Фото позистор – Терморезистор (термистор)- что такое и где применяется, параметры и конструкция

Пятна на экране кинескопа.

Неисправность позистора

Среди современных цветных кинескопных телевизоров довольно распространена неисправность позистора в схеме размагничивания кинескопа.

Внешне неисправность позистора может проявляться следующим образом:

  • Телевизор не включается, сгорает защитный предохранитель.

    Предохранитель

  • На цветном экране кинескопного телевизора появляются участки неестественной цветопередачи, попросту – цветные пятна.

    Как правило, искажённая цветопередача заметна в углах экрана. Радужные пятна в углах экрана появляются не сразу, а постепенно, по прошествии какого-то времени.

Такая неисправность иногда вводит людей в заблуждение, что приводит к неверному мнению о том, что неисправен кинескоп телевизора. На самом же деле кинескоп полностью исправен, просто сильно намагничен.

Намагниченность кинескопа может появиться, если телевизор долго не отключали от электросети, т.е. аппарат долгое время работал или находился в дежурном режиме. В результате под действием магнитного поля Земли внутри кинескопа намагнитилась специальная пластина, её называют теневой маской.

Благодаря этой маске на люминофорный слой экрана проецируются три электронных луча: красный, синий и зелёный. Естественно, если она намагничена, то это вносит искажение, и лучи сводятся неправильно. Из-за этого на экране появляются участки неестественной цветопередачи.

Как работает схема размагничивания в кинескопных телевизорах?

На практике применяются две схемы размагничивания. В одной используется двухвыводной позистор, а в другой трёхвыводной. Разница небольшая, но есть. Разберём обе схемы.

Если не знаете, что такое позистор, то прочтите страничку о терморезисторах и их разновидностях.

В цветных кинескопных телевизорах с небольшими диагоналями экрана (21 и менее дюймов) схема размагничивания кинескопа реализована по довольно простой схеме. Вот взгляните.

Схема размагничивания кинескопа с последовательно включенным позистором.

Схема состоит из позистора (PTC) и катушки индуктивности («петли»). Она обозначена как L1. Катушка L1 представляет собой своеобразный электромагнит. Благодаря ей снимается намагниченность с маски кинескопа.

Каждый раз при включении телевизора через катушку начинает течь довольно существенный ток, амплитудой около 10 ампер и частотой электросети (50 Гц). Этот ток в катушке порождает электромагнитное поле. Оно и размагничивает маску кинескопа. Чтобы электромагнитное поле плавно и быстро затухало, последовательно с катушкой устанавливается позистор (PTC). Напомню, что при комнатной температуре, в так называемом, «холодном» состоянии его сопротивление мало и равно всего 18 ~ 24 Омам.

Под действием большого броска тока он моментально разогревается и его сопротивление резко возрастает. В результате ток в катушке («петле») уменьшается, а, следовательно, и электромагнитное поле, которое требовалось для размагничивания кинескопа. На этом всё, кинескоп размагничен.

Далее, пока телевизор работает или просто «отдыхает» в дежурном режиме, позистор в цепи размагничивания находится в «подогретом» состоянии и ограничивает до минимума ток в катушке размагничивания L1. Так продолжается до тех пор, пока телевизор не отключат от сети 220V и позистор не остынет. При следующем включении телевизора он вновь сработает совместно с петлёй размагничивания.

Данная схема размагничивания работает только при непосредственном включении сети 220 V. Если же телевизор длительное время не отключался от сети 220 V, например, находился в дежурном режиме, то естественно, схема размагничивания при включении не сработает.

Поэтому рекомендуется периодически, хотя бы раз в неделю полностью выключать телевизор (кнопкой Power или просто отключить сетевое питание, выдернув вилку из розетки). Так мы дадим возможность позистору остыть.

Также весьма распространена схема размагничивания, в которой применяется трёхвыводной позистор. Вот взгляните.

Схема включения петли размагничивания с трёхвыводным позистором

Как видим, здесь много общего с той схемой, что мы видели ранее. Работает она аналогичным образом. При включении телевизора через 2-ой позистор и катушку размагничивания L1 начинает течь большой ток. Далее сопротивление позистора резко возрастает, а ток в цепи резко падает.

Также в момент включения начинает течь ток (синяя стрелка) и через 1-ый позистор. В начальный момент его сопротивление велико и равно примерно 1,3 ~ 3,6 кОм. Позистор разогревается и его сопротивление растёт. В дальнейшем слабый ток лишь подогревает его, а, следовательно, и 2-ой позистор, который конструктивно установлен рядом с ним. Благодаря такому подогреву уменьшается остаточный ток, который протекает через 2-ой позистор уже после того, как петля размагничивания сработала. Это исключает «фоновое», слабое подмагничивание.

Стоит заметить, что в более качественных телевизорах применяется схема с трёхвыводным позистором.

Также отмечу, что у более дорогих и широкоформатных CRT-телевизоров схема размагничивания включается автоматически каждый раз при его включении. Даже в том случае, если телевизор находился в «спящем», так называемом дежурном режиме.

Рассмотрим устранение неисправности схемы размагничивания кинескопа на примере ремонта цветного телевизора

DAEWOO KR21S8.

Телевизор Daewoo KR21S8

Первоначально телевизор не включался.

После внешнего осмотра электронной платы и замены сетевого предохранителя новым, была произведена попытка включения телевизора. Сетевой предохранитель вновь сгорел, что свидетельствовало о коротком замыкании в цепях импульсного источника питания.

После замера сопротивления в электронной схеме оказалось, что в коротком замыкании виноват вышедший из строя позистор. Позистор имел низкое сопротивление в рабочем состоянии, вследствие чего образовывалась цепь короткого замыкания, состоящая из самого позистора и катушки петли размагничивания. Это и приводило к перегоранию сетевого предохранителя.

После отключения разъёма катушки размагничивания от основной платы и повторной установки защитного предохранителя телевизор стал включаться и исправно работать.

Петля размагничивания

Разъём подключения катушки петли размагничивания на плате обозначается надписью D/G COIL (от DeGaussing – размагничивание).

Замена позистора

Исправен позистор или нет, можно определить внешним осмотром. Если вскрыть крышку позистора, то внутри будет две “таблетки” (в случае трёхвыводного позистора). При целостности обоих – позистор, как правило, исправен. Если одна из “таблеток” имеет трещины, отколовшиеся куски и подгорелости на поверхности, то в большинстве случаев позистор испорчен.

Неисправный позистор

Также стоит отметить, что у трёхвыводных позисторов одна «таблетка» имеет сопротивление в районе 18 ~ 24 Ом. Она включается последовательно с петлёй размагничивания. Вторая «таблетка» обычно имеет меньший размер, но сопротивление её при комнатной температуре 1,3 ~ 3,6 килоОм (т.е. 1300 ~ 3600 Ом). Эта «таблетка», а точнее PTC-термистор исполняет роль подогревателя основного позистора.

У двухвыводного позистора сопротивление при комнатной температуре составляет 18 ~ 24 Ом. В этом не трудно убедиться, замерив сопротивление обычным мультиметром.

Маркируются позисторы по-разному, но многие из них взаимозаменяемы. Конструктивно же они мало чем отличаются друг от друга.

Позисторы

Если под рукой нет необходимого позистора, то его можно подобрать, применив вот такой совет телемастеров.

Замеряем сопротивление петли размагничивания, и подбираем позистор с близким сопротивлением. Например, если сопротивление петли 18~20 Ом, то берём позистор с сопротивлением 18 Ом. У трёхвыводного позистора низкоомной является лишь одна секция, та, которая подключается последовательно с петлёй. Её и нужно замерять. В маркировке многих позисторов указывается сопротивление петли, для которой предназначен данный позистор. Например, позистор MZ73-18RM на 18 Ом и подойдёт для петли, сопротивлением 18 Ом.

Чисто технически, неисправный позистор можно просто выпаять из платы, телевизор будет работать и без схемы размагничивания, но со временем кинескоп намагнитится, и на экране появятся разноцветные пятна. Поначалу пятна будут незаметны, и проявляться в углах экрана. В дальнейшем весь кинескоп будет в радужных разводах.

Как правило, так и проявляется дефект, когда телевизор включается, но на экране цветные пятна. В этом случае позистор просто не работает, имеет высокое сопротивление или же пропускает незначительный ток через катушку, которая и становится причиной намагниченности кинескопа.

Размагничивание кинескопа после замены позистора.

Если кинескоп намагничен не сильно, то снять намагниченность можно простым способом.

После замены позистора необходимо несколько раз произвести процедуру включения и выключения телевизора с перерывами в 15 – 20 минут. Перерывы между включениями необходимы для того, чтобы позистор остыл и его сопротивление уменьшилось. Если этого не сделать, то позистор будет иметь высокое сопротивление, и через катушку размагничивания не будет протекать ток.

Обычно процедуру включения / выключения нужно повторить 5 -7

раз, до полного исчезновения цветных пятен.

При сильной намагниченности кинескопа следует воспользоваться внешней петлёй размагничивания.

Намагниченность кинескопа в современных телевизорах легко проверить с помощью простой операции. Необходимо зайти в меню настроек телевизора и включить опцию “Синий экран”. Если эта опция включена, то при отключенной антенне или при слабом принимаемом сигнале экран заливается синим цветом вместо ряби. После того, как включили опцию “Синий экран”, отключаем приёмную антенну. При этом экран должен стать синим. Если на синем фоне есть разноцветные пятна, то экран намагничен. На фотографии показан цветной телевизор с неисправным позистором в цепи размагничивания. На большей части экрана телевизора красное пятно. Понятно, что при такой неисправности изображение на экране будет отражаться неестественно.

Намагниченный кинескоп
Намагниченный кинескоп

Размагниченный кинескоп
Размагниченный кинескоп

После замены неисправного позистора и процедуры размагничивания, о которой было рассказано, на экране чистое синее поле. Это свидетельствует о снятии намагниченности кинескопа.

И напоследок пару примеров для начинающих радиомехаников. Применение двухвыводного и трёхвыводного позистора. Примеры взяты из реальных принципиальных схем телевизоров.

DEGAUSSING COIL — это и есть та самая катушка или «петля» размагничивания.

Последовательное включение двухвыводного позистора и петли размагничивания (Rolsen C2121, шасси EX-1A).

Схема включения петли размагничивания с двухвыводным позистором

Включение трёхвыводного позистора в цепи размагничивания (AIWA TV-C141).

Схема включения петли размагничивания с трёхвыводным позистором

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

определение, виды, как работает и где используется

В статье расскажем про фоторезистор, его определение и виды, как он работает, преимущества и недостатки. А также познавательное видео, где подробно рассказывается про фоторезистор и где он используется.

Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор. Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света. Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.

Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом. Фоторезистор меняет свое сопротивление только при воздействии света.

Как работает фоторезистор

Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами. Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.

На рисунке показаны фотоны электроны и атомы

Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами. Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.

Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому. Следовательно, они свободно перемещаются из одного места в другое. Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.

Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место. Эта место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.

на картинке валентный электрон покинул атом

Свободные электроны, которые свободно перемещаются из одного места в другое, переносят электрический ток. Аналогичным образом, дырки, движущиеся в валентной зоне, переносят электрический ток. Аналогично, и свободные электроны, и дырки будут нести электрический ток. Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).

Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается. В результате электрический ток, протекающий через фоторезистор, увеличивается.

Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.

Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.

При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.

Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:

Типы фоторезисторов

Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:

  • Внутренний фотоэффект
  • Внешний фотоэффект

Фоторезистор с внутренним фотоэффектом

Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов. Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку. В результате ни один электрон не остается свободным.

На рисунке фоторезистор с внутренним фотоэффектом

Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.

Мы уже знали, что увеличение электрического тока означает снижение сопротивления. В фоторезисторах с внутренним фотоэффектом сопротивление несколько уменьшается с увеличением энергии света. Следовательно, внутренние фоторезисторы менее чувствительны к свету. Поэтому они не надежны для практического применения.

Фоторезистор с внешним фотоэффектом

Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.

Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов. Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния. Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома. Таким образом, каждый атом фосфора генерирует свободный электрон.

на рисунке фоторезистор с внешним фотоэффектом

Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.

В внешних фоторезисторах у нас уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.

Увеличение электрического тока означает снижение сопротивления. Следовательно, сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Символ фоторезистора на схеме

Преимущества и недостатки фоторезистора

Преимущества фоторезистора

  • Маленький по размеру
  • Бюджетный
  • Легко переносить из одного места в другое.

Недостатки фоторезистора

  • Точность фоторезистора очень низкая.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Пример схемы датчика освещенности
Пример схемы датчика освещенности

Световой датчик

Если требуется базовый датчик освещенности, можно использовать схему LDR, такую ​​как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится. Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству. Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.

Аудио компрессоры

Аудио компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков. Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала. Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.

Фоторезистор | Описание, предназначение, принцип работы

Что такое фоторезистор

Фоторезистор представляет из себя полупроводниковый радиоэлемент, который меняет свое сопротивление в зависимости от освещения. Для видимого света (солнечный свет или свет от осветительных ламп) используют сульфид или селенид кадмия. Есть также фоторезисторы, которые регистрируют инфракрасное излучение. Их делают  из германия с некоторыми примесями других веществ. Свойство менять свое сопротивление под воздействием света очень широко используется в электронике.

Внешний вид и обозначение на схеме

В основном фоторезисторы выглядят вот так

фоторезистор

плоский фоторезисторсоветский фоторезистор

На схемах могут обозначаться так

или так

Как работает фоторезистор

Давайте рассмотрим одного из представителя семейства фоторезисторов

фоторезистор сф3-1

На нем, как и во всех фотоэлементах, есть окошко, с помощью которого он “ловит” свет.

окошко фоторезистора

Сбоку можно прочитать его маркировку

советский фоторезистор

Главным параметром фоторезистора является его темновое сопротивление. Темновое сопротивление фоторезистора — это его сопротивление при полном отсутствии падения света на него. Судя по справочнику, темновое сопротивление нашего подопечного 15х108 Ом или словами — 1,5 ГОм. Можно даже сказать — полнейший обрыв. Так ли это? Давайте глянем. Для этого я использую свою записную книжку и прячу там фоторезистор:

темновое сопротивление фоторезистора

Даже в диапазоне 200 МОм мультиметр показал единичку. Это означает, что сопротивление фоторезистора далеко за 200 МОм.

Убираем нашего подопытного из книжки и включаем в комнате свет. Результат сразу же на лицо:

Фоторезистор

106,7 КОм.

Теперь включаю свою настольную лампу. В комнате стало еще светлее.  Смотрим на показания мультиметра:

сопротивление фоторезистора

76,2 КОм.

Подношу фоторезистор вплотную к настольной лампе:

фоторезистор под светом

18,6 КОм

Делаем вывод: чем больше поток света попадает на фоторезистор, тем меньше его сопротивление.

Заключение

Широко используются фоторезисторы в полиграфии для обнаружения обрывов бумажной ленты, подаваемых в печатную машину. Они также осуществляют контроль уровня жидкости и сыпучих тел, защищают персонал от входа в опасные зоны. Автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов. Фоторезисторы нашли применение в медицине, сельском хозяйстве и других областях. В настоящее время они вытесняются другими фото-радиоэлементами. Это могут быть фототранзисторы, фотодиоды, а также бесконтактные датчики.

Ремонт телевизора «Samsung CS -21m21z» — Радиомастер инфо

 

TV 1

Телевизор поступил в ремонт после аварийного скачка напряжения сети в квартире. Нет даже дежурного режима, т.е. никаких признаков жизни.

 

 

 

 

Материал статьи продублирован на видео:

Осматриваем телевизор до открывания корпуса. На задней панели читаем информацию о модели и шасси телевизора. Это нужно для поиска схемы, если ремонт телевизора окажется сложным.

 

 

Ремонт телевизора начинаем с того, что открываем корпус и делаем внешний осмотр всех блоков и деталей.

Вся плата1

Видимые повреждения обнаруживаем в районе сетевого разъема. На фото ниже показан перегоревший предохранитель.

Предохр горелый1

Осматриваем блок питания со стороны печатной платы. Здесь не видно внешних дефектов.

БП печать1

Меняем горелый предохранитель на целый. Измеряем сопротивление нагрузки на выводах сетевого разъема. Оно составляет 34,8 Ом. Это может быть сопротивление петли размагничивания с позистором. Отключаем петлю и снова измеряем сопротивление на сетевом разъеме. Теперь оно больше 1 кОм, т.е. норма. Для надежности измеряем сопротивление на электролитическом конденсаторе, который установлен после диодного моста. Предварительно конденсатор нужно разрядить, желательно не пинцетом, а резистором около 100 Ом, чтобы не создавать большую искру. При одной полярности оно больше 2 кОм, при другой небольшое. Похоже, что остальная часть схемы исправна.

Сет разъем 34 Ом1

 

Пробуем кратковременно включить телевизор в сеть, внимательно наблюдая за деталями платы.

Сразу после подачи напряжения, задымил позистор и снова сгорел предохранитель. Еще раз осматриваем позистор и проверяем петлю размагничивания.

Позистор имеет трещины на корпусе. Это конечно может быть и у исправного элемента, так как он при работе греется. Осмотр петли размагничивания подозрений не вызвал. Сопротивление ее 18 Ом, что является нормой. Может быть, конечно, витковое замыкание, но маловероятно. Будем выпаивать и внимательно проверять позистор.

Позистор верх тресн1

 

Конечно трещин на его корпусе многовато.

Позистор снят бок тресн1

После осмотра внутренностей позистора сомнений не остается, он неисправен, мало того два его контакта замкнуты, что  вызвало большой ток и перегорание предохранителя.

Позистор открыт рассыпан1

Вообще то в данном случае повезло, что при скачке напряжения сети замкнул позистор. В этой модели телевизора нет защитного варистора после предохранителя, который должен вызывать перегорание этого предохранителя при повышении напряжения сети сверх нормы. Его роль поневоле взял на себя позистор и спас схему телевизора от серьезных повреждений.

После замены позистора на исправный телевизор полностью заработал. Это довольно простой ремонт телевизора и схема не понадобилась.

Отправить ответ

avatar
  Подписаться  
Уведомление о