Формула линейное напряжение: что это такое и чем они отличаются

Содержание

Что такое линейное и фазное напряжение, каково их соотношение?

Простое объяснение понятий фазного и линейного напряжения. Чем отличаются эти напряжения и каково их соотношение.


Снабжение электричеством городов, предприятий и жилищ ведется с помощью сети из трёх фаз. Так сложилось исторически, что трёхфазные машины переменного тока используются для генерирования электроэнергии и её потребления (в электроустановках). Такое количество было выбрано для минимальных затрат на создание вращающегося магнитного поля или использования этой энергии в целях генерации электричества. Встречаются и специфичные 6-тифазные генераторы, в автомобилях например, но там они нужны для других целей. В этой статье мы будем вести речь о том, что собой представляют фазное и линейное напряжение в трёхфазных цепях, чем они связаны и в чем различие. Содержание:

Переменное напряжение и его величины

Напряжение различают по роду тока: переменное и постоянное. Переменное может быть разной формы, основная суть в том, что с течением времени изменяется его знак и величина. У постоянного знак всегда одной полярности, а величина может быть стабилизированной или нестабилизированной.

В наших розетках напряжение переменное синусоидальной формы. Выделяют разные его значения, чаще всего используются понятия мгновенное, амплитудное и действующее. Как понятно из названия, мгновенное напряжение — это количество вольт в конкретный момент времени. Амплитудное – это размах синусоиды относительно нуля в вольтах, действующее — это интеграл от функции напряжения по времени, соотношение между ними такое: действующее в √2 или 1,41 раз меньше амплитудного. Вот как это выглядит на графике:

Что такое линейное и фазное напряжение, каково их соотношение?

Напряжение в трехфазных цепях

В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).

Что такое линейное и фазное напряжение, каково их соотношение?

Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.

Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.

Что такое линейное и фазное напряжение, каково их соотношение?

Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.

КРАТКО: Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.

С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:

Что такое линейное и фазное напряжение, каково их соотношение?

Линейное напряжение больше фазного в √3 или в 1,73 раза.

Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода. Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного. В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.

Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.

Для примера: обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль. Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).

Схемы подключения потребителей к трём фазам

Все двигателя, мощные нагреватели и прочая трёхфазная нагрузка может быть подключена по схеме звезды или треугольника. При этом большинство электродвигателей в борно имеют набор перемычек, которые в зависимости от их положения формируют звезду или треугольник из обмоток, но об этом позже. Что такое соединение звездой?

Соединение звездой предполагает соединение обмоток генератора таким образом, когда концы обмоток соединяются в одну точку, а к началам обмоток подключается нагрузка. Звездой же соединяются и обмотки двигателя и мощных нагревателей, только вместо обмоток в них выступают ТЭНы.

Давайте рассуждать на примере электродвигателя. При соединении его обмоток звездой линейное напряжение 380 В приложено к двум обмоткам, и так с каждой парой фаз.

Что такое линейное и фазное напряжение, каково их соотношение?

На рисунке A, B, C – начала обмоток, а X, Y, Z – концы, соединенные в одну точку и эта точка заземлена. Здесь вы видите сеть с глухозаземленной нейтралью (провод N). На практике это выглядит так, как на фото борно электродвигателя:

Что такое линейное и фазное напряжение, каково их соотношение?

Красным квадратом выделены концы обмоток, они соединены между собой перемычками, такое расположение перемычек (в линию) говорит о том, что они соединены по звезде. Синим цветом – питающие три фазы.

На этом фото промаркированы начала (W1, V1, U1) и концы (W2, V2, U2), обратите внимание на то, что они сдвинуты относительно начал, это нужно для удобного соединения в треугольник:

Что такое линейное и фазное напряжение, каково их соотношение?

При соединении в треугольник к каждой обмотке приложено линейное напряжение, это приводит к тому, что протекают большие токи. Обмотка должна быть рассчитана на такое подключение.

Что такое линейное и фазное напряжение, каково их соотношение?

У каждого из способов включения есть свои достоинства и недостатки, некоторые двигателя вообще в процессе пуска переключаются со звезды на треугольник.

Нюансы

В продолжение разговора о двигателях нельзя оставить без внимания вопрос выбора схемы включения. Дело в том, что обычно двигателя на своем шильдике содержат маркировку:

Что такое линейное и фазное напряжение, каково их соотношение?

В первой строке вы видите условные обозначения треугольника и звезды, обратите внимание, треугольник идет первым. Далее 220/380В – это напряжение на треугольнике и звезде, значит, что при соединении треугольником нужно, чтобы линейное напряжение было равно 220В. Если в вашей сети напряжение равно 380 – значит нужно подключать двигатель в звезду. В то время как фазное всегда на 1,73 меньше, не зависимо от величины линейного.

Отличным примером является следующий двигатель:

Что такое линейное и фазное напряжение, каково их соотношение?

Здесь номинальные напряжения уже 380/660, это значит, что его для линейного 380 нужно подключать треугольником, а звезда предназначена для питания от трёх фаз 660В.

Если в мощных нагрузках чаще оперируют с величинами межфазного напряжения, то в осветительных цепях в 99% % случаев используют фазное напряжение (между фазой и нулем). Исключением являются электрокраны и подобное, где может использоваться трансформатор с вторичными обмотками с линейным 220 В. Но это скорее тонкости и специфика конкретных устройств. Новичкам запомнить проще так: фазное напряжение – это то, которое в розетке между фазой и нулем, линейное – в линии.

Наверняка вы не знаете:

  • Как из 220 Вольт сделать 380
  • Как собрать трехфазный электрический щит
  • Как распределить нагрузку по фазам
НравитсяЧто такое линейное и фазное напряжение, каково их соотношение?0)Не нравитсяЧто такое линейное и фазное напряжение, каково их соотношение?
0)

Фазные и линейные токи и напряжения. Численные соотношения между фазными и линейными величинами.

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой.

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — которое определяют еще как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз. Показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт.

Так, токи, протекающие в каждой фазе, именуют фазными и условно обозначают IА, IB, IC либо условно Iф. Токи в ветвях нагрузки именуют линейными. Их величина обуславливается величиной фазных напряжений, типом нагрузки. При сугубо активной нагрузке токи идентичны с напряжениями по фазе, а при индуктивной либо емкостной нагрузке, токи могут опережать или отставать от напряжения.

В традиционных электросетях имеет место 2 метода соединения:

— треугольник;

— звезда.

При соединении ветвей схемы треугольником конец одной обмотки подключается к началу другой, т.е. получается замкнутый контур. Для каждого узла схемы выполняется баланс – сумма входящих токов равна сумме исходящих. При таком подключении и симметричной нагрузке выполняется соотношение:


Iл = v3 Iф.

При соединении ветвей элементов схемы звездой все окончания обмоток фаз подключают в один узел 0. Ввиду того, что фазы генератора соединяются последовательно с фазами электроприемников (нагрузки), то линейные токи по величине равны фазным:

Iф = Iл.

Соединение потребителей трехфазного тока по схеме «звезда». Симметричный и несимметричный режимы.

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку

N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.

Провода Aa, Bb и Cc, соединяющие начала фаз генератора и приемника, называются линейными, провод Nn, соединяющий точкуN генератора с точкой n приемника, – нейтральным.

Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.

Напряжение между двумя фазами — Всё о электрике

Особенности линейного напряжения

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична. Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными. А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.

Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.

  1. Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Чему равно линейное напряжение

В большей части стран мира стандартное ЛН составляет примерно 380В.

В трёхфазных цепях фазное и линейное напряжение находятся в соотношении 220В/380В соответственно.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Фазное

Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.

ФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.

Линейное

Для расчёта соотношения линейного проводника и фазы применяется формула: Uл=Uф∙√3, Uф — фазовое, Uл — линейное.

Важно! Формула справедлива, только если IL = IF. Когда в цепь добавлены другие отводящие элементы, то для них потребуется сделать персональный расчёт фазового напряжения. Тогда Uф нужно заменить цифровыми величинами самостоятельного клейма.

Реактивная трёхфазная мощность рассчитывается по формуле: Q = Qа + Qb + Qс. Значение активной мощности можно найти, используя аналогичную формулу: P = Pа + Pb + Pс. Необходимость в подобных расчётах возникает, если к электрической сети подключается промышленная система.

Распространённость сетей с линейным током объясняется их относительной безопасностью и несложностью разведения электропроводки. Электрооборудование присоединено исключительно к одному фазному проводу (по нему проходит ток) и только он может быть опасен, второй — это заземление. ЛН возникает в трёхфазной цепи и даёт увеличение приблизительно на 73%.

В чем главные отличия линейного и фазного напряжения?

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

Чем трехфазное напряжение отличается от однофазного

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

{SOURCE}

Линейные и фазные токи и напряжения в трехфазных цепях

Линейный токТрехфазная система электроснабжения принята в качестве стандарта в большинстве стран мира, Россия не исключение. Каждый дом в стране подключен именно к такой сети, но в отдельную квартиру заходит, как правило, один фазный провод. При желании можно провести и еще две фазы, что часто делается на участках, предназначенных для ИЖС. Они нужны для работы оборудования, содержащего электродвигатель. При подключении к трехфазной цепи часто возникают вопросы, связанные с такими понятиями, как фазный и линейный ток, а также с соответствующими показателями напряжений.

Цепи переменного тока

Как известно, электроснабжение в России осуществляется с помощью цепей переменного тока с частотой 50 Гц. За одну секунду совершается 50 циклов. Полный цикл представляет собой круг, угловой размер которого можно измерить в градусах и радианах — 360 градусов радиан или 2π радиан. Соответственно, половина этого цикла будет 180 или π радиан, треть — 120 или 2 π/3 и т. д. Конкретный момент этого цикла и называется фазой. Цепи в стране синхронизированы в единую систему.

Фазное и линейное напряжение в трехфазных цепях

Сдвиг по фазе в цепи

Фазные и линейные напряжения и токиЭто выражение не имеет ничего общего со здоровьем головного мозга. Таким термином объясняют несовпадение графиков тока и напряжения, что бывает на участках с катушками или конденсаторами, а также сравнение фаз в разных проводах. При трехфазной системе электроснабжения сдвиг составляет 120 градусов или 2 π/ 3 радиан.

Вот так выглядит наложение графиков напряжений в трех проводах, идущих от трансформаторной будки. Слева даже наглядно показано, как такое можно получить от простой турбины.

Возможно, некоторые помнят подобное упражнение при составление графика функции y=sin (x), когда рисовали ее от круга.

Действующие показатели тока и напряжения

Линейное напряжениеМаксимальная амплитуда напряжения в цепи, идущей от трансформаторной подстанции во дворе, составляет 310 В. За 1 с она бывает 100 раз — внизу и вверху графика. Мгновенные значения этого параметра зависят от фазы, в которой находится график. Естественно, для потребителей такое представление крайне неудобно, поэтому в обиходе используется понятие действующего напряжения.

Его формула была выведена экспериментально на основе закона Джоуля-Ленца. Суть вывода этой формулы заключается в том, что действующее значение переменного тока эквивалентно значению постоянного при одинаковом выделении теплоты. Коэффициент, который используется при вычислении, равен √2. Зная это, можно воспользоваться правилом:

I=I m/ √2, U=Um/√2,

где I m и Um — амплитуда. Если подставить во вторую формулу значение амплитуды, то получается, что действующее напряжение фазного провода относительно земли в квартире составит 230 В. Оно еще называется фазным. Ну, а величина тока будет зависеть от нагрузки, согласно закону Ома:

I=U/R.

Ток в фазном проводе тоже будет называться фазным.

Соединения звезда и треугольник

В домашней розетке помимо фазы обязательно присутствует ноль. Правильное его название — нейтраль. Некоторые путают его с заземлением, но на самом деле у него иная функция. Чтобы ее лучше понять, нужно ознакомиться с таким понятиями, как «звезда» и «треугольник».

Линейное напряжение

Роль нейтрали в цепи

Линейное напряжение этоНа подстанции, откуда в квартиру идет питающий провод, все три фазы одним концом соединены. Второй конец одной из фаз идет в одну квартиру, другой — в другую, третий — в третью. Если в каждой квартире в качестве второго провода использовать заземление, может возникнуть неприятная ситуация.

Но равновесие в этой системе возможно лишь тогда, когда все три потребителя одновременно включают одинаковую нагрузку — она называется симметричной. В реальности же один может включить телевизор, а другой — электрическую духовку. Итогом этого станет перекос фаз, когда у владельца телевизора в розетке будет 380, а у обладателя духовки 30 с небольшим. Чтобы такого не случилось, с места соединения концов фазных проводов выводят нейтраль, которая и идет в каждую квартиру. Для пущей осторожности ее тоже заземляют.

Нейтраль (нулевой провод) является компенсатором несимметричности нагрузки в такой цепи, которую назвали «звездой». В таком соединении между одной из фаз и нейтралью напряжение приблизительно равно 220 В, а между двумя фазами — 380. Это самое межфазное напряжение и называется линейным.

Его значение вычисляется исходя из действующего фазного и значения угла сдвига между ними. Вспомнив уроки геометрии в школе можно вывести:

AB=2x230x√3/2=230х√3=400.

Учитывая, что в цепь постоянно что-то включено, и в чистом виде ЭДС дома не измерить, получим:

220х√3=380.

Таким образом, фазные и линейные напряжения и токи при соединении звездой подчиняются следующим закономерностям:

U (l)=√3U (f), I (l)=I (f) — линейный ток равен фазному.

Соединение звездой с нейтралью очень удобно для распределения проводки по разным потребителям. Его преимущества можно перечислить:

  • устойчивость режима работы электроприборов в условиях разных нагрузок;
  • двигатели, обмотки которых подключены таким методом, не перегреваются;
  • из-за невозможности увеличить ток — пуск двигателя осуществляется плавно;
  • возможность использования как линейного, так и фазного напряжения.

Схема треугольник и максимум мощности

Фазное и линейное напряжениеТакая необходимость возникает при желании по максимуму использовать КПД электродвигателя. Это можно достигнуть путем соединения фазных проводов в треугольник. Фазное и линейное напряжение в трехфазных цепях такого типа будут совпадать и равняться 380 В. А вот линейный ток, протекающий в подведенных к двигателю фазах, будет отличаться от того, что протекает через обмотки. Фазный ток можно вычислить, зная сопротивление и напряжение в обмотках, это величины известные. А вот линейный ток вычисляется по такой же диаграмме, как и напряжение в схеме «звезда»:

I (l)=I (f)x√3, U (f)=U (l).

Стоит ли делать такое переключение — отдельный вопрос. Для этого нужно учесть ряд важных моментов:

  • Линейные и фазные токи и напряжения в трехфазных цепяхМощность, конечно, увеличится в 1,5 раза. Возможность перегрева — тоже.
  • Если у двигателя тяжелый ротор, то при раскрутке ток будет раз в 7 выше, чем при устойчивой работе.
  • То же самое будет наблюдаться при попытке дать физическую нагрузку на вращающуюся часть, например, при пилке чего-то жесткого, при подъеме тяжести (если двигатель используется в качестве лебедки).

Поэтому перед проведением экспериментов стоит хорошо ознакомиться с паспортом двигателя и возможностями вашей сети.

Вполне возможно, что лучше будет приобрести электродвигатель с реостатной регулировкой пускового тока.

Общие сведения о трехфазном напряжении | Тихоокеанский источник энергии

Однофазное переменное напряжение

Большинство из нас знакомо с однофазным напряжением в наших домах, обеспечиваемым местными коммунальными предприятиями. Для США это обычно 120 В. Для однофазного напряжения напряжение выражается как напряжение между фазой и нейтралью между двумя силовыми проводниками (плюс защитное заземление). Нейтральный проводник обычно имеет потенциал земли, а линейный провод — синусоидальное переменное напряжение со среднеквадратичным значением 120 В переменного тока.Это означает, что пик переменного напряжения меняется от + 169,7 В до -169,7 В каждые 16,667 мс на частоте сети 60 Гц США. Для многих других стран эти номинальные значения составляют 230 В среднеквадратического значения при 50 Гц (20 мс).

Рисунок 1: Форма волны синусоидального напряжения однофазного среднеквадратичного значения 120 В

Пауэр Лимитед

Однофазное напряжение может выдавать только такую ​​мощность, как вся мощность, которая должна подаваться через линию и нейтраль. Это не проблема для домашнего использования, но для промышленного использования может потребоваться больший ток для работы машин, двигателей, освещения и других мощных нагрузок.В таких ситуациях часто бывает желательно поднять как напряжение, так и ток, чтобы получить более высокую мощность. Один из вариантов — использовать две фазы, как в некоторых домах в США, для работы электрических сушилок. Это называется соединением с разделением фаз, при котором две фазы 120 В среднеквадратического значения разнесены по фазе на 180 °, обеспечивая удвоенное линейное напряжение 120 В или 240 В. Это удваивает доступную мощность. Разделенная фаза обычно не используется в Европе или Азии, поскольку нормальное напряжение однофазной сети уже составляет от 220 В до 240 ЛН.

Трехфазное переменное напряжение

Если пойти дальше, то мощные нагрузки обычно получают питание от трех фаз.Это распределяет ток по трем, а не по одному набору проводов, что позволяет использовать проводку меньшего размера и, следовательно, менее дорогую. Три источника напряжения сдвинуты по фазе на 120 ° друг относительно друга для балансировки токов нагрузки. Это показано на Рисунке 2.

Рисунок 2: Кривые трехфазного напряжения с разным вращением

Фазовый сдвиг на 120 ° между каждой формой сигнала может быть выполнен в одном из двух чередований фаз — A -> B -> C или A -> C -> B. Чередование фаз не влияет на большинство нагрузок, за исключением трехфазных двигателей переменного тока, которые будут поверните в обратном направлении, если чередование фаз изменилось.Изменить чередование фаз можно, поменяв местами любые два из трех фазных соединений. При использовании программируемого источника питания переменного тока, такого как серия AFX, фазовые углы для фаз B и C можно запрограммировать на 120 ° и 240 ° или 240 ° и 120 ° соответственно для изменения чередования фаз. AFX также позволяет программировать фазовый дисбаланс для изучения влияния фазовых изменений на тестируемое устройство.

Осторожно при определении межфазных напряжений

В то время как «нормальное» соотношение трех фаз, треугольника и звезды, легко описывается простой формулой, это применимо только к равным линейным и нейтральным напряжениям, идеальному фазовому балансу и синусоидальным напряжениям.В этом идеальном случае соотношение между среднеквадратичным напряжением между фазой и нейтралью и среднеквадратичным напряжением между фазой может быть выражено следующей формулой:

Это соотношение между фазой и нейтралью и линейным напряжением показано на фазовой диаграмме на рисунке 3.

Рисунок 3: Трехфазная фазовая диаграмма

На рисунке 4 ниже показаны два типичных примера трехфазных конфигураций напряжения электросети, используемых в США. В Европе и Азии обычно используются конфигурации 220/380 В или 230/400 В.120VLN на фазу эквивалентно векторной сумме 208VLL:

В LL = 120 В LN * 1,732 = 207,84 В LL

Обратите внимание, что конфигурация сети, соединенная треугольником 480 В, не имеет нейтрального соединения и называется соединением 3 провода + земля треугольник. Чтобы смоделировать этот тип сети с источником питания переменного тока, трехфазная нагрузка подключается по схеме треугольника только между тремя выходными фазами без подключения к выходной клемме нейтрали.

Рисунок 4: Типичные конфигурации трехфазного напряжения, используемые в США

Это соотношение √3 важно при использовании программируемого трехфазного источника переменного тока, поскольку все источники переменного тока типа T&M программируются только на линейное напряжение.Таким образом, если какое-либо из указанных условий не выполняется, вы не можете просто полагаться на эту формулу для определения линейного напряжения:

  1. Идентичные напряжения VLN на всех трех фазах
  2. Сбалансированные углы фаз на фазах B и C
  3. Низкие искажения, чистый синусоидальный сигнал

Небольшой сдвиг фазы на одной или нескольких из трех фаз может оказать значительное влияние на напряжения V LL , что также приведет к дисбалансу токов нагрузки.

Искаженное напряжение, вызванное нелинейной нагрузкой на одной или нескольких фазах, также может сбрасывать линейные напряжения.

Почему это важно?

Программируемые трехфазные источники питания переменного тока имеют регулируемые углы фаз и часто поддерживают сигналы произвольной формы. Это означает, что соотношение между фазой и нейтралью и линейным напряжением не обязательно «фиксированное». Как правило, все трехфазные программируемые источники питания переменного тока запрограммированы на среднеквадратичное значение от линии до нейтрали, независимо от типа нагрузки (треугольник или звезда). Таким образом, может потребоваться фактически измерить результирующее линейное напряжение, так как его расчет недействителен, если эти условия не выполняются.

Заключение

При тестировании трехфазных нагрузок обращайте пристальное внимание на параметры напряжения и фазы, делая предположения о напряжениях между фазами, приложенных к тестируемому устройству.

.

3-фазная мощность, значения напряжения и тока

Трехфазное соединение треугольником: линия, фазный ток, напряжения и мощность в конфигурации Δ

Что такое соединение треугольником (Δ)?

Delta or Mesh Connection ( Δ ) Система также известна как Трехфазная трехпроводная система ( 3-фазная 3-проводная ) и является наиболее предпочтительной системой для передачи электроэнергии переменного тока при распределении, Обычно используется соединение звездой.

В системе соединения Delta (также обозначаемой как Δ ) начальные концы трех фаз или катушек соединены с конечными концами катушки. Или начальный конец первой катушки соединен с конечным концом второй катушки и так далее (для всех трех катушек), и это выглядит как замкнутая сетка или цепь, как показано на рис. (1).

Проще говоря, все три катушки соединены последовательно, образуя тесную сеть или цепь. Из трех переходов вынуты три провода, и все токи, исходящие из перехода, считаются положительными.

В соединении треугольником соединение трех обмоток выглядит как короткое замыкание, но это не так, , если система сбалансирована, то значение алгебраической суммы всех напряжений вокруг сетки равно нулю в соединении треугольником .

Когда клемма разомкнута в Δ, то нет возможности протекать токи с основной частотой вокруг замкнутой ячейки.

Также Читайте:

На заметку: В конфигурации Дельта, в любой момент, значение ЭДС одной фазы равно результирующей величине ЭДС двух других фаз, но в противоположном направлении.

Delta Connection (Δ) Three Phase Power, Voltage & Current Values Delta Connection (Δ) Three Phase Power, Voltage & Current Values Рис (1). 3-фазная мощность, значения напряжения и тока при соединении треугольником (Δ)

Значения напряжения, тока и мощности при соединении треугольником (Δ)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазных напряжений и Питание в трехфазной системе переменного тока треугольником.

Линейные напряжения (V L ) и фазные напряжения (V Ph ) при соединении треугольником

На рис.2 видно, что между двумя клеммами имеется только одна фазная обмотка (т.е.е. между двумя проводами имеется одна фазная обмотка). Следовательно, в Delta Connection, напряжение между (любой парой) двух линий равно фазному напряжению фазной обмотки , которая подключена между двумя линиями.

Поскольку последовательность фаз R → Y → B, следовательно, направление напряжения от фазы R к фазе Y положительное (+), а напряжение фазы R опережает напряжение фазы Y на 120 °. Аналогично, напряжение фазы Y опережает фазное напряжение B на 120 °, а его направление положительно от Y к B.

Если линейное напряжение между;

  • Строка 1 и Строка 2 = V RY
  • Строка 2 и Строка 3 = V YB
  • Строка 3 и Строка 1 = V BR

Затем мы видим, что V RY ведет V YB на 120 ° и V YB провода V BR на 120 ° .

Предположим,

V RY = V YB = V BR = V L …………… (Напряжение сети)

Тогда

V L = V PH

I.е. при соединении треугольником, линейное напряжение равно фазному напряжению .

Линейные токи (I L ) и фазные токи (I Ph ) при соединении треугольником

Как видно из приведенного ниже (рис. 2), общий ток каждой линии равен разность векторов между двумя фазными токами в соединении треугольником , протекающем по этой линии. т.е.

  • Ток в линии 1 = I 1 = I R — I B
  • Ток в линии 2 = I 2 = I Y — I R
  • Ток в линии 3 = I 3 = I B — I Y

{Векторная разность}

Delta Connection (Δ): 3 Phase Power, Voltage & Current Values Delta Connection (Δ): 3 Phase Power, Voltage & Current Values Рис. (2).Линейный и фазовый ток и линейное и фазовое напряжение в соединении треугольником (Δ)

Ток линии 1 можно найти, определив разность векторов между I R и I B , и мы можем сделать это, увеличив I B. Вектор в обратном порядке, так что I R и I B образуют параллелограмм. Диагональ этого параллелограмма показывает разность векторов I R и I B , которая равна току в строке 1 = I 1 .Более того, при изменении направления вектора I B на противоположное, он может указывать как (-I B ), следовательно, угол между I R и -I B (I B , при обратном изменении = -I B ) составляет 60 °. Если,

I R = I Y = I B = I PH …. Фазные токи

Тогда;

Ток, протекающий в строке 1, будет;

I L или I 1 = 2 x I PH x Cos (60 ° / 2)

= 2 x I PH x Cos 30 °

= 2 x I PH x ( √3 / 2) …… Так как Cos 30 ° = √3 / 2

I L = √3 I PH

i.е. При соединении по схеме треугольник линейный ток в √3 раза больше фазного тока.

Точно так же мы можем найти расширяющие два линейных тока, как указано выше. т.е.

I 2 = I Y — I R … Векторная разность = √3 I PH

I 3 = I B — I Y … Векторная разность = √3 I PH

As, все токи в линии равны по величине, т.е.

I 1 = I 2 = I 3 = I L

Следовательно,

IL = √3 I PH

Это видно на рисунке выше;

  • Линейные токи разнесены на 120 ° друг от друга
  • Линейные токи отстают на 30 ° от соответствующих фазных токов
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. ток каждой линии отстает на (30 ° + Ф) от соответствующего линейного напряжения.

Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником

Мощность в соединении треугольником

Мы знаем, что мощность каждой фазы;

Мощность / Фаза = В PH x I PH x CosФ

И суммарная мощность трех фаз;

Общая мощность = P = 3 x V PH x I PH x CosФ … .. (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении треугольником;

I PH = I L / √3….. (Из I L = √3 I PH )

V PH = V L

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x V L x (I L / √3) x CosФ …… (I PH = I L / / √3)

P = √3 x√ 3 x V L x (I L / √3) x CosФ… {3 = √3x√3}

P = √3 x V L x I L x CosФ

Следовательно доказано;

Питание в треугольнике ,

P = 3 x V PH x I PH x CosФ ….или

P = √3 x V L x I L x CosФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током (а не между линейным током и линейным напряжением).

То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ № 1)

Полезно помнить:

При подключении как звездой, так и треугольником, общая мощность при сбалансированной нагрузке равна .

Т.е. Общая мощность в трехфазной системе = P = √3 x V L x I L x CosФ

Полезно знать:

Сбалансированная система — это система, в которой:

  • Напряжения всех трех фаз равны по величине.
  • Напряжения всех фаз совпадают по фазе друг с другом i.е. 360 ° / 3 = 120 °
  • Все трехфазные токи равны по величине
  • Все фазные токи синфазны друг другу, т.е. 360 ° / 3 = 120 °
  • Трехфазная сбалансированная нагрузка — это система, в которой нагрузка подключенные к трем фазам, идентичны.

Читайте также:

.

Формулы и расчеты КСВН »Электроника

Существует множество различных уравнений или формул, которые можно использовать для расчета и определения КСВН, существующего в фидере.


Учебное пособие по теории КСВ и усилителя линии передачи Включает:
Что такое КСВН? Коэффициент отражения Формулы и расчеты КСВН Как измерить КСВН Как использовать измеритель КСВН Простая мостовая схема КСВ Что такое возвратный убыток Таблица VSWR / возвратных потерь


Существует множество различных формул или уравнений, которые можно использовать для расчета КСВН по множеству различных параметров.

Поскольку КСВН является важным аспектом, связанным с фидерами и антеннами, может быть полезно знать различные соотношения и формулы для расчета КСВН.

Нормальный способ выражения КСВН выражается в соотношении: 2: 1, 5: 1 и т. Д., И идеальное совпадение составляет 1: 1, а полное несоответствие, то есть короткое замыкание или обрыв цепи — ∞: 1.

Основные расчеты и формулы КСВН

Можно вывести самую простую формулу или уравнение VSWR непосредственно из его определения.

В определении КСВН указано, что КСВН равен максимальному напряжению на линии, деленному на минимальное напряжение. Колебания напряжения возникают в результате суммирования составляющих напряжения прямой мощности и отраженной мощности.

The minimum and maximum voltages on a line that enable VSWR to be calculated and defined. Сумма напряжений на линии, возникающих из-за стоячих волн

Это соотношение также может быть выражено через напряжения прямой и отраженной волн.

Reflection coefficient voltages Напряжения от прямой и отраженной волн

VSWR знак равно V вперед + V ссылка V вперед — V ссылка

Формула КСВН с использованием коэффициента отражения

Одна из наиболее распространенных зависимостей или формул для КСВН связывает его с коэффициентом отражения.

Коэффициент отражения Γ определяется как отношение вектора отраженного тока или напряжения к прямому току или напряжению.

Где:
Γ = коэффициент отражения

Следует отметить, что используется абсолютное значение Γ.

Формула КСВН с использованием прямой и отраженной мощности

Направленные измерители мощности часто используются для измерения фактической мощности в ваттах или кратных / долях ватт. При использовании этих измерителей мощности часто бывает удобно преобразовать значения прямой и обратной мощности в значения для КСВН.

Bird 43 thuline - inline wattmeter / power meter that gives forward and reverse power readings that can be converted to VSWR. Ваттметр Bird 43 Thuline ®, обеспечивающий прямую и обратную мощность

Принимая во внимание тот факт, что мощность пропорциональна квадрату напряжения, очень легко создать формулу КСВН с точки зрения показаний прямой и обратной мощности.

VSWR знак равно 1 + п ссылка п вперед 1 — п риф п вперед

Эти формулы позволяют рассчитать КСВ, существующий в фидере, различными способами в зависимости от доступных параметров.Различные параметры будут доступны в разное время, в зависимости от выполняемых измерений. В результате множество различных соотношений или формул позволяет рассчитать КСВН при различных условиях.

Еще темы об антеннах и распространении:
ЭМ-волны Распространение радио Ионосферное распространение Земная волна Рассеивание метеоров Тропосферное распространение Кубический четырехугольник Диполь Дискон Ферритовый стержень Логопериодическая антенна Антенна с параболическим рефлектором Вертикальные антенны Яги Заземление антенны Коаксиальный кабель Волновод VSWR Балуны для антенн MIMO
Вернуться в меню «Антенны и распространение».. .

.

Трехфазная мощность, значения напряжения и тока

Трехфазное соединение звездой: линия, фазный ток, напряжения и мощность в конфигурации Y

Что такое соединение звездой (Y)?

Star Connection ( Y ) Система также известна как Трехфазная четырехпроводная система ( 3-фазная 4-проводная ), и это наиболее предпочтительная система для распределения питания переменного тока, а для передачи — Delta соединение обычно используется.

В системе соединения Star (также обозначается Y ) начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку. Или

Звездное соединение получается путем соединения вместе одинаковых концов трех катушек, либо «Пуск», либо «Завершение». Другие концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой , которая представлена ​​номером N .(Как показано на рис. 1)

Соединение звездой также называется трехфазной 4-проводной (3-фазной, 4-проводной) системой.

Также Читайте:

Если сбалансированная симметричная нагрузка подключена к трехфазной системе параллельно, то три тока будут течь по нейтральному проводу, количество которых будет одинаковым, но они будут отличаться на 120 ° (не в фазе) , следовательно, векторная сумма этих трех токов = 0. т.е.

I R + I Y + I B = 0 …………….Victorially

Напряжение между любыми двумя клеммами или напряжение между линией и нейтралью (точка звезды) называется фазным напряжением или напряжением звезды, обозначенным как V Ph . Напряжение между двумя линиями называется линейным напряжением или линейным напряжением и обозначается V L .

Star Connection (Y): Three Phase Power, Voltage & Current Values Star Connection (Y): Three Phase Power, Voltage & Current Values Соединение звездой (Y) Трехфазное питание, значения напряжения и тока

Значения напряжения, тока и мощности при соединении звездой (Y)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока , Фазные напряжения и мощность в трехфазной системе переменного тока звездой.

Линейные напряжения и фазные напряжения при соединении звездой

Мы знаем, что линейное напряжение между линией 1 и линией 2 (из рис. 3а) составляет

В RY = В R — В Y …. (Разница векторов)

Таким образом, чтобы найти вектор V RY , увеличьте вектор V Y в обратном направлении, как показано пунктирной линией на рис. 2. Аналогичным образом на обоих концах вектора V R и Vector V Y образуют перпендикулярные пунктирные линии, которые выглядят как параллелограмм, как показано на рис. (2).Диагональная линия, разделяющая параллелограмм на две части, показывает значение V RY . Угол между векторами V Y и V R составляет 60 °.

Следовательно, если

V R = V Y = V B = V PH

, то

V RY = 2 x V PH x Cos (60 ° / 2)

= 2 x V PH x Cos 30 °

= 2 x V PH x (√3 / 2) …… Так как Cos 30 ° = √3 / 2

V RY = √3 V PH

Аналогично,

V YB = V Y — V B

V YB = √3 V PH

И

V BR = V B — V R

V BR = √3 V PH

Следовательно, доказано, что V RY = V YB = V BR линейные напряжения (В L ) при соединении звездой , следовательно, при соединении звездой;

В L = √3 V PH или V L = √3 E PH

Star Connection (Y): Line Voltages and Phase Voltages Star Connection (Y): Line Voltages and Phase Voltages Линейные и фазовые напряжения при соединении звездой

Из рисунка 2 видно, что;

  • Линейные напряжения разнесены на 120 ° друг от друга
  • Линейные напряжения на 30 ° опережают соответствующие фазные напряжения
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает (30 ° + Ф) от соответствующего сетевого напряжения.

Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником

Линейные токи и фазные токи при соединении звездой

Из рис (3a) видно, что каждая линия соединена последовательно с отдельной фазной обмоткой, поэтому значение Линейный ток такой же, как и в фазных обмотках, к которым подключена линия. т.е.

  • Ток в линии 1 = I R
  • Ток в линии 2 = I Y
  • Ток в линии 3 = I B

Поскольку текущие токи во всех трех линиях одинаковы, и индивидуальный ток в каждой строке равен соответствующему фазному току, следовательно;

I R = I Y = I B = I PH ….Фазный ток

Линейный ток = Фазный ток

I L = I PH

Проще говоря, значения линейных токов и фазных токов одинаковы в Star Connection .

Star Connection (Y): Values of Line Currents and Phase Currents Star Connection (Y): Values of Line Currents and Phase Currents Соединение звездой (Y): значения линейных токов и напряжений и фазных токов и напряжений
Мощность при соединении звездой

В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности .Или сумма всех трех фазных мощностей — это полная активная или истинная мощность.

Следовательно, полная активная или истинная мощность в трехфазной системе переменного тока;

Общая истинная или активная мощность = 3-фазная мощность

Или

P = 3 x V PH x I PH x CosФ … .. уравнение… (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении звездой;

I L = I PH

V PH = V L / √3 ….. (Из В L = √3 В PH )

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x (V L / √3) x I L x CosФ …….…. (V PH = V L / √3)

P = √3 x√3 x (V L / √3) x I L x CosФ….… {3 = √3x√3 }

P = √3 x V L x I L x CosФ

Следовательно, доказано;

Мощность в соединении звездой ,

P = 3 x V PH x I PH x CosФ или

P = √3 x V L x I L x CosФ

То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ No.1)

Аналогично,

Общая реактивная мощность = Q = √3 x V L x I L x SinФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током, а не между линейным током и линейным напряжением.

Полезно знать : Реактивная мощность индуктивной катушки принимается как положительная (+), а реактивная мощность конденсатора — как отрицательная (-).

Также полная полная мощность трех фаз;

Общая кажущаяся мощность = S = √3 x V L x I L Или,

S = √ (P 2 + Q 2 )

Также читается:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *