до Астату. Неметалічний характер елементів і хімічна активність галогенів посилюється знизу догори.

Фізичні властивості галогенів[ред. | ред. код]

Фтор є важкозріджуваним, а хлор легкозріджуваним газом із задушливим різким запахом. Енергія зв’язку галогенів згори ряду донизу змінюється нерівномірно. Фтор має аномально низьку енергію зв’язку (151 кДж/моль), це пояснюється тим, що фтор не має d-підрівня і не здатний утворювати полуторні зв’язки, на відміну від інших галогенів (Cl2 243, Br2 199, I2 150,7, At2117 кДж/моль). Від хлору до астату енергія зв’язку поступово слабшає, що пов’язане зі збільшенням атомного радіусу. Аналогічні аномалії мають і температури кипіння (плавлення):

Проста
речовина
Температура
плавлення, °C
Температура
кипіння, °C
F2 −220 −188
Cl2 −101 −34
Br2 −7 58
I2 113,5 184,885
At2 244 309[1]
  1. Редкол.: Кнунянц І. Л. (гол. ред.). Хімічна енциклопедія: у 5 т. — 623 с. — 100 000 прим.
  • Глосарій термінів з хімії / уклад. Й. Опейда, О. Швайка ; Ін-т фізико-органічної хімії та вуглехімії ім. Л. М. Литвиненка НАН України, Донецький національний університет. —  : Вебер, 2008. — 738 с. — ISBN 978-966-335-206-0.
  • Мала гірнича енциклопедія : у 3 т. / за ред. В. С. Білецького. —  : Східний видавничий дім, 2004—2013.
  • Ахметов Н. С. Загальна та неорганічна хімія. — М. : Вища школа, 2001. — ISBN 5-06-003363-5.
  • Лідин Р. А.. Довідник із загальної та неорганічної хімії. — М. : колоси, 2008. — ISBN 978-5-9532-0465-1.
  • Некрасов Б. В. Основи загальної хімії. — М. : Лань, 2004. — ISBN 5-8114-0501-4.
  • Спіцин В. І., Мартиненко Л. І. Неорганічна хімія. — М. : МДУ, 1991, 1994.
  • Турова Н. Я. Неорганічна хімія в таблицях. Навчальний посібник. — М. : ЧеРо, 2002. — ISBN 5-88711-168-2.
  • Greenwood, Norman N.; Earnshaw, Alan. (1997), Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, ISBN 0-08-037941-9
  • F. Albert Cotton, Carlos A. Murillo, and Manfred Bochmann, (1999), Advanced inorganic chemistry. (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5
  • Housecroft, C. E. Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall, ISBN 978-0-13-175553-6

Галогены — это… Соединения галогенов

Здесь читатель найдет сведения о галогенах, химических элементах периодической таблицы Д. И. Менделеева. Содержание статьи позволит вам ознакомиться с их химическими и физическими свойствами, нахождением в природе, способах применения и др.

Общие сведенья

Галогены – это все элементы химической таблицы Д. И. Менделеева, находящиеся в семнадцатой группе. По более строму способу классификации это все элементы седьмой группы, главной подгруппы.

галогены это

Галогены – это элементы, способные вступать в реакции практически со всеми веществами простого типа за исключением некоторого количества неметаллов. Все они являются энергетическими окислителями, потому в условиях природы, как правило, находятся в смешанной форме с другими веществами. Показатель химической активности галогенов уменьшается с возрастанием их порядковой нумерации.

Галогенами считаются следующие элементы: фтор, хлор, бром, йод, астат и искусственно созданный теннесин.

Как говорилось ранее, все галогены – это окислители с ярко выраженными свойствами, к тому же все они являются неметаллами. Внешний энергетический уровень имеет семь электронов. Взаимодействие с металлами приводит к образованию ионной связи и солей. Почти все галогены, за исключением фтора, могут проявлять себя в качестве восстановителя, достигая высшей окислительной степени +7, однако для этого необходимо, чтобы они взаимодействовали с элементами, имеющими большую степень электроотрицательности.

Особенности этимологии

соединения галогенов

В 1841 г. шведский ученый-химик Й. Берцелиус предложил ввести термин галогенов, относя к ним известные в то время F, Br, I. Однако до введения этого термина по отношению ко всей группе таких элементов, в 1811 г., немецкий ученый И. Швейггер этим же словом назывался хлор, сам термин переводился с греческого языка как «солерод».

Атомное строение и окислительные степени

элемент галоген

Конфигурация электронов внешней атомной оболочки галогенов имеет следующий вид: астат – 6s26p5, йод – 5s25p5, бром 4s24p5, хлор – 3s23p5, фтор 2s22p5.

Галогены – это элементы, имеющие на электронной оболочке внешнего типа семь электронов, что позволяет им «без особых усилий» присоединять электрон, которого недостаточно для завершения оболочки. Обычно степень окисления проявляется в виде -1. Cl, Br, I и At вступая в реакцию с элементами, имеющими более высокую степень, начинают проявлять положительную окислительную степень: +1, +3, +5, +7. Фтор имеет постоянную окислительную степень -1.

Распространение

Ввиду своей высокой степени реакционной способности галогены обычно находятся в виде соединений. Уровень распространения в коре земли убывает в соответствии с увеличением атомного радиуса от F к I. Астат в коре земли измеряется вовсе в граммах, а теннессин создается искусственно.

Галогены встречаются в природе чаще всего в соединениях галогенидов, а йод также может принимать форму йодата калия или натрия. В связи со своей растворимостью в воде присутствуют в океанических водах и рассолах природного происхождения. F – малорастворимый представитель галогенов и чаще всего обнаруживается в породах осадочного типа, а его главный источник – это фторид кальция.

Физические качественные характеристики

Галогены между собой могут сильно отличаться, и они имеют следующие физические свойства:

  1. Фтор (F2) – это газ светло-желтого цвета, имеет резкий и раздражающий запах, а также не подвергается сжатию в обычных температурных условиях. Температура плавления равна -220 °С, а кипения -188 °С.
  2. Хлор (Cl2) представляет собой газ, не сжимающийся при обычной температуре, даже находясь под воздействием давления, имеет удушливый, резкий запах и зелено-желтый окрас. Плавиться начинает при -101 °С, а кипеть при -34 °С.
  3. Бром (Br2) – это летучая и тяжелая жидкость с буро-коричневым цветом и резким зловонным запахом. Плавится при -7 °С, а кипит при 58 °С.
  4. Йод (I2) – это вещество твердого типа имеет тёмно-серый окрас, и ему свойственен металлический блеск, запах довольно резкий. Процесс плавления начинается при достижении 113,5 °С, а кипит при 184,885 °С.
  5. Редкий галоген – это астат (At2), который является твердым веществом и имеет черно-синий цвет с металлическим блеском. Температура плавления соответствует отметке в 244 °С, а кипение начинается после достижения 309 °С.

хороший галоген

Химическая природа галогенов

Галогены – это элементы с очень высокой окислительной активностью, которая ослабевает в направлении от F к At. Фтор, будучи самым активным представителем галогенов, реагировать может со всеми видами металлов, не исключая ни один известный. Большинство представителей металлов, попадая в атмосферу фтора, подвергаются самовоспламенению, при этом выделяя теплоту в огромных количествах.

Без подвергания фтора нагреванию он может реагировать с большим количеством неметаллов, например h3, C, P, S, Si. Тип реакций в таком случае является экзотермическим и может сопровождаться взрывом. Нагреваясь, F принуждает окисляться остальные галогены, а подвергаясь облучению, этот элемент способен и вовсе реагировать с тяжелыми газами инертной природы.

Вступая во взаимодействие с веществами сложного типа, фтор вызывает высоко энергетические реакции, например, окисляя воду, он может вызывать взрыв.

редкий галоген

Реакционноспособным может быть и хлор, особенно в свободном состоянии. Уровень активности его меньше, чем у фтора, но он способен реагировать почти со всеми простыми веществам, но азот, кислород и благородные газы в реакцию не вступают с ним. Взаимодействуя с водородом, при нагревании или хорошем освещении хлор создает бурнопротекающую реакцию, сопровождаемую взрывом.

В реакциях присоединения и замещения Cl может реагировать с большим количеством веществ сложного типа. Способен вытеснять Br и I в результате нагревания из соединений, созданных ими с металлом или водородом, а также может вступать в реакцию со щелочными веществами.

Бром химически менее активный, чем хлор или фтор, но все же весьма ярко себя проявляет. Это обусловлено тем, что чаще всего бром Br используется в качестве жидкости, ведь в таком состоянии исходная степень концентрации при остальных одинаковых условиях выше, чем у Cl. Широко используется в химии, особенно органической. Может растворяться в H2O и реагировать с ней частично.

Галоген-элемент иод образует простое вещество I2 и способен вступать в реакции с H2O, растворяется в йодидах растворов, образуя при этом комплексные анионы. От большинства галогенов I отличается тем, что он не вступает в реакции с большинством представителей неметаллов и не спеша реагирует с металлами, при этом его необходимо нагревать. С водородом реагирует, лишь подвергаясь сильному нагреванию, а реакция является эндотермической.

Редкий галоген астат (At) проявляет реакционные способности меньше йода, однако может реагировать с металлами. В результате диссоциации возникают как анионы, так и катионы.

Области применения

Соединения галогенов широко применяются человеком в самых разнообразных областях деятельности. Природный криолит (Na3AlF6) используют для получения Al. Бром и йод в качестве простых веществ часто используют фармацевтические и химические компании. При производстве запчастей для машин часто используют галогены. Фары – это одна из таких деталей. Качественно выбрать материал для данной составной части машины очень важно, так как фары освещают дорогу в ночное время и являются способом обнаружения как вас, так и других автомобилистов. Одним из лучших составных материалов для создания фар считается ксенон. Галоген тем не менее ненамного уступает по качеству этому инертному газу.

ксенон галоген

Хороший галоген – это фтор, добавка, широко используемая при производстве зубных паст. Он помогает предотвращать возникновение заболевания зубов – кариеса.

Такой элемент-галоген, как хлор (Cl), находит свое применение в получении HCl, часто используется при синтезе органических веществ, таких как пластмасса, каучук, синтетические волокна, красители и растворители и т. д. А также соединения хлора используют в качестве отбеливателей льняного и хлопчатобумажного материала, бумаги и как средство для борьбы с бактериями в питьевой воде.

галоген фары

Внимание! Токсично!

Ввиду наличия очень высокой реакционной способности галогены по праву называются ядовитыми. Наиболее ярко способность к вступлению в реакции выражена у фтора. Галогены имеют ярко выраженные удушающие свойства и способны поражать ткани при взаимодействии.

Фтор в парах и аэрозолях считается одним из самых потенциально опасных форм галогенов, вредоносных для окружающих живых существ. Это связано с тем, что он слабо воспринимается обонянием и ощущается лишь по достижении большой концентрации.

Подводя итоги

Как мы видим, галогены являются очень важной частью периодической таблицы Менделеева, они имеют множество свойств, отличаются между собой по физическим и химическим качествам, атомному строению, степени окисления и способности реагировать с металлами и неметаллами. В промышленности используются разнообразным образом, начиная от добавок в средства личной гигиены и заканчивая синтезом веществ органической химии или отбеливателями. Несмотря на то что одним из лучших способов поддержания и создания света в фаре автомобиля является ксенон, галоген тем не менее ему практически не уступает и также широко используется и имеет свои преимущества.

Теперь вы знаете, что такое галоген. Сканворд с любыми вопросами об этих веществах для вас уже не помеха.

Галогениды — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2016; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2016; проверки требуют 6 правок.

Галогени́́ды, галоиды (от греч. ἅλς — соль и греч. γενῄς — ро­ж­даю­щий, ро­ж­дён­ный[1]) — соединения галогенов с другими химическими элементами или радикалами. При этом галоген, входящий в соединение, должен быть более электроотрицательным, чем другой элемент соединения[2]; так, оксид брома не является галогенидом.

Галогенид-ион — отрицательно заряженный атом галогена.

По участвующему в соединении галогену галогениды также называются фторидами, хлоридами, бромидами, иодидами и астатидами. Наиболее известны под этим названием галогениды серебра благодаря массовому распространению плёночной галогеносеребряной фотографии.

Соединения галогенов называются интергалогенидами, или межгалоидными соединениями (например, пентафторид иода IF5).

В галогенидах галоген обычно имеет отрицательную степень окисления, равную −1, а элемент — положительную. Тем не менее, это не является аксиомой, и в межгалогенных соединениях у одного из галогенидов степень окисления оказывается положительной и равной +1, +3, +5 и в гептафториде иода IF7 степень окисления иода доходит до +7[2].

Гелий, неон и аргон не образуют галогенидов[2].

Используются в химической промышленности для получения галогенов, щелочных и щелочноземельных металлов[2].

Галогениды применяются при создании газоразрядных ламп (металлогалогенные лампы), используемых для уличного освещения.

ГАЛОГЕНЫ — это… Что такое ГАЛОГЕНЫ?

  • ГАЛОГЕНЫ — ГАЛОГЕНЫ, элементы (ФТОР, ХЛОР, БРОМ, ЙОД и АСТАТ), принадлежащие к VII группе периодической таблицы. Они реагируют с большинством других элементов и органическими соединениями. Химическая активность падает от начала к концу группы. Галогены… …   Научно-технический энциклопедический словарь

  • ГАЛОГЕНЫ — (устар. выражение галоиды) химические элементы фтор F, хлор Cl, бром Br, иод I и астат At, составляющие главную подгруппу VII группы периодической системы Менделеева. Названы от греческих hals соль и genes рождающий (при соединении с металлами… …   Большой Энциклопедический словарь

  • Галогены — фтор, хлор, бром, йод; входят в VII группу периодической системы. Все члены группы образуют соединения с водородом, причем связь их повышается с уменьшением атомной массы; температура образования различных солей уменьшается с увеличением атомной… …   Российская энциклопедия по охране труда

  • ГАЛОГЕНЫ — общее название пяти хим. элементов, составляющих VII подгруппу Периодической системы элементов Д. И. Менделеева, фтора, хлора, брома, йода и астата. Все Г. неметаллы, их молекулы двухатомны; Г. реагируют со всеми простыми веществами, являются… …   Большая политехническая энциклопедия

  • ГАЛОГЕНЫ — ПОДГРУППА VIIA. ГАЛОГЕНЫ ФТОР, ХЛОР, БРОМ, ИОД, АСТАТ Галогены и особенно фтор, хлор и бром имеют большое значение для промышленности и лабораторной практики как в свободном состоянии, так и в виде различных органических и неорганических… …   Энциклопедия Кольера

  • Галогены — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • ГАЛОГЕНЫ — ГАЛОИДЫ ИЛИ ГАЛОГЕНЫ химические элементы: хлор, иод, бром, фтор, образующие с металлами соли без кислорода, напр. хлористый натрий (повар. соль). Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ГАЛОИДЫ или ГАЛОГЕНЫ …   Словарь иностранных слов русского языка

  • галогены — ов; мн. (ед. галоген, а; м.). [от греч. hals соль и genesis род, происхождение]. Группа химических элементов (фтор, хлор, бром, йод и др.), образующих соли при соединении с металлами. ◁ Галогенный, ая, ое. Г ые соединения. Г ая лампа (лампа… …   Энциклопедический словарь

  • галогены — halogenai statusas T sritis chemija apibrėžtis F, Cl, Br, I, (At). atitikmenys: angl. halogens; haloid elements; haloids rus. галогены …   Chemijos terminų aiškinamasis žodynas

  • Галогены — (от греч. hals соль и… genes рождающий, рожденный)         химические элементы Фтор F, Хлор Cl, Бром Br, Иод I и Астат At, составляющие главную подгруппу VII группы периодической системы Д. И. Менделеева. Названы Г. по свойству давать соли при… …   Большая советская энциклопедия

  • Галогенуглеводороды — Википедия

    Галогенуглеводороды — соединения общей формулы R-X, где R — углеводородный радикал, а X — атом галогена. Атомов галогена в молекуле может быть несколько.

    Пример наименования галогеноалканов по ИЮПАК

    Согласно правилам ИЮПАК[1] галогенуглеводороды рассматриваются как продукты замещения углеводородов, соответствующие атомы галогенов указываются в префиксе. Если это необходимо, положение атома галогена указывается цифрой.

    Удобно разделять галогенуглеводороды по типу углеродного атома, с которым связан атом галогена. Прежде всего критерием является гибридизация первого. В пользу подобного разделения говорит сравнение их физических и химических свойств.

    Особое место среди галогенпроизводных углеводородов занимают галониевые соединения.

    За исключением низших гомологов (кроме иодалканов), газообразных при нормальных условиях, галогенуглеводороды представляют собой бесцветные жидкости и твёрдые вещества со своеобразным запахом (сладковатым для алифатических соединений). Полииодалканы окрашены в жёлтый цвет. В гомологическом ряду наблюдаются такие же изменения, как и у незамещённых углеводородов. Так, с удлинением цепи и ростом молекулярной массы растёт и температура кипения, а при увеличении степени разветвлённости температуры кипения падают. Однако полифторалканы с бо́льшим количеством атомов фтора в молекуле кипят ниже прочих — причиной этому, видимо, является уменьшение межмолекулярного взаимодействия.

    Хотя алкилгалогениды и полярные соединения (дипольные моменты моногалогеналканов примерно равны величине μ у воды – ср. μ(H2O) = 1,85 D, а μ(CH3Cl) = 1,9 D), но в воде они нерастворимы, вероятно, из-за того, что они не способны образовывать полярные связи. Они растворимы в обычных органических растворителях.

    Стоит отметить, что полярность связи углерод—галоген зависит не только от разницы электроотрицательностей атомов, но и от наличия неподелённых пар электронов у атома галогена, а также от сравнительных ковалентных радиусов атомов. Это весьма очевидно, если рассматривают связи C—F и C-Cl: их дипольные моменты равны, соответственно, 1,81 и 1,83 D (лучшее сопряжение для связи C—F)!

    Ввиду полярности связи C–X атом улерода является несколько электрофильным (см., например, статью «Реакции электрофильного замещения»). Неподелённые электронные пары атома галогена придают молекуле также слабый электронодонорный характер (особенно иодуглеводородам). Полярность связи C–X падает при переходе от атома углерода в sp3–гибридизации к атому углерода в sp—гибридизации. Например, дипольные моменты хлорэтана, хлорэтена, хлорбензола и хлорэтина составляют соответственно 2,0, 1,44, 1,58 и 0,44 D. Причина тому — возрастает электроотрицательность атома углерода, а неподелённая электронная пара вступает в сопряжение с π-электронной системой алкена, арена (положительный мезомерный (+M) зффект). Поскольку одновременно имеет место отрицательный индуктивный (-I) эффект, трудно предугадать распределение электронной плотности в системе. Расчёты для простейших соединений (аллилгалогенид, фенилгалогеноид) показывают, что непосредственно связанный с атомом галогена углеродный атом имеет некоторый положительный заряд, а сам атом галогена и атом углерода по другую сторону двойной связи (в случае аренов — о— и (в меньшей степени) п-места) заряжены несколько отрицательно. Возрастают немного и электронодонорные свойства π-системы (ср. энергия ионизации этилена и винилхлорида: 10,5 и 10 эВ соответственно).

    Длина связи С(sp3)—X растёт от X = F к X = I. В том же направлении падает её прочность. Связь C(sp2)–X несколько короче, причём связь C=C в алкене также немного укорачивается.

    Иод-, бром-, и полихлорпроизводные тяжелее воды. Некоторые галогенуглеводороды хиральны.

    Название Структурная формула Tпл,°C Tкип,°C
    Фторметан CH3-F -141,8 -78,5
    Хлорметан CH3-Cl -97,7 -23,7
    Бромметан CH3-Br -93,7 3,6
    Иодметан CH3-I -66,5 42,5
    Хлорэтан CH3-CH2-Cl -138,7 12,3
    1-Хлорпропан CH3-CH2-CH2-Cl -122,8 47,2
    2-Хлорпропан CH3-CHCl-CH3 -117,0 35,4
    Дифторметан CH2F2 -136 -51,6
    Трифторметан CHF3 -163 -82,2
    Тетрафторметан CF4 -184 -128
    Хлорэтен CH2=CHCl -153,8 -13,8
    Хлорбензол C6H5Cl -45,6 131,7

    При синтезе галогеналканов обычно исходят из углеводородов, спиртов или карбоновых кислот.

    Получение галогеналканов[править | править код]

    Прямое галогенирование[править | править код]

    Радикальным галогенированием можно получать хлор- или бромалканы. Недостатком этого метода является то, что образуется смесь различных продуктов замещения. При этом наряду с изомерными монозамещёнными в смеси также содержатся ди- и полизамещённые соединения. К тому же, например, эквимолярная смесь Cl2 и CH4 взрывоопасна, не говоря уже о смесях алканов со фтором. Однако меняя условия процесса можно добиться приемлемых для промышленности выходов. Например, при хлорировании алкан берут в избытке. Продукты разделяют фракционной перегонкой. К примеру, так в промышленности получают метиленхлорид и тетрахлоруглерод.

    Алканы хлорируются при интенсивном УФ-облучении или нагревании (обычно применяют первое). Наиболее легко образуются третичные радикалы и, соответственно, галогеналканы; наименее — первичные. Бромирование мало характерно для алканов легче гексана, а прочие бромируются при одновременном освещении и кипячении.

    Cnh3n+2+X2→hνCnh3n+1X+HX{\displaystyle {\mathsf {C_{n}H_{2n+2}+X_{2}{\xrightarrow[{}]{h\nu }}C_{n}H_{2n+1}X+HX}}}

    В присутствии специальных реагентов (например, N-Бромсукцинимида, сокращённо NBS), а также инициаторов свободных радикалов (таких, как УФ-облучение, нагревание, пероксиды) замещённые алкены бромируются в аллильное положение.

    NBS Allylic Bromination Scheme.png

    Аллильное хлорирование осуществляется лишь при 400—600°C, обычно же протекают конкурирующие реакции — присоединение по двойной связи (в этих условиях — тоже по радикальному механизму), полимеризация, изомеризация алкенов. В промышленности так производят аллилхлорид.

    Замещённые арены хлорируются и бромируются в боковую цепь. Например, толуол при нагревании и интенсивном освещении хлорируют, получая бензилхлорид.

    Радикальным методом получают также и перфторалканы. Реакция протекает очень энергично, и вследствие большого тепловыделения приходится разбавлять фтор азотом, применяют также медные сетки для отвода теплоты. В процессе применяют переносчики фтора — фториды металлов, как CoF2, MnF2, AgF, образующие в ходе реакции (при нагревании) соответственно CoF3, MnF4, AgF2.

    Получение моногалогеналканов[править | править код]
    • Присоединение галогеноводородов к алкенам.
    R-CH=Ch3+HCl→R-CHCl-Ch4{\displaystyle {\mathsf {R{\text{-}}CH{\text{=}}CH_{2}+HCl\rightarrow R{\text{-}}CHCl{\text{-}}CH_{3}}}}
    Весьма легко присоединяется фтор (трудноуправляемый процесс, возможен взрыв), иод присоединяется медленно. Обычно происходит стереоселективно, кроме как в присутствии свободных радикалов. В присутствии других нуклеофилов возможно сопряжённое присоединение (см. статью Галогенгидрины).
    • Реакции спиртов с галогеноводородами.
    ROH+HCl→RCl+h3O{\displaystyle {\mathsf {ROH+HCl\rightarrow RCl+H_{2}O}}}
    • Взаимодействие галогенидов фосфора или тионилхлорида со спиртами.
    3ROH+PCl3→3RCl+h4PO3{\displaystyle {\mathsf {3ROH+PCl_{3}\rightarrow 3RCl+H_{3}PO_{3}}}}
    Hunsdiecker Reaction Mechanism.png
    RCl+AgF→RF+AgCl{\displaystyle {\mathsf {RCl+AgF\rightarrow RF+AgCl}}}
    Получение дигалогеналканов[править | править код]
    • Присоединение галогеноводородов к алкинам
    Ch4-CH≡CH+2HCl→R-CCl2-Ch4{\displaystyle {\mathsf {CH_{3}{\text{-}}CH\equiv CH+2HCl\rightarrow R{\text{-}}CCl_{2}{\text{-}}CH_{3}}}}
    R-CHO+PCl5→R-CHCl2{\displaystyle {\mathsf {R{\text{-}}CHO+PCl_{5}\rightarrow R{\text{-}}CHCl_{2}}}}
    • Присоединение галогенов к алкенам:
    R-CH=Ch3+Cl2→R-CHCl-Ch3Cl{\displaystyle {\mathsf {R{\text{-}}CH{\text{=}}CH_{2}+Cl_{2}\rightarrow R{\text{-}}CHCl{\text{-}}CH_{2}Cl}}}
    • Раскрытие циклических простых эфиров (например, тетрагидрофурана) при реакции с NaI в среде H3PO4+P2O5.
    C4H8O+HI→ICh3Ch3Ch3Ch3I+h3O{\displaystyle {\mathsf {C_{4}H_{8}O+HI\rightarrow ICH_{2}CH_{2}CH_{2}CH_{2}I+H_{2}O}}}

    При 180 °C тетрагидрофуран с хлороводородом даёт 1,4-дихлорбутан.

    Получение галогеналкенов[править | править код]

    Или применяют производные алкенов. В частности, для получения того же винилхлорида есть такие два способа.

    Получение галогенаренов[править | править код]

    • Галогенирование аренов или алкиларенов в ядро:
    ArH+Cl2→FeCl3ArCl+HCl{\displaystyle {\mathsf {ArH+Cl_{2}{\xrightarrow[{}]{FeCl_{3}}}ArCl+HCl}}}
    • Разложение арендиазониевых солей
    Ar-N+≡NCl−→ArCl+N2{\displaystyle {\mathsf {Ar{\text{-}}N^{+}\equiv NCl^{-}\rightarrow ArCl+N_{2}}}}

    Получение бензилгалогенидов[править | править код]

    • Галогенирование алкиларенов в боковую цепь.
    Ar-Ch4+Cl2→ArCh3Cl+HCl{\displaystyle {\mathsf {Ar{\text{-}}CH_{3}+Cl_{2}\rightarrow ArCH_{2}Cl+HCl}}}
    ArH+HCHO+HCl→ArCh3Cl{\displaystyle {\mathsf {ArH+HCHO+HCl\rightarrow ArCH_{2}Cl}}}

    Реакционная способность галогенуглеводородов главным образом зависит от поляризуемости связи C-X, падающей в ряду C-I > C-Br > C-Cl >> C-F

    Также весьма существенный вклад в реакционную способность вносит строение алкильного радикала, наличие кратных связей, разветвлённость углеводородного скелета, возможность делокализации заряда у α-атома.

    Основные реакции галогенуглеводородов:

    • Нуклеофильное замещение
    R-X→Nh4RNh3+R2NH+R3N+[R4N]+X−{\displaystyle {\mathsf {R{\text{-}}X{\xrightarrow[{}]{NH_{3}}}RNH_{2}+R_{2}NH+R_{3}N+[R_{4}N]^{+}X^{-}}}}
    R-X+Y−→RY+X−, Y=NO2,CN,OH,SCN,R1O,R1COO{\displaystyle {\mathsf {R{\text{-}}X+Y^{-}\rightarrow RY+X^{-},\ Y=NO_{2},CN,OH,SCN,R_{1}O,R_{1}COO}}}
    • Дегидрогалогенирование (элиминирование)
    R-Ch3-Ch3Cl→OH−R-CH=Ch3{\displaystyle {\mathsf {R{\text{-}}CH_{2}{\text{-}}CH_{2}Cl{\xrightarrow[{}]{OH^{-}}}R{\text{-}}CH{\text{=}}CH_{2}}}}
    • Синтез реактива Гриньяра
    R-X+Mg→RMgX{\displaystyle {\mathsf {R{\text{-}}X+Mg\rightarrow RMgX}}}
    • Восстановление
    R-X+h3→R-H+HX{\displaystyle {\mathsf {R{\text{-}}X+H_{2}{\xrightarrow[{}]{}}R{\text{-}}H+HX}}}
    • О. Я. Нейланд. Органическая химия. — М.: Высшая школа, 1990. — 751 с. — 35 000 экз. — ISBN 5-06-001471-1.

    Галогеноводороды — Википедия

    Материал из Википедии — свободной энциклопедии

    Галогеноводоро́ды — общее название соединений, образованных из водорода и галогенов (элементов подгруппы фтора):

    Все галогеноводороды — бесцветные ядовитые газы с резким запахом, хорошо растворимые в воде. На воздухе их концентрированные растворы дымят вследствие выделения галогеноводородов.

    Сокращённо галогеноводороды обозначают НГ, а в источниках на языках, использующих латинский алфавит, — HHal.

    Соединение Формула Модель Молярная масса Длина связи
    d(H−X)/pm (газ)
    Дипольный момент
    μ/D
    ΔG°f tплав
    °C
    tкип
    °C
    Фтороводород HF Hydrogen-fluoride-3D-vdW.svg 20 91,7 1,86 −270,7 −83,4 19,5
    Хлороводород HCl Hydrogen-chloride-3D-vdW.svg 36,5 127,4 1,11 −92,3 −114,2 −85,1
    Бромоводород HBr Hydrogen-bromide-3D-vdW.svg 81 141,4 0,79 −36,3 −86,9 −66,8
    Иодоводород HI Hydrogen-iodide-3D-vdW.svg 128 160,9 0,38 26,57 −50,8 −35,4
    Астатоводород HAt Hydrogen-astatide-calculated-3D-sf.svg 211 172,0 -0,06 −26,5 −20,0

    В ряду HCl — HBr — HI в соответствии с увеличением ковалентности связи уменьшается дипольный момент молекулы: соответственно 0,33 ⋅10−29, 0,26⋅10−29 и 0,19⋅10−29 Кл·м. В жидкой и газовой фазах молекулы HCl, HBr, HI, в отличие от HF, не ассоциированы. Прочность связи в ряду HCl — HBr — HI значительно уменьшается, поскольку уменьшается степень перекрывания взаимодействующих электронных облаков. Также уменьшается и их устойчивость к нагреванию.

    В ряду HCl — HBr — HI закономерно изменяются температуры плавления и кипения, но при переходе к HF они резко возрастают. Это объясняется ассоциацией молекул фтороводорода в результате образования водородных связей.

    Галогеноводороды хлора, брома, йода при обычных условиях — газы. Хорошо растворимы в воде, при растворении протекают следующие процессы:

    HHal+h3O→h4O++Hal−{\displaystyle {\mathsf {HHal+H_{2}O\rightarrow H_{3}O^{+}+Hal^{-}}}}

    Процесс растворения сильно экзотермичен. С водой HCl, HBr и HI образуют азеотропные смеси, которые содержат соответственно 20,24; 48; 57 % НГ.

    Галогены в галогеноводородах имеют степень окисления −1. Могут выступать в качестве восстановителей, причём восстановительная способность в ряду HCl — HBr — HI увеличивается:

    HF+h3SO4↛{\displaystyle {\mathsf {HF+H_{2}SO_{4}\nrightarrow }}}
    HCl+h3SO4↛{\displaystyle {\mathsf {HCl+H_{2}SO_{4}\nrightarrow }}}
    2HBr+h3SO4→Br2+SO2+2h3O{\displaystyle {\mathsf {2HBr+H_{2}SO_{4}\rightarrow Br_{2}+SO_{2}+2H_{2}O}}}
    8HI+h3SO4→4I2+h3S+4h3O{\displaystyle {\mathsf {8HI+H_{2}SO_{4}\rightarrow 4I_{2}+H_{2}S+4H_{2}O}}}

    Иодоводород является сильным восстановителем и используется как восстановитель во многих органических синтезах. При стоянии раствор HI вследствие постепенного окисления HI кислородом воздуха и выделения иода постепенно принимает бурую окраску:

    4HI+O2→2h3O+2I2{\displaystyle {\mathsf {4HI+O_{2}\rightarrow 2H_{2}O+2I_{2}}}}

    Аналогичный процесс протекает и в водном растворе HBr, но намного медленнее.

    Растворы галогенов — сильные кислоты, в которых ион H+ выступает в качестве окислителя. Сила кислот увеличивается по мере увеличения номера периода. Галогеноводородные кислоты реагируют с металлами, потенциал которых < 0, но так как ионы I (в меньшей степени Br) хорошие комплексообразователи, HI может реагировать даже с серебром (E0 = +0,8 В).

    2Ag+4HI→2H[AgI2]+h3{\displaystyle {\mathsf {2Ag+4HI\rightarrow 2H[AgI_{2}]+H_{2}}}}

    Фтороводород легко образует полимеры типа (HF)n

    Вытеснение из солей сильными кислотами:

    NaCl+h3SO4→HCl+NaHSO4{\displaystyle {\mathsf {NaCl+H_{2}SO_{4}\rightarrow HCl+NaHSO_{4}}}}
    h3+Cl2→2HCl{\displaystyle {\mathsf {H_{2}+Cl_{2}\rightarrow 2HCl}}}
    h3+Br2→2HBr{\displaystyle {\mathsf {H_{2}+Br_{2}\rightarrow 2HBr}}}
    h3+I2→2HI{\displaystyle {\mathsf {H_{2}+I_{2}\rightarrow 2HI}}}

    Хлор реагирует с водородом бурно, со взрывом, но реакцию необходимо инициировать (путём нагревания или освещения), что связано с её цепным механизмом.

    Взаимодействие водорода с бромом и иодом также включает цепные процессы, но реакция с бромом протекает медленно, а с иодом идёт лишь при нагревании и не доходит до конца, поскольку в системе устанавливается равновесие. Этой закономерности соответствует и изменение ΔH°f.

    • Ахметов Н. С. «Общая и неорганическая химия» М.: Высшая школа, 2001
    • Карапетьянц М. Х., Дракин С. И. «Общая и неорганическая химия» М.: Химия 1994

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *