Формула сечения провода: Как определить площадь сечения провода — Ремонт в квартире

Содержание

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля

Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.

Чем отличается кабельная продукция, какие основные характеристики?

Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.

Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится.

Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.

Допустимое напряжение определяется изоляцией кабеля

Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.

Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.

Что влияет на допустимый ток через кабель?

Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название.

Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.

Если выразить его через плотность тока получится такая формула:

Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.

Так как проводимость обратно пропорциональна сопротивлению: σ=1/R

Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:

Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.

То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.

Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.

В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:

Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).

Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:

Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.

Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.

В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.

Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2 (смотрите — Почему алюминиевый кабль нельзя использовать в электропроводке)

Как определить сопротивление провода по диаметру жилы?

Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру.

Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.

Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.

Дальше считают поперечное сечение по этой формуле:

И вновь возвращаются к этой формуле для расчета сопротивления провода:

Как определить необходимую площадь сечения провода?

Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.

При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:

Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:

5%*220=11В.

Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.

Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.

Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.

Заключение

Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».

Определяем площадь свечения

Зачем же все таки правильно определять сечение кабеля? Что случится, если произвести монтаж неподходящего кабеля? Предположим, вы рассчитали, что номинальная нагрузка данной линии 25 А, значит, для монтажа электропроводки вам нужен кабель диаметром 2,5 мм. кв. У вас имеется кабель без маркировки (маркировка могла стереться, смазаться) похожий на 2,5 мм кв., но на самом деле он меньше — 1,5 мм. кв. Кабель с сечением 1,5 мм не выдержит подобной нагрузки, так как он предназначен для линии с нагрузкой 10-12 А. В результате изоляция нагреется, оплавится, что грозит замыканием и как следствие — пожаром.

 Бывает, что приобретенный кабель на самом деле имеет сечение меньше указанного производителем.  Допустим, вы приобрели провод сечением 4 мм, хотя на самом деле сечение составляет 3,5 мм. В результате чего нагрузочная способность также уменьшается, что влечет за собой негативные последствия. Почему сечение кабеля может быть меньше указанного? Так некоторые компании хотят сэкономить круглую сумму денег, вот и понижают сечение провода.Так что знать действительное сечение провода необходимо для безопасной и продолжительной эксплуатации.


Расчет сечения кабеля подручными средствами

Чтобы рассчитать площадь сечения жилы, для начала нужно узнать ее диаметр. В этом поможет микрометр — особый прибор, измеряющий диаметр жилы провода с высокой точностью. Для этой же задачи подойдет штангенциркуль. Профессиональному электрику приобретение микрометра необходимо в силу специфики работы. Для простого человека, которому понадобилось произвести замер 1 раз, нет смысла покупать микрометр.

 Но что делать, если даже штангенциркуль дома не нашелся? Есть вполне достойный, альтернативный метод.  Вам понадобится линейка, простой карандаш или ручка. Только не пытайтесь измерить диаметр при помощи линейки! Такой метод даст большую погрешность. Линейка понадобится чуть позже. Берется кусок провода, предварительно зачищенный от изоляции примерно на 40 см, и наматывается на карандаш. Важно наматывать как можно плотнее! Если между витками останутся зазоры, измерения будут неверны. Считается, сколько витков вышло, а их длина измеряется линейкой. Например, на карандаше 21 виток, длина витков 37 мм. Длина витков делится на их количество и получается диаметр жилы (37/21=1,762).


Немного геометрии

Далее нужно вспомнить курс школьной геометрии и применить формулу вычисления площади круга: (S=ПИ*D2/4), для облегчения расчетов можно преобразовать формулу (S=0,785*D2), где D — диаметр, а 0,785 — число ПИ разделенное на 4. Подставляем наши значения, результат округляем до сотых:(1,762*1,762)*0,785=2,44 мм. Точность полученных данных зависит от плотности намотки, и количества витков — чем их больше, тем точнее будет результат. Вот таким простым методом можно вычислить сечение одножильного кабеля.

Определяем сечение многожильного провода


Но если кабель многожильный?  Потребуется значение сечения одной из жил, а высчитывается оно по вышеприведенной формуле. Далее умножается площадь одной жилы на их количество. Ну например: площадь жилы равна 0,2 мм, всего жил 15. Умножаем: 15*0,2=3мм. Но бывает, что жилы в кабеле не прилегают вплотную, и между ними образуется зазор, который нужно учесть. Если такой зазор имеется, результат умножается на 0,9. Возьмем наши значения: 3*0,9=2,7.

Заключение

Правда, у этого метода определения есть свои минусы — с его помощью можно узнать сечения только маленьких размеров. Разве реальным будет намотать на карандаш провод сечением 6 мм. кв.? Тут, конечно, без специального прибора никак не обойтись. Существуют специальные таблицы с номинальным значением сечения кабелей, как одножильных, так и многожильных, и соответствующие значения диаметров. Но для того, чтобы проложить проводку у себя в квартире, способа с карандашом будет вполне будет достаточно.

Торговая сеть «Планета Электрика» имеет большой ассортимент кабельно-проводниковой продукции, с которым можно ознакомиться в нашем каталоге.

Основные особенности расчета кабеля по его длине

Одним из самых важных критериев в процессе выбора кабеля, который обеспечивает электропитание, является определенное количество величин, потому стоит обращать внимание на такой способ, как расчет сечения кабеля по нагрузке, а также расчет по сечению. Для того чтобы обеспечить высокий уровень безопасности и предельной надежности, очень важно обратить внимание на длину каждого из элементов линии, кроме того, всей линии в целом. Стоит отметить, что практически все современные приспособления в первую очередь рассчитаны на какие-то определенные максимальные значения рабочего напряжения, которое может быть равно показателям от 185 до 240 Вольт. Именно по этой причине, если при расчете не учитывать показатели потери напряжения, которые связаны именно с длиной кабеля, появляется большая вероятность того, что напряжение на конце линии будет значительно меньше, чем то, что требуется для обеспечения нормальной работы всех имеющихся устройств. В свою очередь это может привести к невозможности их эксплуатации или, что еще более неприятно, могут вообще выйти из строя. Таким образом, проводя подобные расчеты сечения кабеля по показателям длины, можно обеспечить безопасность и качественную работу всей системы в целом.

Расчет сечения кабеля по длине в быту

Прежде всего, подобный метод идеально подойдет в быту. Как правило, такой расчет в данных условиях необходим в процессе изготовления удлинителей, которые рассчитаны на достаточно большие расстояния. Что касается остальных случаев, то при прокладке кабеля в бытовых условиях подобные сложные расчеты не требуются. Это основано на том, что длина линий в быту отличается относительно небольшой длиной, потому все потери напряжения настолько малы, что ими вполне можно пренебречь. Несмотря на это, в процессе прокладки линии всегда следует оставлять определенный запас, равный примерно 15 см, причем оставлять его требуется с каждой стороны на проведение таких процессов, как коммутация проводов, их подключение, где осуществляется такой процесс, как пайка, сварка или обжим. Что касается концов кабелей, то те, которые входят в щиток, должны иметь еще больший запас для подключения защитной автоматики и достаточно аккуратной укладки.

Говоря иными словами, в бытовых условиях на той поверхности, где планируется прокладывать кабель, прежде всего, стоит проставить определенные отметки мест расположения розеток, выключателей, электропотребителей, коммутационных коробок и иных подобных приспособлений. После этого рулеткой осуществляется замер расстояния и отрезается кабель, но с небольшим запасом. По окончании данных работ крепится непосредственно сам кабель к поверхности, но в строго соответствии со всеми требованиями ПУЭ.

Многие монтажники, имеющие большой опыт работы в данной сфере деятельности, а также те, которые имеют напарника, поступают еще более просто, что позволяет им сэкономить немалое количество времени. В самом начале производится разметка расположения таких устройств, как коммутационные коробочки, выключатели и розетки. Затем, без предварительного замера осуществляется прокладка и крепление кабеля, но с запасом, после чего отрезается.

Расчет сечения кабеля по длине в промышленности

Что касается области промышленности, то здесь требуемый расчет сечения кабеля по длине осуществляется уже на этапе проектирования электрических сетей. Подобные расчеты важно сделать в том случае, если на кабель будут возложены долговременные и достаточно серьезные нагрузки.

Практически все проводники по причине своих свойств, обладают определенной величиной электрического сопротивления, которое может вызвать потери в процессе прохождения по проводам электрического тока. Стоит отметить такие факторы, влияющие на параметры величины потерь и сопротивления, как материал, из которого выполнен проводник, то есть алюминий и медь, имеет значение сечение проводника, как правило, чем меньше сечение, тем потери больше. Кроме того, важна длина проводника, то есть чем больше данный параметр, тем соответственно больше и потери.

На основании всех вышеперечисленных факторов становится ясно, по какой причине в проводниках присутствует явление некоторого падения напряжения, которое, как правило, равно величине тока, умноженного на показатели сопротивления проводника. Согласно установленным правилам, примерное значение падения показателей напряжения должно быть равно 5%. Если данный параметр немного выше, проводник следует подобрать с большим сечением.

Как осуществляется расчет сечения кабеля по длине

Для осуществления подобных расчетов, как правило, используется специальная формула. В ней содержаться показатели длины, удельное сопротивление самого проводника, площадь сечения. При этом сопротивление определяется по специальным справочным таблицам, при этом можно убедиться в том, что много здесь зависит от марки провода и самого кабеля. После определения всех необходимых составляющих, определяются особые расчетные значения тока. Для этой цели суммарная мощность нагрузки разделяется на величину показателей напряжения в сети. По специальной справочной формуле рассчитывается величина падения в сети или в линии напряжения. Оценка величины соотношения в процентах к значению изначального напряжения, а также выбор оптимального сечения проводника, который должен укладываться в пятипроцентный барьер.

Важно обратить внимание, что для промышленных и иных предприятий со средним и крупным товарооборотом, рекомендуется производить специальный комплексный расчет, в процессе которого учитываются все необходимые требования для тех или иных конкретных условий эксплуатации. Для проведения подобных расчетов можно обратиться за помощью к специалистам, которые на самом высоком профессиональном уровне, с определенными гарантиями обеспечения работоспособности сети в процессе рабочих нагрузок произведут все расчеты. Кроме того, будут выполнены расчеты, которые обеспечат минимальные затраты, если есть необходимость произвести наращивание производственной мощности.

Пример расчета бытовой сфере

Если после осуществления подсчета суммарной мощности потребителей было получено 3,8 кВт, находится сила тока по такой формуле — I = P/U·cosφ. Здесь P – представляет собой суммарную мощность, (Вт), I — это сила тока, (А), cosφ – коэффициент, который равен 1, но только если сети бытовые, а также U — напряжение в сети, (В).

В данном случае, если 3,8 кВт разделить на напряжение 220 В, получится число, равное 17,3 А. Применяя специальные таблицы ПУЭ под номерами 1.3.4 и 1.3.5 определяется необходимое сечение медного кабеля или выполненное из алюминия. Что касается материала, то в быту рекомендуется использовать именно медь, потому при полученных показателях силы тока потребуется кабель из меди с сечением 1,5 кв. мм.

После этого, как правило, рассчитывается показатель сопротивления, по формуле R = p·L/S, где R — это сопротивление провода, (Ом), указатель p  представляет собой значение удельного сопротивления, (Ом·мм2/м), L – это параметр длины провода или кабеля, (м), а S — площадь поперечного сечения, который выражается в мм2. Стоит отметить, что удельное сопротивление Р – это постоянная величина, которая прямо зависит от материала. Если это медь, то удельное сопротивление равно 0,0175, если алюминий, то он равен 0,0281. На основании проведенных расчетов для одной жилы в кабеле, длина которого составляет 20 м, получается R = 0,0175·20/1,5 = 0,232 Ом. По той причине, что ток проходит только по одной жиле, а по другой возвращается, параметр длины удваивается, то есть получается Rобщ = 0,464 Ом.

При необходимости рассчитать потери напряжения используется формула dU = I·R. В данной формуле I — это сила тока, (А),dU – потери напряжения, (В), а R — показывает сопротивление кабеля или провода в Ом. После проведения расчетов получается такой пример dU = 17,3·0,464 = 4,06 В = 8,02 В.

Что касается расчета потерь в процентном соотношении, то данный показатель выводится так — 8,02 В / 220 В х 100% = 3,65%. Как видно, полученный показатель не превышает 5% то есть допустимое значение, а соответственно выбор был осуществлен верно. В ситуации, если цифра будет больше данной величины, рекомендуется подобрать медный кабель с параметром сечения не 1,5 мм, а 2,5 кв. мм.

Как рассчитать сечение кабеля: 3 способа

Среда, 19/05/2021 в 16:17

Электропроводка – одна из самых сложных инженерных систем в доме. И очень важно правильно выбрать сечение электрокабеля.

Расчет сечения кабеля может выполняться одним из методов:

  • по мощности приборов – предполагает вычисление суммарной мощности всех электроприборов и сравнение полученного значения с расчетным, взятым из специальной таблицы;
  • по длине – высчитывается величина потерь напряжения, которая зависит от длины линии кабеля, после чего она сравнивается с базовым значением в 5%;
  • по току – определяется сила тока каждого из приборов, суммируется и соотносится с табличным значением. По таблице можно определить, сколько жил и какого сечения должно быть у кабеля.

Правильный подбор сечения избавит вас от множества проблем. Подвергающийся чрезмерной нагрузке, слишком слабый провод может стать причиной самовозгорания и короткого замыкания. А дорогостоящая жила хоть и будет надежно выполнять свои функции, обойдется в слишком большую сумму. Сэкономить и при этом получить качественную электропроводку поможет правильный выбор сечения провода. Несмотря на кажущуюся сложность, с данной процедурой может разобраться и человек, не связанный с электрикой.

Подробнее о каждом методе расчета читайте далее в статье.

Выбор сечения кабеля по мощности

Кабель характеризуется мощностью, которую он способен выдержать в ходе эксплуатации приборов. Если она превышает расчетное значение токопроводящей жилы, рано или поздно случится авария.

Чтобы рассчитать сечение кабеля по мощности, нужно выяснить суммарную мощность всех приборов с учетом понижающего коэффициента 0,8. То есть, формула будет иметь вид:

Pобщ.=(P1+P2+…+Pn)*0,8

Понижающей коэффициент предполагает, что не вся техника в доме будет одномоментно потреблять электроэнергию. Получившийся расчет сечения кабеля по мощности сравнивается с данными в таблице – это и будет подходящее сечение.

Таблица сечения кабеля

 

Например, общая мощность электроприборов в квартире равняется 15 кВт. Умножаем ее на 0,8 и получаем 12 кВт нагрузки. В таблице нужно найти наиболее подходящее значение. Таким образом, необходимо выбрать медный кабель с сечением 10 мм для однофазной сети и 6 мм для трехфазной.

Выбор сечения кабеля по длине

У каждого проводника есть собственное сопротивление. С увеличением длины линии наблюдается потеря напряжения, и чем больше расстояние, тем выше потери. Если расчетная величина потерь становится больше 5%, требуется выбрать провод с более крупными жилами.

Расчет по длине состоит из двух этапов и подразумевает, что заранее известно, сколько метров провода потребуется для монтажа электропроводки.

  1. Вначале следует определить номинальную силу тока. Длина проводки переводится в миллиметры и умножается на 2, потому что ток уходит по одной жиле, а возвращается по другой.

I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,

где P – мощность в Вт (суммируется вся техника в доме), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов.

  1. Необходимо узнать сечение проводника. Поможет формула: R = ρ · L/S. Зная, что потери напряжения должны составлять максимум 5%, рассчитываем:

dU = 0,05 · 220 В = 11 В.

Далее выясняем потерю напряжения по формуле:

dU = I · R. R = dU/I = 11/36 = 0,31 Ом.

Таким образом, искомое сечение проводника:

S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.

В случае с трехжильным кабелем, площадь его поперечного сечения (одна жила) должна составлять 0,75 мм2. Таким образом, диаметр жилы должен быть минимум (√S/ π) · 2 = 0,98 мм. Этому условию удовлетворяет кабель BBГнг 3×1,5 мм.

Выбор сечения кабеля по току

Данный метод, также известный как расчет сечения провода по нагрузке, считается самым точным. Вначале необходимо найти силу тока каждого прибора.

В случае однофазной сети для расчета необходимо воспользоваться следующей формулой

I = (P · Кс) / (U · cos ϕ).

Сумму высчитанных токов необходимо соотнести с табличными значениями.

В примере с однофазной закрытой сетью и мощностью приборов 5 кВт:

I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.

BBГнг 3×1,5 – это медный трехжильный кабель. В таблице ближайшее к силе тока 18  A значение – 19 А (в случае прокладки в воздухе). Таким образом, сечение его жилы должно составлять минимум 1,5 мм2. Сечение жилы BBГнг 3×1,5 равно S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, соответственно, оно удовлетворяет указанному требованию.

Выбрать необходимый вам кабель вы можете в нашем каталоге. Мы реализуем продукцию физическим и юридическим лицам с возможностью доставки по адресу или в удобный пункт самовывоза.

Видео с вопросом: Расчет поперечного сечения провода с использованием сопротивления и удельного сопротивления

Стенограмма видеозаписи

Медный провод с сопротивлением 22 миллиом имеет длину 6,2 метра. Найдите площадь поперечного сечения. Используйте 1,7 умножить на 10 до отрицательных восьми Ом для удельного сопротивления меди. Ответ дайте в научном представлении с точностью до одного десятичного знака.

Допустим, это наш медный провод.Его длина, назовем его 𝐿, составляет 6,2 метра. А общее сопротивление потоку заряда от одного конца провода к другому составляет 22 миллиом; назовем это 𝑅. Зная также удельное сопротивление — назовем его 𝜌 провода — мы хотим найти площадь поперечного сечения провода. Чтобы помочь нам в этом, мы можем вспомнить взаимосвязь между сопротивлением и удельным сопротивлением. Сопротивление 𝑅 равно удельному сопротивлению 𝜌, умноженному на длину рассматриваемого материала 𝐿, деленную на его площадь поперечного сечения.

Обратите внимание, что если мы умножим обе части этого уравнения на 𝐴, разделенное на, в левой части сопротивление сократится, а площадь поперечного сечения справа уменьшится. Мы обнаружили, что площадь поперечного сечения равна удельному сопротивлению, умноженному на длину материала 𝐿, деленному на сопротивление материала. Если мы подставим в это уравнение наши заданные значения удельного сопротивления, длины и сопротивления, мы сможем более четко увидеть, какими будут единицы в этом выражении.

В числителе у нас есть Ом, умноженное на метр, умноженное на метр.Поскольку мы вычисляем площадь, нам нужно, чтобы наши конечные единицы были в метрах в квадрате. Это означает, что единицы в омах в числителе должны сокращаться с использованием ом в знаменателе. Чтобы это произошло, давайте преобразуем наше сопротивление, которое в настоящее время выражается в миллиомах, в число в омах. Преобразование между этими единицами таково, что 1000 миллиом равен одному ому. Итак, чтобы преобразовать миллиом в ом, мы возьмем десятичный разряд и сдвинем его на одну, две, три позиции влево. Это эквивалентно делению на 1000.Тогда 22 миллиом равно 0,022 Ом. Обратите внимание, что теперь мы вычтем единицы Ом из числителя и знаменателя.

Когда мы вычисляем 𝐴 и округляем его до одного десятичного знака, в экспоненциальном представлении получается 4,8 умноженное на 10 до отрицательных шести метров в квадрате. Это площадь поперечного сечения нашего медного провода.

Litz Calculator & Design from YDK Litz Wire & Cable

Расчет шага и направление прокладки литц-провода
Проектирование конструкции и расчет литц-провода
Для расчета «одинаковой площади поперечного сечения или одинаковой площади поверхности» литц-провода провод
Метод увеличения коэффициента добротности и значения индуктивности
Расчет квадратного метра для требований к шелку и нейлону на поверхности литц-проволоки

1.Расчет шага

Шаг проволоки Litz

Длина свивки показывает интервал, необходимый одиночному проводу для одного полного витка (= оборот) по периметру гибкого провода (360 градусов).

Термин относится к расстоянию, требуемому для «длины укладки (= шаг)» (см. Рисунок выше), который может быть повернут на 360 ° на одну линию. Стандарт EN 60317-11 рекомендует обеспечивать 60 мм, максимальную длину свивки обслуживаемой литцовой проволоки. Однако на самом деле длина свивки от 0.От 80 мм до 60 мм. (0,4 витка на дюйм / 5 витков на фут, 32 витка на дюйм)

ex 1) Что касается 4 нитей x 0,63 мм,
OD (= Внешний диаметр) для 4 x 0,63 мм составляет приблизительно 1,45 мм. (используя вашу формулу). Это дает длину укладки 36,25 мм, что соответствует 28 виткам на метр, однако для хорошей работы в этой конфигурации следует использовать 54 витка на метр.

-> 4 х 0,63.
√4 x 1,154 x (0,63 + толщина эмалевого покрытия) od = прибл.1,45 мм
закладная длина = 25 x OD 1,45 = 36,25 мм 1000 / 36,25 = около 28 x 2 = 54, необходимых для фактического применения, чтобы обеспечить

ex 2) Что касается шага,
Рекомендуемая длина свивки должна быть 25 x OD (= внешний диаметр)
Например, для 150 жил x 0,100 мм
OD для 150 x 0,118 мм (наружный диаметр, включая изоляцию, gr1 медного провода 0,100 мм)
приближается к 1,67 мм (√150 x 1,154 x 0,118)
Это дает длину укладки 41,75 мм, что равняется 23.95 (≒ 24) витков на метр, однако на самом деле заказчики заявили 48 витков на метр. Потому что материал хорошо работает при 48 скрутках. Итак, то есть 25 x OD x 2 раза.

2. Направление укладки (= шаг)

Нажмите для увеличения! — направление прокладки лицевой проволоки

Должны существовать конкретные параметры литц-проволоки, а также длина свивки (= шаг) по направлению «S» или «Z». Направление прокладки обычно указывает направление скрученной и уложенной гибкой проволоки в двух разных направлениях, таких как левое направление «S» или правое направление «Z».

исх. Участок нет. длины литц-проволоки можно уменьшить, чтобы уменьшить влияние нагрева.

Расчет веса нетто для гибкого провода
● грамм / метр = od2 x количество жил x 7
od2: чистый диаметр + изоляция
7: постоянная медного провода (= удельный вес)
FYR, фактический удельный вес Cu = 8,92 / Al = 2,71 / Fe = 7,85

Расчет внешнего диаметра гибкого провода
● OD (мм) = √N x 1,154 x d (мм)
N: количество проводников (включая толщину покрытия, 0080 мм -> 0.087 мм и т. Д.)
d: Диаметр жилы
OD: Наружный диаметр литцовой проволоки

Наружный диаметр после покрытия: одинарный (SSC, USTC)
● OD + (0,02–0,04 мм) x 2

Расчет проводимости для преобразования Cu (медь) в Al (алюминий)
● ex. Если вам нужно заменить Cu (0,25 мм) на Al, то каков OD Al.
(Cu (0,25 мм) ÷ 2) ² x π = прибл. 0,049㎟
0,049㎟ x 1,61 (увеличение на 61%) = прибл. 0,79㎟
Внешний диаметр алюминиевой проволоки 0.079㎟ (поперечное сечение) составляет 0,32 мм.

Выбор калибра проволоки в качестве частоты (Таблица 2)

Частота Рекомендуемое сечение провода OD (мм) Сопротивление постоянного тока Ом / М ’(макс.) Однонитевой RAC / RDC «S»
от 60 Гц до 1 кГц 28 AWG 0,32 66,37 1,0000
от 1 кГц до 10 кГц 30 AWG 0.25 105,82 1,0000
от 10 кГц до 20 кГц 33 AWG 0,18 211,70 1,0000
от 20 до 50 кГц 36 AWG 0,12 431,90 1,0000
от 50 до 100 кГц 38 AWG 0,10 681,90 1,0000
от 100 до 200 кГц 40 AWG 0.08 1152,3 1,0000
от 200 до 350 кГц 42 AWG 0,06 1801,0 1,0000
от 350 до 850 кГц 44 AWG 0,05 2873,0 1,0000
от 850 кГц до 1,4 МГц 46 AWG 0,04 4544,0 1.0003
от 1,4 до 2,8 МГц 48 AWG 0.03 7285,0 1.0003

Формула потерь на гистерезис (Ph)

Нажмите, чтобы увеличить!
— расчет потерь на гистерезис

f = частота (Гц)
v = объем сердечника [㎥]
h (постоянная) = коэффициент гистерезиса
Bm1 * 6 = переменная плотность магнитного потока

Формула расчета потерь на вихревые токи (Pe)

Нажмите, чтобы увеличить!
— расчет потерь на вихревые токи

f = частота
k = проводимость
t = толщина сердцевины (обычно 0.3 ~ 05 мм)
Bm = переменная плотность магнитного потока (например, 1,6 ~ 2 -> Bm1,6 ~ 2)

Нажмите, чтобы увеличить!
— расчет потерь железа

Потери железа = потеря из-за гистерезиса (Ph) + потеря на вихревые токи (Pe)

Проектирование и расчет лицевых проводов.
Инженеры-проектировщики, использующие литц, обычно знают свою рабочую частоту, требуемую приложением, и среднеквадратичный ток. Основное преимущество уменьшения потерь переменного тока в лицевых проводниках, потому что первая мысль любого лицевого дизайна — это частота срабатывания.Это также, как и частота срабатывания, влияет на строение полноценного лица индивидуума, определяется калибром проводов. Соотношение сопротивлений постоянному току значений сопротивления потоку (X) для изолированного сплошного круглого провода (S) показано в таблице 1.

Стол1

X 0 0,5 0,6 0,7 0,8 0,9 1,0
S 1.0000 1.0003 1.0007 1,0012 1,0021 1,0034 1,005

Медный провод, значение X определяется уравнением 1.
Литц-структура большинства других реальных данных в таблице 1 для рекомендованного калибра провода для частот в следующей таблице.

Нажмите, чтобы увеличить!

Если архитектурный проект был бы принят, то была определена шовная конструкция и индивидуальный калибр проволоки.Каждая прядь имеет тенденцию быть заселенными почти в одинаковой степени во всех возможных положениях кабеля. Дистанционный литц-проводник D / C отношение сопротивления переменного тока может быть определен по следующему уравнению.

Нажмите, чтобы увеличить!

Где: S = коэффициент сопротивления отдельных жил в изолированном состоянии (взято из таблиц 1 или 2)
G = базисный коэффициент вихревых токов =

Нажмите, чтобы увеличить!

F = рабочая частота в Гц
N = количество жил в кабеле
D1 = диаметр отдельных жил по меди в дюймах
DO = диаметр готового кабеля по жилам в дюймах
K = постоянный в зависимости от N, приведено в следующей таблице:

N 3 9 27 бесконечность
К 1.55 1,84 1,92 2

Сопротивление литц-проводника постоянному току связано со следующими параметрами:
1) Отдельные жилы AWG.
2) Количество жил кабеля.
3) Факторы, связанные с увеличением длины на каждую прядь (переднюю) единицу длины кабеля. Примерно на 2,5% увеличено сопротивление постоянному току, сопротивление постоянному току для всех задач связки для стандартных структур Ritz и увеличено на 1,5% для всех кабелей, чтобы убедиться, что они правильные.Сопротивление постоянному току конструкции по любой литц-формуле получается из параметров:

Нажмите, чтобы увеличить!

Ниже приведен пример расчетов, необходимых для оценки конструкции однопленочного полиуретанового покрытия из жилы проволоки 38 AWG Litz, состоящей из 400 проводов, работающих на частоте 500 кГц. Запишем эту конструкцию, жгут проводов два 5 × 5/40 16 AWG

1) Рассчитанное по формуле 3 сопротивление конструкции литц постоянному току.

Нажмите, чтобы увеличить!

2) Соотношение сопротивлений постоянному и переменному току рассчитывается по формуле 2.

Нажмите, чтобы увеличить!

3) Сопротивление переменному току, следовательно, составляет 1,2068 или 1,80 Ом / 1000 футов (= 304,8 м).

Производителю проволоки

Litz было предложено предоставить размер AWG только в миллиметровой (миллиметровой) шкале. Например, AWG36 = 0,127 мм (включая наружный диаметр, покрытый эмалью), то есть площадь однопроволочного сечения (= 0,0126677 мм кв.), И если мы используем аналогичную площадь одножильного сечения 0,120 мм (= 0,0113097 кв. Мм) AWG36. Когда заказчик запрашивает жилы AWG36 x 1000, общая площадь сечения дает 0.0126677 кв. Мм x 1000 нитей = 12,6677 кв. Мм

Если мы используем проволоку 0,120 мм, квадрат 12,6677 мм / 0,0113097 мм = 1120 прядей.
Следовательно, мы можем использовать либо AWG36 x 1000 жил, либо 0,120 мм x 1120 жил для провода, чтобы иметь ту же пропускную способность по току, но 0,120 мм x 1120 жил покажут более лучшие характеристики скин-эффекта, чем AWG36 x 1000 жил, потому что одиночные 0,120 мм имеет лучший скин-эффект, чем 0,127 мм (AWG36).

1000 нитей x AWG36 дает 1120 нитей из 0.120 мм (или около 1125 нитей = 5 х 5 х 45 нитей).

UL говорит, что «повышение температуры» должно составлять 75 градусов. C меньше на классе A и 95 град. C меньше в классе B, и мы часто сталкиваемся с «проблемой повышения температуры», когда разрабатываем трансформатор на этапе исследований и разработок. Чтобы решить «повышение температуры (= дельта T, что означает исключенную температуру окружающей среды)», мы можем уменьшить превышение превышения высокой температуры в соответствии со стандартом UL, так же как и при строительстве большого количества жил.

1. Метод повышения «добротности»
В физике и технике добротность или добротность является безразмерным параметром.Это решается путем демонстрации того, следует ли сообщать нам его статус, слабозатухающую вибрацию или резонатор. Также определяется ширина полосы резонатора по центральной частоте. Высокая добротность означает меньшие потери энергии, чем энергия, запасенная в осцилляторе, а также постепенно уменьшается вибрация, как в этом случае. Вибрирующий маятник в воздухе, на котором висит высококачественный подшипник, имеет высокую добротность. С другой стороны, вибрирующий маятник, погруженный в масло, имеет низкую добротность. Генератор с высокой добротностью имеет более низкое торможение и более длительную вибрацию.

Для увеличения значения добротности гибкого провода и кабеля, вы должны плотно намотать литцевый провод, склеенный вместе, чтобы обеспечить максимальное сцепление между медным проводом и медным проводом, как показано на следующем рисунке, исх. 1.

метод повышения добротности

Когда мы разрабатываем электронные продукты, Q-фактор является важной переменной. Он определяет ширину полосы резонатора в соответствии с центральной частотой, а также высокую добротность, которая должна быть спроектирована для снижения потерь энергии по сравнению с энергией, хранящейся в вибраторе.Другими словами, снижение вибрации должно быть медленным.

Q = X / R = øL / R = 2∏fL / R
— Q: добротность
— X: реактивное сопротивление определяется значением сопротивления индуктивности катушки
— R: сопротивление определяется значением сопротивления катушки.
— f: резонансная частота.
— ∏: круговая постоянная (пи), 3,14…

2. Метод увеличения «значения индуктивности» следующий.
Изготовление проволоки как можно более плотно прилегающей.Плотность магнитного потока удваивается за счет размещения ферромагнитного сердечника во внутренней катушке. Увеличение плотности магнитного потока также приводит к увеличению индуктивности. Следовательно, значение индуктивности ферромагнитного сердечника в несколько раз больше, чем у воздушной катушки или немагнитного сердечника, такого как пластик, дерево и т. Д. Величина индуктивности зависит от количества оборотов обмотки катушки, диаметра катушки и общего форма катушки. Индуктивность катушки прямо пропорциональна скорости вращения (числу витков) намотанного провода и прямо пропорциональна индуктивности диаметра катушки.Точнее, индуктивность катушки соленоида на единицу длины прямо пропорциональна площади поперечного сечения и прямо пропорциональна квадрату оборотов намотанных проводов на единицу длины. Он влияет на значение индуктивности в случае постоянного обеспечения оборотов и диаметра катушки, а также длины катушки. Если вытащить катушку с постоянным числом оборотов и диаметром за счет увеличения длины, значение индуктивности катушки уменьшается. Напротив, если катушка будет сжата, чтобы сделать ее плоской, значение индуктивности катушки будет увеличено.В случае гибкого провода, если частота увеличивается, значение индуктивности увеличивается.

Для повышения добротности и индуктивности в случае гибкого провода каждый провод может быть очень плотно склеен путем самоклеения и управления расчетом шага. Следовательно, литц-провод должен проходить через провода, возможно, многократно, и повышать температуру на заключительном этапе подачи, и тогда будет получено более высокое значение добротности.

3. В зависимости от направления индуктивности, как показано ниже.
Индуктивность увеличивается при движении в том же направлении, что и на рисунке № 1. L (индуктивность) = L1 + L2
. Индуктивность течет в противоположном направлении, как показано на рисунке № 2. L (индуктивность) = L1-L2
Следовательно, № 1 обычно используется для увеличения значения L.

взаимная индуктивность

Мы хотели бы объяснить клиентам «Расчет необходимого сырья» для шелка или нейлона »следующим образом. Расчет квадратного метра является большим подспорьем на основной стадии производства, так как позволяет спрогнозировать потребность в расходах на сырье.

1) Например, 0,05 мм x 1000 жил с двойной подачей,
— OD = √1,000 x 1,154 x 0,062 мм (толщина, включая эмалевое покрытие) = прибл. Φ2,5 мм (включая толщину шелка или нейлона)
— S (квадратный метр) = Φ2,5 мм x π = прибл. 7,6㎟

расчет квадратного метра для шелка и нейлона на литцовой проволоке

2) В случае одинарных нитей 0,05 мм x 1,680, вес нейлона составляет прибл. 32 г / м (фактическое измерение).
— Требуемый объем «0,05 мм x 1000 прядей» рассчитан на прибл.19,2 г / м по уравнению.
— 19,2 г / м x 2 (в случае двойной подачи) = 38,4 г / м
— Если вы хотите знать () м на кг, X = 1000 strnads x 1 м / 19,2 = 52,08 м / кг -> 100 кг = 5 208 м

3) В случае жилы 0,05 мм x 1000 с двойной подачей необходимо рассчитать квадратный метр следующим образом.
— 0,0076 м (1 м квадратный метр 0,05 мм x 1000 нитей) x 5,208 м (количество шелка или нейлона, намотанного на 100 кг литцовой проволоки) = S = 39,58㎡ (площадь поверхности 100 кг литц-проволоки)

Рассчитайте площадь поперечного сечения провода класса 10 по физике CBSE

Подсказка: это задачи базового уровня, которые можно легко решить, определив значения, чтобы использовать формулу площади провода, имеющего сопротивление и удельное сопротивление i.е. $ area = \ dfrac {{\ left ({resistivity \ times length} \ right)}} {{resis \ tan ce}} $, чтобы найти площадь поперечного сечения данного провода.

Полное пошаговое решение:
В этом вопросе есть 2 термина «сопротивление» и «удельное сопротивление», которые можно объяснить следующим образом: Сопротивление — это величина сопротивления току, протекающему в проводе, и измеряется в омах. А удельное сопротивление — это характерное свойство материала провода: удельное сопротивление помогает сравнивать материалы на основе их способности проводить электрические токи.2} $.

Примечание. Знаете ли вы, как сопротивление провода зависит от площади поперечного сечения этого провода, давайте выясним, как это сделать; Толщина проводов влияет на сумму сопротивлений. Провода большего размера имеют большее поперечное сечение. Жидкость проходит в большую трубу с большей скоростью, чем через маленькую воронку. Это может быть связано с пониженным сопротивлением в трубе большего размера. Точно так же, чем длиннее провод, тем меньшее сопротивление он оказывает потоку электрического заряда.Если все остальные факторы одинаковы, заряд может проходить через более толстые провода с большей площадью поперечного сечения, чем через более тонкие провода с большей скоростью.

Размер проводника

Размер проводника

Следующие ниже тексты являются собственностью их авторов, и мы благодарим их за предоставленную нам возможность бесплатно делиться среди студентов, преподавателей и пользователей Интернета их тексты, которые будут использоваться только в иллюстративных образовательных и научных целях.

Вся информация на нашем сайте предназначена для некоммерческих образовательных целей

Информация о медицине и здоровье, содержащаяся на сайте, носит общий характер и носит исключительно информативный характер и по этой причине ни в коем случае не может заменить совет врача или квалифицированного юридического лица, имеющего законную профессию.

Это должно быть здравым смыслом, что жидкость течет по трубам большого диаметра легче, чем по трубам малого диаметра (если вам нужна практическая иллюстрация, попробуйте пить жидкость через соломинку разного диаметра).Тот же общий принцип действует для потока электронов через проводники: чем шире площадь поперечного сечения (толщина) проводника, тем больше места для протекания электронов и, следовательно, тем легче возникает поток (меньшее сопротивление). .
Электрический провод обычно имеет круглое поперечное сечение (хотя есть некоторые уникальные исключения из этого правила) и бывает двух основных разновидностей: одножильный и многожильный. Сплошная медная проволока — это так, как звучит: одна сплошная медная жила по всей длине провода.Многожильный провод состоит из более мелких жил сплошного медного провода, скрученных вместе, чтобы сформировать единый провод большего размера. Самым большим преимуществом многожильного провода является его механическая гибкость, способность выдерживать многократные изгибы и скручивания намного лучше, чем сплошная медь (которая со временем склонна к усталости и ломается).
Размер провода можно измерить несколькими способами. Мы могли бы говорить о диаметре провода, но поскольку на самом деле наибольшее значение для потока электронов имеет площадь поперечного сечения , нам лучше определять размер провода в терминах площади.

Изображение сечения провода, показанное выше, конечно, не в масштабе. Диаметр показан как 0,1019 дюйма. Вычисляя площадь поперечного сечения по формуле Area = πr2, мы получаем площадь 0,008155 квадратных дюймов:

Это довольно небольшие числа, с которыми можно работать, поэтому размеры проводов часто выражаются в единицах тысячных долей диаметра. дюйма или мил . Для проиллюстрированного примера мы бы сказали, что диаметр проволоки был 101.9 мил (0,1019 дюйма, умноженное на 1000). Мы также могли бы, если бы захотели, выразить площадь провода в квадратных милях, вычислив это значение по той же формуле круга и площади, Площадь = πr2:


Однако электрики и другие лица, часто озабоченные размером провода, используют другую единицу измерения площади, специально разработанную для круглого сечения провода. Это специальное устройство называется круглым мил (иногда сокращенно см ). Единственная цель наличия этой специальной единицы измерения состоит в том, чтобы исключить необходимость использования множителя π (3.1415927. . .) в формуле для расчета площади плюс необходимость обозначить радиус провода радиус , когда вам дали диаметр . Формула для расчета площади в милах круглой проволоки очень проста:

Поскольку это единица измерения площади , математическая степень 2 все еще действует (удвоение ширины круга всегда увеличивает его площадь в четыре раза, независимо от того, какие единицы измерения используются, или если ширина этого круга равна выражается в единицах радиуса или диаметра).Чтобы проиллюстрировать разницу между измерениями в квадратных милях и измерениями в круглых милах, я сравню круг с квадратом, показывая площадь каждой формы в обеих единицах измерения:

А для другого размера проволоки:

Очевидно, круг заданного диаметра имеет меньшую площадь поперечного сечения, чем квадрат ширины и высоты, равный диаметру круга: это отражают обе единицы измерения площади. Однако должно быть ясно, что единица измерения «квадратный мил» действительно предназначена для удобного определения площади квадрата, в то время как «круговой мил» адаптирован для удобного определения площади круга: соответствующую формулу для каждого проще работать с.Следует понимать, что обе единицы действительны для измерения площади формы, независимо от того, какой формы она может быть. Преобразование между круговыми милами и квадратными милами представляет собой простое соотношение: на каждые 4 круговых мила приходится π (3,1415927 …) квадратных милов.
Еще одним средством измерения площади поперечного сечения провода является калибр калибра . Шкала датчика основана на целых числах, а не на дробных или десятичных дюймах. Чем больше номер калибра, тем тоньше провод; чем меньше номер калибра, тем толще проволока.Для тех, кто знаком с ружьями, эта обратно пропорциональная шкала измерения должна показаться знакомой.
Таблица в конце этого раздела приравнивает калибр к диаметру в дюймах, круглые милы и квадратные дюймы для сплошной проволоки. Провода большего диаметра достигают конца общей шкалы калибра (которая, естественно, достигает максимума, равного 1), и представлены серией нулей. «3/0» — это еще один способ представления «000», который произносится как «тройной дол». Опять же, тем, кто знаком с ружьями, следует признать терминологию, как бы странно это ни звучало.Что еще больше сбивает с толку, в мире существует более одного «стандарта» калибра. Для определения размеров электрических проводов предпочтительной системой измерения является калибр American Wire Gauge (AWG), также известный как калибр Brown и Sharpe (B&S). В Канаде и Великобритании британский стандартный калибр для проводов (SWG) является официальной системой измерения электрических проводов. В мире существуют другие системы калибровки проволоки для классификации диаметра проволоки, такие как калибр для стальной проволоки Stubs и калибр для стальной музыкальной проволоки (MWG), но эти системы измерения применимы к неэлектрическим проводам.
Система измерения American Wire Gauge (AWG), несмотря на ее странности, была разработана с одной целью: на каждые три шага на шкале калибра площадь провода (и вес на единицу длины) примерно удваивается. Это удобное правило, которое следует помнить при приблизительной оценке диаметра проволоки!
Для проводов очень больших размеров (толще 4/0) от системы калибра проволоки обычно отказываются для измерения площади поперечного сечения в тысячах круглых мил (MCM), заимствуя старую римскую цифру «M» для обозначения кратного «тысяча» перед «CM» для «круговых мил.«В следующей таблице сечения проводов не указаны размеры, превышающие калибр 4/0, потому что сплошной медный провод становится непрактичным в обращении с такими размерами. Вместо этого предпочтение отдается многопроволочной конструкции.

ПРОВОЛОЧНЫЙ СТОЛ ДЛЯ ТВЕРДЫХ, КРУГЛЫХ МЕДНЫХ ПРОВОДНИКОВ

Размер Диаметр Площадь поперечного сечения Вес
AWG дюймы Cir. милы кв. дюймов фунт / 1000 футов
================================================== =============
4/0 ——— 0.4600 ——- 211 600 —— 0,1662 —— 640,5
3/0 ——— 0,4096 ——- 167,800 —— 0,1318 —— 507,9
2/0 ——— 0,3648 ——- 133,100 —— 0,1045 —— 402,8
1/0 ——— 0,3249 ——- 105,500 —— 0,08289 —— 319,5
1 ——— 0,2893 ——- 83,690 —— 0,06573 —— 253,5
2 ——— 0,2576 ——- 66,370 —— 0,05213 —— 200,9
3 ——— 0,2294 ——- 52,630 —— 0.04134 —— 159,3
4 ——— 0,2043 ——- 41,740 —— 0,03278 —— 126,4
5 ——— 0,1819 ——- 33,100 —— 0,02600 —— 100,2
6 ——— 0,1620 ——- 26,250 —— 0,02062 —— 79,46
7 ——— 0,1443 ——- 20,820 —— 0,01635 —— 63,02
8 ——— 0,1285 ——- 16,510 —— 0,01297 —— 49,97
9 ——— 0,1144 ——- 13 090 —— 0,01028 —— 39.63
10 ——— 0,1019 ——- 10,380 —— 0,008155 —— 31,43
11 ——— 0,09074 ——- 8,234 —— 0,006467 —— 24,92
12 ——— 0,08081 ——- 6,530 —— 0,005129 —— 19,77
13 ——— 0,07196 ——- 5,178 —— 0,004067 —— 15,68
14 ——— 0,06408 ——- 4,107 —— 0,003225 —— 12,43
15 ——— 0,05707 ——- 3,257 —— 0,002558 —— 9,858
16 ——— 0.05082 ——- 2,583 —— 0,002028 —— 7,818
17 ——— 0,04526 ——- 2,048 —— 0,001609 —— 6,200
18 ——— 0,04030 ——- 1,624 —— 0,001276 —— 4,917
19 ——— 0,03589 ——- 1,288 —— 0,001012 —— 3,899
20 ——— 0,03196 ——- 1,022 —— 0,0008023 —— 3,092
21 ——— 0,02846 ——- 810,1 —— 0,0006363 —— 2,452
22 ——— 0,02535 ——- 642.5 —— 0,0005046 —— 1,945
23 ——— 0,02257 ——- 509,5 —— 0,0004001 —— 1,542
24 ——— 0,02010 ——- 404,0 —— 0,0003173 —— 1,233
25 ——— 0,01790 ——- 320,4 —— 0,0002517 —— 0,9699
26 ——— 0,01594 ——- 254,1 —— 0,0001996 —— 0,7692
27 ——— 0,01420 ——- 201,5 —— 0,0001583 —— 0,6100
28 ——— 0,01264 ——- 159,8 —— 0,0001255 —— 0.4837
29 ——— 0,01126 ——- 126,7 —— 0,00009954 —- 0,3836
30 ——— 0,01003 ——- 100,5 —— 0,00007894 —- 0,3042
31 ——- 0,008928 ——- 79,70 —— 0,00006260 —- 0,2413
32 ——- 0,007950 ——- 63,21 —— 0,00004964 —- 0,1913
33 ——- 0,007080 ——- 50,13 —— 0,00003937 —- 0,1517
34 ——- 0,006305 ——- 39,75 —— 0,00003122 —- 0,1203
35 ——- 0.005615 ——- 31,52 —— 0,00002476 — 0,09542
36 ——- 0,005000 ——- 25,00 —— 0,00001963 — 0,07567
37 ——- 0,004453 ——- 19,83 —— 0,00001557 — 0,06001
38 ——- 0,003965 ——- 15,72 —— 0,00001235 — 0,04759
39 ——- 0,003531 ——- 12,47 —- 0,000009793 — 0,03774
40 ——- 0,003145 ——- 9,888 —- 0,000007766 — 0,02993
41 ——- 0,002800 ——- 7.842 —- 0,000006159 — 0,02374
42 ——- 0,002494 ——- 6,219 —- 0,000004884 — 0,01882
43 ——- 0,002221 ——- 4,932 —- 0,000003873 — 0,01493
44 ——- 0,001978 ——- 3,911 —- 0,000003072 — 0,01184

Для некоторых сильноточных приложений требуются провода сечением, превышающим практический предел размера круглого провода. В этих случаях в качестве проводников используются толстые шины из цельного металла, называемые сборными шинами .Шины обычно изготавливаются из меди или алюминия и чаще всего неизолированы. Они физически поддерживаются вдали от каркаса или конструкции, удерживающей их, с помощью опор изолятора. Хотя квадратное или прямоугольное поперечное сечение очень распространено для формы шин, используются также и другие формы. Площадь поперечного сечения сборных шин обычно измеряется в круглых милах (даже для квадратных и прямоугольных шин!), Скорее всего, для удобства возможности напрямую приравнять размер шины к круглому проводу.
ОБЗОР:
Электроны проходят через проволоку большого диаметра легче, чем через проволоку малого диаметра, из-за большей площади поперечного сечения, в которой они могут двигаться.
Вместо того, чтобы измерять небольшие размеры проволоки в дюймах, часто используется единица измерения «мил» (1/1000 дюйма).
Площадь поперечного сечения провода может быть выражена в квадратных единицах (квадратные дюймы или квадратные милы), круговые милы или «калибровочная» шкала.
Расчет площади квадратной единицы для круглого провода выполняется по формуле площади круга:

Расчет сечения круглой проволоки в миле для круглой проволоки намного проще из-за того, что единица измерения «круговых милов» была выбрана именно для этой цели: чтобы исключить коэффициенты «пи» и d / 2 (радиус) в формула.

На каждые 4 круговых мил приходится π (3,1416) квадратных милов.
Система калибровки проводов калибра основана на целых числах, большие числа представляют провода меньшей площади и наоборот. Провода толще 1 калибра обозначаются нулями: 0, 00, 000 и 0000 (произносятся «одинарная», «двойная», «тройная» и «четверная». Очень большие сечения проводов измеряются в тысячах круглых милов (MCM), что типично для шин и проводов сечением выше 4/0.
Шины — это сплошные шины из меди или алюминия, используемые в конструкции сильноточных цепей. Соединения, выполняемые с шинами, обычно являются сварными или болтовыми, а шины часто голые (неизолированные) и поддерживаются вдали от металлических каркасов за счет использования изолирующих стоек.

Источник: http://www.htk.tlu.ee/ictcert/intranet/curriculum/6-developing-training-material-for-the-modules/electricity-konspekt.doc

Ссылка на веб-сайт для посещения: http: // www.htk.tlu.ee/ictcert/

Ключевое слово Google: Размер проводника Тип файла: doc

Автор: в исходном документе не указан текст

Если вы являетесь автором приведенного выше текста и не соглашаетесь делиться своими знаниями для обучения, исследований, стипендий (для добросовестного использования, как указано в авторских правах США), отправьте нам электронное письмо, и мы удалим ваши текст быстро.

Размер проводника

Если вы хотите быстро найти страницы по определенной теме в качестве размера проводника, используйте следующую поисковую систему:

Размер проводника

Посетите нашу домашнюю страницу

Ларапедия.com Условия использования и страница конфиденциальности

9.3 Удельное сопротивление и сопротивление — University Physics Volume 2

Задачи обучения

К концу этого раздела вы сможете:

  • Различия между сопротивлением и удельным сопротивлением
  • Определите термин проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
  • Укажите взаимосвязь между удельным сопротивлением и температурой

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле E → E →, и заряды в проводнике ощущают силу, создаваемую электрическим полем. Полученная плотность тока J → J → зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как

где σσ — удельная электропроводность. Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность σ = J / Eσ = J / E, единицы равны

σ = [Дж] [Э] = А / м2В / м = АВ · м. σ = [Дж] [Э] = А / м2В / м = АВ · м.

Здесь мы определяем единицу, называемую ом с греческим символом омега в верхнем регистре, ΩΩ.Устройство названо в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. ΩΩ используется, чтобы избежать путаницы с числом 0. Один Ом равен одному вольту на ампер: 1Ω = 1V / A1Ω = 1V / A. Таким образом, единицы электропроводности равны (Ом · м) -1 (Ом · м) -1.

Электропроводность — это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символ удельного сопротивления — строчная греческая буква ро, ρρ, а удельное сопротивление — величина, обратная удельной электропроводности:

.

Единицей измерения удельного сопротивления в системе СИ является ом-метр (Ом · м) (Ом · м). Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем. Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением.Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 9.1 приведены значения удельного сопротивления и проводимости для различных материалов.

Материал Электропроводность, σσ
(Ом · м) −1 (Ом · м) −1
Удельное сопротивление, ρρ
(Ом · м) (Ом · м)
Температура
Коэффициент, αα
(° C) -1 (° C) -1
Проводники
Серебро 6.29 × 1076,29 × 107 1,59 × 10–81,59 × 10–8 0,0038
Медь 5,95 × 1075,95 × 107 1,68 × 10–81,68 × 10–8 0,0039
Золото 4,10 × 1074,10 × 107 2,44 × 10–82,44 × 10–8 0,0034
Алюминий 3,77 × 1073,77 × 107 2,65 × 10–82,65 × 10–8 0,0039
Вольфрам 1,79 × 1071,79 × 107 5.60 × 10–85,60 × 10–8 0,0045
Утюг 1,03 × 1071,03 × 107 9,71 × 10–89,71 × 10–8 0,0065
Платина 0,94 × 1070,94 × 107 10,60 × 10-8 10,60 × 10-8 0,0039
Сталь 0,50 × 1070,50 × 107 20,00 × 10-820,00 × 10-8
Свинец 0,45 × 1070,45 × 107 22,00 × 10-822,00 × 10-8
Манганин (сплав Cu, Mn, Ni) 0.21 × 1070,21 × 107 48,20 × 10-848,20 × 10-8 0,000002
Константан (сплав Cu, Ni) 0,20 × 1070,20 × 107 49,00 × 10–849,00 × 10–8 0,00003
Меркурий 0,10 × 1070,10 × 107 98,00 × 10-898,00 × 10-8 0,0009
Нихром (сплав Ni, Fe, Cr) 0,10 × 1070,10 × 107 100,00 × 10-8 100,00 × 10-8 0,0004
Полупроводники [1]
Углерод (чистый) 2.86 × 1042,86 × 104 3,50 × 10−53,50 × 10−5 -0,0005
Углерод (2,86–1,67) × 10–6 (2,86–1,67) × 10–6 (3,5-60) × 10-5 (3,5-60) × 10-5 -0,0005
Германий (чистый) 600 × 10−3600 × 10−3 -0,048
Германий (1-600) × 10-3 (1-600) × 10-3 -0,050
Кремний (чистый) 2300 −0.075
Кремний 0,1−23000,1−2300 -0,07
Изоляторы
Янтарь 2,00 × 10–152,00 × 10–15 5 × 10145 × 1014
Стекло 10−9−10−1410−9−10−14 109−1014109−1014
Люцит <10-13 <10-13 > 1013> 1013
Слюда 10-11-10-1510-11-10-15 1011−10151011−1015
Кварц (плавленый) 1.33 × 10–181,33 × 10–18 75 × 101675 × 1016
Резина (твердая) 10-13-10-1610-13-10-16 1013−10161013−1016
сера 10-15 10-15 10151015
Тефлон TM <10-13 <10-13 > 1013> 1013
Дерево 10-8-10-1110-8-10-11 108−1011108−1011

Стол 9.1 Удельное сопротивление и проводимость различных материалов при 20 ° C [1] Значения сильно зависят от количества и типов примесей.

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться.Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Проверьте свое понимание 9,5

Проверьте свое понимание Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам.Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов. Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальное значение растягивающего напряжения, которое он может выдержать перед разрушением. Медь имеет высокий предел прочности на разрыв, 2 × 108 Нм22 × 108 Нм2. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью.Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем их достоинства и недостатки?

Температурная зависимость удельного сопротивления

Вернувшись к таблице 9.1, вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры.Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в решетчатой ​​структуре металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

ρ≈ρ0 [1 + α (T − T0)], ρ≈ρ0 [1 + α (T − T0)],

9,7

, где ρρ — удельное сопротивление материала при температуре T , αα — температурный коэффициент материала, а ρ0ρ0 — удельное сопротивление при T0T0, обычно принимаемое как T0 = 20.00 ° CT0 = 20,00 ° C.

Отметим также, что температурный коэффициент αα отрицателен для полупроводников, перечисленных в Таблице 9.1, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента.Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Для расчета сопротивления рассмотрим сечение токопроводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением ρ.ρ. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов ΔVΔV (Рисунок 9.13). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно E → = ρJ → E → = ρJ →.

Фигура 9,13 Потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения A и длиной L .

Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, E = V / LE = V / L, а величина плотности тока равна току, деленному на поперечную площадь сечения, J = I / A.J = I / A. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

E = ρJVL = ρIAV = (ρLA) I.E = ρJVL = ρIAV = (ρLA) I.

Сопротивление

Отношение напряжения к току определяется как сопротивление R :

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

R≡VI = ρLA.R≡VI = ρLA.

9.9

Единицей измерения сопротивления является ом, ΩΩ. Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. На рисунке 9.14 показаны символы, используемые для резистора в принципиальных схемах цепи. Два обычно используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

Фигура 9,14 Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (b) символ IEC.

Зависимость сопротивления от материала и формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , изготовленный из материала с удельным сопротивлением ρρ (Рисунок 9.15). Сопротивление резистора R = ρLAR = ρLA.

Фигура 9.15 Модель резистора в виде единого цилиндра длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.

Чаще всего для изготовления резистора используется углерод.Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 9.16.

Фигура 9,16 Многие резисторы имеют вид, показанный на рисунке выше.Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора. Показанный резистор имеет сопротивление 20 × 105 Ом ± 10% 20 × 105 Ом ± 10%.

Сопротивления варьируются на много порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более. Сопротивление сухого человека может составлять 105 Ом 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом 103 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом10-5 Ом, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Пример 9,5

Плотность тока, сопротивление и электрическое поле для токоведущего провода
Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2.053 мм (калибр 12), пропускающий ток I = 10 мА I = 10 мА.
Стратегия
Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая составляет A = 3,31 мм2, A = 3,31 мм2, и определив плотность тока J = IAJ = IA. Сопротивление можно найти, используя длину провода L = 5,00 мл = 5,00 м, площадь и удельное сопротивление меди ρ = 1,68 × 10-8 Ом · мρ = 1,68 × 10-8 Ом · м, где R = ρLAR = ρLA. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.
Решение
Сначала рассчитываем плотность тока: J = IA = 10 × 10−3A3.31 × 10−6m2 = 3,02 × 103Am2.J = IA = 10 × 10−3A3,31 × 10−6m2 = 3,02 × 103Am2.

Сопротивление провода

R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом. R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом.

Наконец, мы можем найти электрическое поле:

E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm. E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm.
Значение
Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Сопротивление объекта также зависит от температуры, поскольку R0R0 прямо пропорционально ρ.ρ. Для цилиндра мы знаем, что R = ρLAR = ρLA, поэтому, если L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и ρ.ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) ρ.) Таким образом,

R = R0 (1 + αΔT) R = R0 (1 + αΔT)

9.10

— это температурная зависимость сопротивления объекта, где R0R0 — исходное сопротивление (обычно принимаемое равным 20,00 ° C) 20,00 ° C), а R — сопротивление после изменения температуры ΔT.ΔT. Цветовой код показывает сопротивление резистора при температуре T = 20,00 ° CT = 20,00 ° C.

Многие термометры основаны на влиянии температуры на сопротивление (рисунок 9.17). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Фигура 9,17 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Пример 9,6

Расчет сопротивления
Хотя следует соблюдать осторожность при применении ρ = ρ0 (1 + αΔT), ρ = ρ0 (1 + αΔT) и R = R0 (1 + αΔT) R = R0 (1 + αΔT) для температурных изменений более 100 ° C 100 ° C , для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры.Вольфрамовая нить накала при 20 ° C20 ° C имеет сопротивление 0,350 Ом 0,350 Ом. Каким будет сопротивление при повышении температуры до 2850 ° C 2850 ° C?
Стратегия
Это прямое применение R = R0 (1 + αΔT) R = R0 (1 + αΔT), поскольку исходное сопротивление нити накала задается как R0 = 0,350ΩR0 = 0,350Ω, а изменение температуры составляет ΔT = 2830 ° CΔT. = 2830 ° С.
Решение
Сопротивление более горячей нити накала R получается путем ввода известных значений в приведенное выше уравнение: R = R0 (1 + αΔT) = (0.350 Ом) [1+ (4,5 × 10−3 ° C) (2830 ° C)] = 4,8 Ом.R = R0 (1 + αΔT) = (0,350 Ом) [1+ (4,5 × 10−3 ° C) ( 2830 ° C)] = 4,8 Ом.
Значение
Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.

Проверьте свое понимание 9,6

Проверьте свои знания Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Пример 9,7

Сопротивление коаксиального кабеля
Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом riri, окруженного вторым, внешним концентрическим проводником с радиусом roro (рисунок 9.18). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .

Фигура 9,18 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия
Мы не можем напрямую использовать уравнение R = ρLAR = ρLA. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.
Решение
Сначала мы находим выражение для dR , а затем интегрируем от riri до roro, dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.
Значение
Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *