Формулы импульсы – Закон сохранения импульса ℹ️ определение, формула и формулировка, условия выполнения, сущность физического явления, решение задач

Импульс — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Импульс тела

К оглавлению…

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Формула Импульс тела

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Формула Общий импульс системы тел

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

Формула Изменение импульса тела или системы тел

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

 

Закон сохранения импульса

К оглавлению…

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Формула Второй закон Ньютона в импульсной форме

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Формула Закон сохранения импульса

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Формула Закон сохранения проекции импульса

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

 

Сохранение проекции импульса

К оглавлению…

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

 

Многомерный случай ЗСИ. Векторный метод

К оглавлению…

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Закон сохранения импульса в векторной форме

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

Импульс силы | Все Формулы

    \[ \]

Импульс силы — это векторная физическая величина, равная произведению силы на время её действия, мера воздействия силы на тело за данный промежуток времени.

    \[\Large p=Ft=m\upsilon-m\upsilon_0\]

Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы. Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела.

Формула для нахождения импульса тела вытекает из всем извесного Второго закона Ньютона

    \[\Large F=ma \]

А ускорение найдем через разность скоростей на время.

    \[\Large F=m(\frac{\upsilon -\upsilon _0}{t})\]

Отсюда и получается, что импульс силы

    \[\large Ft=m\upsilon-m\upsilon_0\]

Из импульса силы вытекает закон сохранения импульса

    \[\Large m_1\upsilon_1+m_2\upsilon _2=m_1\upsilon _1^

Так же есть:

Импульс тела

    \[\Large p=m\upsilon\]

В Формуле мы использовали :

p=Ft — Импульс силы

m — Масса тела

F — Сила приложенная к телу

t — Время действия силы

    \[\upsilon\]

— Конечная скорость тела

    \[\upsilon_0\]

— Начальная скорость тела

Импульс тела. Импульс силы. Закон сохранения импульса | LAMPA

Закон сохранения импульса

Импульс вводился не случайно. Оказывается, импульс тела никуда не девается — он сохраняется. Мы предлагаем вам убедиться в этом. Рассмотрим простой случай — столкновение двух шаров.

То, что будет происходить между этими двумя шарами, можно изобразить на рисунке. При этом можно выделить три этапа:

  • ситуация «до» (до столкновения)
  • само столкновение
  • ситуация «после» (после столкновения).

«До»: шары летели навстречу друг к другу; «после»: шары разлетелись после столкновения; столкновение: шары действовали друг на друга.

Нам интересен момент столкновения. Первый шар действует на второй с силой F⃗21\vec{F}_{21}F⃗21​, а второй шар действует на первый с силой F⃗12\vec{F}_{12}F⃗12​. По 3-му закону Ньютона эти силы равны друг другу по модулю и противоположны по направлению:

F⃗21=−F⃗12\vec{F}_{21}=-\vec{F}_{12}F⃗21​=−F⃗12​.

Домножим это равенство на длительность столкновения Δt\Delta tΔt:

F⃗21⋅Δt=−F⃗12⋅Δt\vec{F}_{21}\cdot\Delta t=-\vec{F}_{12}\cdot\Delta tF⃗21​⋅Δt=−F⃗12​⋅Δt.

У нас получились импульсы сил, действующие на каждое из тел. Мы помним, импульс силы равен изменению импульса тела. Можем записать:

Δp⃗2=−Δp⃗1\Delta\vec{p}_2=-\Delta\vec{p}_1Δp⃗​2​=−Δp⃗​1​.

Распишем изменение импульсов тел. Буквой VVV будем обозначать скорости до столкновения, а буквой UUU — скорости после столкновения.

m2(U⃗2−V⃗2)=−m1(U⃗1−V⃗1)m_2(\vec{U}_2-\vec{V}_2)=-m_1(\vec{U}_1-\vec{V}_1)m2​(U⃗2​−V⃗2​)=−m1​(U⃗1​−V⃗1​).

Если отбросить знак «минус», то изменения импульсов тел равны друг другу. Можно заметить интересную вещь: если два тела разной массы сталкиваются, то скорость более легкого тела (с меньшей массой) в результате столкновения изменится сильнее.

Продолжаем наши преобразования:

m2U⃗2−m2V⃗2=−(m1U⃗1−m1V⃗1)m_2\vec{U}_2-m_2\vec{V}_2=-(m_1\vec{U}_1-m_1\vec{V}_1)m2​U⃗2​−m2​V⃗2​=−(m1​U⃗1​−m1​V⃗1​),

m2U⃗2−m2V⃗2=−m1U⃗1+m1V⃗1m_2\vec{U}_2-m_2\vec{V}_2=-m_1\vec{U}_1+m_1\vec{V}_1m2​U⃗2​−m2​V⃗2​=−m1​U⃗1​+m1​V⃗1​,

m2U⃗2+m1U⃗1=m2V⃗2+m1V⃗1m_2\vec{U}_2+m_1\vec{U}_1=m_2\vec{V}_2+m_1\vec{V}_1m2​U⃗2​+m1​U⃗1​=m2​V⃗2​+m1​V⃗1​.

Что получилось? Получился закон сохранения импульса.

Закон сохранения импульса. Векторная сумма импульсов тел до взаимодействия равна векторной сумме импульсов тел после взаимодействия:
векторная сумма того, что было «до» = векторная сумма того, что стало «после».

Небольшое дополнение. Мы рассматривали ситуацию, в которой не было никаких внешних сил: никто «извне» не действовал на шары. Закон сохранения импульса справедлив для случая, когда внешние силы не действуют на систему тел или же действие внешних сил скомпенсировано. Такие системы тел называются замкнутыми.

Порешаем задачки.

Условие

Одинаковые шары движутся с одинаковыми по модулю скоростями в направлениях, указанных стрелками на рисунке, и абсолютно неупруго соударяются.

Как будет направлен импульс шаров после их столкновения?

  1. ↙\swarrow↙
  2. ←\leftarrow←
  3. ↓\downarrow↓
  4. ↖\nwarrow↖

(Источник: ЕГЭ-2014. Физика. Досрочный этап. Вариант 1)

Решение

Начнем с того, что поясним, что такое «неупругий удар». Неупругий удар или столкновение — это столкновение, которое приводит к «слипанию» соударяющихся тел. При неупругом ударе не выполняется закон сохранения механической энергии. Но об этом в следующих темах. В этой задаче для нас важно то, что после соударения тела будут двигаться вместе — «слипнутся».

В задаче говорится о том, что было «до», а спрашивается про то, что стало «после». Даны направления скоростей. Очень похоже на то, что это задача на закон сохранения импульса. Что мы знаем из него? Мы знаем, что в замкнутой системе тел векторная сумма импульсов тел «до» соударения равна векторной сумме импульсов тел «после»:

m1U⃗1+m2U⃗2=m1V⃗1+m2V⃗2m_1\vec{U}_1+m_2\vec{U}_2=m_1\vec{V}_1+m_2\vec{V}_2m1​U⃗1​+m2​U⃗2​=m1​V⃗1​+m2​V⃗2​.

В нашем случае m1=m2=mm_1=m_2=mm1​=m2​=m, а после столкновения шары «слипаются», поэтому закон сохранения импульса примет вид

mU⃗1+mU⃗2=2mV⃗m\vec{U}_1+m\vec{U}_2=2m\vec{V}mU⃗1​+mU⃗2​=2mV⃗,

где V⃗\vec{V}V⃗ — скорость совместного движения шаров после столкновения, а U⃗1\vec{U}_1U⃗1​ и U⃗2\vec{U}_2U⃗2​ — скорости шаров до столкновения. Направление импульса шаров после столкновения, о котором спрашивается в задаче, — это направление вектора 2mV⃗2m\vec{V}2mV⃗.

Как его найти? Направление вектора в правой части равенства совпадает с направлением вектора в левой части равенства. Попробуем сложить импульсы шаров до столкновения, чтобы получить векторную сумму импульсов и определить ее направление.

Направления импульсов до столкновения нам известны (направления импульсов совпадают с направлениями скоростей, а они указаны на рисунке). Так как шары были одинаковыми и двигались с одинаковыми скоростями, модули импульсов шаров были равны. Складываем векторы импульсов по правилу параллелограмма.

Видно, что суммарный импульс направлен влево. По закону сохранения импульса в ситуации «после» суммарный импульс будет направлен точно так же. Значит, подходит ответ 2).

Ответ. 2) ←\leftarrow←

Решим еще одну задачу.

Условие

Мальчик массой 505050 кг находится на тележке массой 505050 кг, движущейся по гладкой горизонтальной дороге со скоростью 111 м/с. Каким станет модуль скорости тележки, если мальчик прыгнет с нее со скоростью 222 м/с относительно дороги в направлении, противоположном первоначальному направлению движения тележки? Ответ выразите в м/с.

(Источник: ЕГЭ-2013. Физика. Реальный экзамен)

Решение

Шаг 1. Мы думаем, что вы согласитесь с тем, что без рисунка непросто представить, что именно происходит в этой задаче. Давайте сделаем рисунок. У нас на рисунке будут изображены две ситуации: ситуация «до» и ситуация «после». На рисунке кроме самих предметов нужно также указать направление скоростей и ось, на которую мы будем проецировать эти скорости. Должно получиться что-то вроде этого:

Шаг 2. Отлично! Теперь можно записать закон сохранения импульса в векторной форме.

Импульс силы | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Импульс силы — это векторная физическая величина, равная произведению силы на время её действия, мера воздействия силы на тело за данный промежуток времени.


Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы. Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела.

Формула для нахождения импульса тела вытекает из всем извесного Второго закона Ньютона

А ускорение найдем через разность скоростей на время.

Отсюда и получается, что импульс силы

Из импульса силы вытекает закон сохранения импульса

Так же есть:

Импульс тела

В Формуле мы использовали :

— Импульс силы

— Масса тела

— Сила приложенная к телу

— Время действия силы

— Конечная скорость тела

— Начальная скорость тела

Импульс силы — Википедия

Материал из Википедии — свободной энциклопедии

И́мпульс си́лы — это векторная физическая величина, равная произведению силы на время её действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).

За конечный промежуток времени эта величина равна определённому интегралу от элементарного импульса силы, где пределами интегрирования являются моменты начала и конца промежутка времени действия силы. В случае одновременного действия нескольких сил сумма их импульсов равна импульсу их равнодействующей за то же время.

N→=∫t0tF→(t)dt{\displaystyle {\vec {N}}=\int \limits _{t_{0}}^{t}{\vec {F}}(t)\;\mathrm {d} \,t}

Во вращательном движении момент силы, действуя в течение определённого времени, создаёт импульс момента силы. Импульс момента силы — это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вращательном движении):

M→=∫t0t[r→;F→(t)]dt{\displaystyle {\vec {M}}=\int \limits _{t_{0}}^{t}[{\vec {r}};{\vec {F}}(t)]\;\mathrm {d} \,t}

где [⋅;⋅]{\displaystyle [\cdot ;\cdot ]} — векторное произведение.

Теорема об изменении количества движения системы[править | править код]

Понятие импульса силы позволяет сформулировать теорему об изменении количества движения системы для произвольных систем:

p→2−p→1=N→,{\displaystyle {\vec {p}}_{2}-{\vec {p}}_{1}={\vec {N}},}

где p→1{\displaystyle {\vec {p}}_{1}} — начальный, а p→2{\displaystyle {\vec {p}}_{2}} — конечный импульс изолированной системы, взаимодействующей с другими системами лишь посредством сил. Фактически, в этой формулировке закон сохранения импульса эквивалентен второму закону Ньютона и является его интегралом по времени, так как

dp→dt=∑iF→i.{\displaystyle {\frac {d{\vec {p}}}{dt}}=\sum _{i}{\vec {F}}_{i}.}

Импульс тела | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Импульс тела — это физическая векторная величина, равная произведению массы тела на его скорость


Каждое тело, которое имеет массу и скорость, так же имеет и импульс.

Пусть на тело массой в течение некоторого малого промежутка времени Δt действовала сила F. Под действием этой силы скорость тела изменилась на . Следовательно, тело на промежутке Δt двигалось с ускорением

На основе Второго закон Ньютона

А если немного преобразовать, то у нас получится:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела . А физическая величина, равная произведению силы на время ее действия, называется импульсом силы .

Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с)

В Формуле мы использовали :

— Импульс тела

— Масса тела

— Скорость тела

Импульс тела, силы. Изменение и направление вектора, единицы измерения. Связь с законом Ньютона. Примеры

Тестирование онлайн

  • Импульс тела, импульс силы. Основные понятия

  • Импульс тела, импульс силы

Импульс тела

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.

Импульс это векторная величина, которая определяется по формуле

Импульс служит мерой того, насколько велика должна быть сила, действующая в течение определенного времени, чтобы остановить или разогнать его с места до данной скорости.

Направление вектора импульса всегда совпадает с направлением вектора скорости.

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю. После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Импульс силы

Это векторная величина, которая определяется по формуле

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара — 30 м/с. Сила, с которой нога действовала на мяч — 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Изменение импульса тела

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов.

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры, сила тяжести.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Импульс силы численно равен площади фигуры под графиком F(t).

Если же сила непостоянная во времени, например линейно увеличивается F=kt, то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *