Формула ку – Гоночная серия: Формула E — Новости, фотографии, Видео, Гонщики, Расписание, Аварии на Motorsport.com Россия

Содержание

Формулы сокращённого умножения многочленов — Википедия

Формулы сокращённого умножения многочленов — часто встречающиеся случаи умножения многочленов. Многие из них являются частным случаем бинома Ньютона. Изучаются в средней школе в курсе алгебры.

Содержание

  • 1 Формулы для квадратов
  • 2 Формулы для кубов
  • 3 Формулы для четвёртой степени
  • 4 Формулы для n-ой степени
  • 5 Некоторые свойства формул
  • 6 См. также
  • 7 Литература

Формулы для квадратов

  • (a±b)2=a2±2ab+b2{\displaystyle (a\pm b)^{2}=a^{2}\pm 2ab+b^{2}}
  • a2−b2=(a+b)(a−b){\displaystyle a^{2}-b^{2}=(a+b)(a-b)}
  • (a+b+c)2=a2+b2+c2+2ab+2ac+2bc{\displaystyle \left(a+b+c\right)^{2}=a^{2}+b^{2}+c^{2}+2ab+2ac+2bc}

Формулы для кубов

  • (a±b)3=a3±3a2b+3ab2±b3{\displaystyle (a\pm b)^{3}=a^{3}\pm 3a^{2}b+3ab^{2}\pm b^{3}}
  • a3±b3=(a±b)(a2∓ab+b2){\displaystyle a^{3}\pm b^{3}=(a\pm b)(a^{2}\mp ab+b^{2})}
  • (a+b+c)3=a3+b3+c3+3a2b+3a2c+3ab2+3ac2+3b2c+3bc2+6abc{\displaystyle \left(a+b+c\right)^{3}=a^{3}+b^{3}+c^{3}+3a^{2}b+3a^{2}c+3ab^{2}+3ac^{2}+3b^{2}c+3bc^{2}+6abc}

Формулы для четвёртой степени

  • (a±b)4=a4±4a3b+6a2b2±4ab3+b4{\displaystyle (a\pm b)^{4}=a^{4}\pm 4a^{3}b+6a^{2}b^{2}\pm 4ab^{3}+b^{4}}
  • a4−b4=(a−b)(a+b)(a2+b2){\displaystyle a^{4}-b^{4}=(a-b)(a+b)(a^{2}+b^{2})} (выводится из a2−b2{\displaystyle a^{2}-b^{2}})

Формулы для n-ой степени

  • an−bn=(a−b)(an−1+an−2b+an−3b2+…+a2bn−3+abn−2+bn−1){\displaystyle a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+…+a^{2}b^{n-3}+ab^{n-2}+b^{n-1})}
  • a2n−b2n=(a+b)(a2n−1−a2n−2b+a2n−3b2−…−a2b2n−3+ab2n−2−b2n−1){\displaystyle a^{2n}-b^{2n}=(a+b)(a^{2n-1}-a^{2n-2}b+a^{2n-3}b^{2}-…-a^{2}b^{2n-3}+ab^{2n-2}-b^{2n-1})}, где n∈N{\displaystyle n\in N}
  • a2n−b2n=(an+bn)(an−bn){\displaystyle a^{2n}-b^{2n}=(a^{n}+b^{n})(a^{n}-b^{n})}
  • a2n+1+b2n+1=(a+b)(a2n−a2n−1b+a2n−2b2−…+a2b2n−2−ab2n−1+b2n){\displaystyle a^{2n+1}+b^{2n+1}=(a+b)(a^{2n}-a^{2n-1}b+a^{2n-2}b^{2}-…+a^{2}b^{2n-2}-ab^{2n-1}+b^{2n})}, где n∈N{\displaystyle n\in N}

Некоторые свойства формул

  • (a−b)2n=(b−a)2n{\displaystyle (a-b)^{2n}=(b-a)^{2n}}, где n∈N{\displaystyle n\in N}
  • (a−b)2n+1=−(b−a)2n+1{\displaystyle (a-b)^{2n+1}=-(b-a)^{2n+1}}, где n∈N{\displaystyle n\in N}

См. также

  • Многочлен
  • Бином Ньютона
  • Факторизация многочленов

Литература

  • М. Я. Выгодский. Справочник по элементарной математике. — Москва, 1958.

Формулы сокращенного умножения: таблица, примеры использования

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения
  1. формула квадрата суммы: a+b2=a2+2ab+b2
  2. формула квадрата разности: a-b2=a2-2ab+b2
  3. формула куба суммы: a+b3=a3+3a2b+3ab2+b3
  4. формула куба разности: a-b3=a3-3a2b+3ab2-b3
  5. формула разности квадратов: a2-b2=a-ba+b
  6. формула суммы кубов: a3+b3=a+ba2-ab+b2
  7. формула разности кубов: a3-b3=a-ba2+ab+b2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Формулы сокращенного умножения. Таблица

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы. 

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращ

Формулы сокращенного умножения

Формулы сокращенного умножения.

Цели:

— Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.

— Применение формул сокращенного умножения при решении примеров.

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b   R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a — b)2 = a2 — 2ab + b2

3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 — b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a — b)3 = a3 — 3a2b + 3ab2 — b3

6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a2 — ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 — b3 = (a — b) (a2 + ab + b2)

Применение формул сокращенного умножения при решении примеров.

Пример 1.

Вычислить

а) (40+1)2

б) 982

Решение:

а) Используя формулу квадрата суммы двух выражений, имеем

(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681

б) Используя формулу квадрата разности двух выражений, получим

982 = (100 – 2)2 = 1002 — 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604

Пример 2.

Вычислить

Решение

Используя формулу разности квадратов двух выражений, получим

Пример 3.

Упростить выражение

(х — у)2 + (х + у)2

Решение

Воспользуемся формулами квадрата суммы и квадрата разности двух выражений

(х — у)2 + (х + у)2 = х2 — 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2

 

Формулы сокращенного умножения в одной таблице:

(a + b)2 = a2 + 2ab + b2
(a — b)2 = a2 — 2ab + b2
a2 — b2 = (a — b) (a+b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a — b)3 = a3 — 3a2b + 3ab2 — b

3
a3 + b3 = (a + b) (a2 — ab + b2)
a3 — b3 = (a — b) (a2 + ab + b2)

Формулы сокращённого умножения. Разность кубов и сумма кубов

При изучении формул сокращенного умножения мы уже изучили:

 – квадрат суммы и разности;

 – разность квадратов.

Выведем формулу разности кубов.

.

Наша задача – доказать, что при раскрытии скобок в правой части и приведении подобных слагаемых мы придем в результате к левой части.

Выполняем умножение многочленов:

.

Что и требовалось доказать.

Выражение  называется неполным квадратом суммы, так как отсутствует двойка перед произведением выражений.

Определение

Разность кубов двух выражений есть произведение разности этих выражений на неполный квадрат их суммы.

Выведем формулу суммы кубов.

.

Выполняем умножение многочленов:

.

Что и требовалось доказать.

Выражение  называется неполным квадратом разности, так как отсутствует двойка перед произведением выражений.

Определение

Сумма кубов двух выражений есть произведение суммы этих выражений на неполный квадрат их разности.

Пример 1 – упростить выражение:

.

Пусть  и , имеем:

.

Это изучаемая формула – разности кубов:

.

Пример 2 – упростить выражение:

.

Пусть  и , имеем:

.

Это изучаемая формула – суммы кубов:

.

Пример 3 – разложить на множители:

.

Несложно заметить формулу разности кубов:

.

Применяем изучаемую формулу:

.

Пример 4 – разложить на множители:

.

Несложно заметить формулу разности кубов:

.

Применяем изучаемую формулу: 

.

Пример 5 – решить уравнение:

.

Пусть  и , имеем:

.

Это изучаемая формула – разности кубов:

.

Пример 6 – решить уравнение:

.

Пусть  и , имеем:

.

Это изучаемая формула – суммы кубов:

z3 = -13

z = -1

Пример 7 – вычислить при :

.

Пусть  и , имеем:

.

Это изучаемая формула – разности кубов:

.

Подставим значение переменной:

.

Пример 8: докажите, что .

Доказательство.

Применим формулу разности кубов и разложим заданное выражение на множители:

.

Вторую скобку оставим без изменений, выполним вычисления в первой скобке:

.

Получили произведение чисел, содержащее множитель 25, очевидно, что данное выражение кратно 25.

Вывод: на данном уроке мы рассмотрели формулы разности и суммы кубов и их применение для различных типов задач.

 

Список литературы

  1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. – М.: Просвещение, 2010.
  2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. – М.: ВЕНТАНА-ГРАФ. 
  3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 – М.: Просвещение, 2006.

 

Домашнее задание

  1. Задание 1 – упростить выражения:
    а) ; б) .
  2. Задание 2 – разложить на множители:
    a) ; б) .
  3. Задание 3 – № 882, 883 – Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Школьный помощник (Источник).
  2. Инженерный справочник (Источник).
  3. Интернет-портал Grandars.ru (Источник).

Сумма и разность кубов | umath.ru

Сумма кубов

    \[a^3 + b^3 = (a + b)(a^2 - ab + b^2).\]

Выражение a^2 - ab + b^2 отличается от правой части формулы квадрата разности только коэффициентом при ab. Поэтому это выражение называют неполным квадратом разности.

Читают: сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Формулу суммы кубов можно получить из формулы куба суммы:

    \[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.\]

Выразим отсюда a^3 + b^3:

    \[a^3 + b^3 = (a + b)^3 - 3a^2b - 3ab^2 = (a + b)^3 - 3ab(a + b) = \]

    \[ = (a + b)((a + b)^2 - 3ab) = (a + b)(a^2 - ab + b^2).\]

Разность кубов

Заменив в формуле суммы кубов b на -b, получим формулу разности кубов:

    \[a^3 - b^3 = (a - b)(a^2 + ab + b^2).\]

Выражение a^2 + ab + b^2 называют неполным квадратом суммы.

Читают: разность кубов двух выражений равна произведению разности этих выражений на неполных квадрат их суммы.

Пример 1. Разложить на множители многочлен 27x^3 - 8y^6.

Решение. Заметим, что 27x^3 = (3x)^3, а 8y^6 = (2y^2)^3. Поэтому по формуле разности кубов получаем

    \[27x^3 - 8y^6 = (3x - 2y^2)(9x^2 + 6xy^2 + 4y^4).\]

Все главные формулы по математике — Математика — Теория, тесты, формулы и задачи

Оглавление:

 

Формулы сокращенного умножения

К оглавлению…

Квадрат суммы:

Формула Квадрат суммы

Квадрат разности:

Формула Квадрат разности

Разность квадратов:

Формула Разность квадратов

Разность кубов:

Формула Разность кубов

Сумма кубов:

Формула Сумма кубов

Куб суммы:

Формула Куб суммы

Куб разности:

Формула Куб разности

Последние две формулы также часто удобно использовать в виде:

Формула Куб суммы

Формула Куб разности

 

Квадратное уравнение и формула разложения квадратного трехчлена на множители

К оглавлению…

Пусть квадратное уравнение имеет вид:

Формула Квадратное уравнение

Тогда дискриминант находят по формуле:

Формула Дискриминант

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Формула Корни квадратного уравнения

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Формула Единственный корень квадратного уравнения

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Формула разложения квадратного трехчлена на множители

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Формула разложения квадратного трехчлена с единственным корнем на множители

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Формула Сумма корней квадратного уравнения

Произведение корней квадратного уравнения может быть вычислено по формуле:

Формула Произведение корней квадратного уравнения

Парабола

График параболы задается квадратичной функцией:

Формула Квадратичная функция

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Формула Икс вершины параболы

Игрек вершины параболы:

Формула Игрек вершины параболы

 

Свойства степеней и корней

К оглавлению…

Основные свойства степеней:

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень.

Формула Свойство отрицательной степени

Основные свойства математических корней:

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Для арифметических корней:

Формула Основные свойства математических корней

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство:

Формула Основные свойства математических корней

Для корня четной степени имеется следующее свойство:

Формула Основные свойства математических корней

 

Формулы с логарифмами

К оглавлению…

Определение логарифма:

Формула Определение логарифма

Определение логарифма можно записать и другим способом:

Формула Определение логарифма

Свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

Формула Свойства логарифмов

Логарифм произведения:

Формула Логарифм произведения

Логарифм дроби:

Формула Логарифм дроби

Вынесение степени за знак логарифма:

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Другие полезные свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

 

Арифметическая прогрессия

К оглавлению…

Формулы n-го члена арифметической прогрессии:

Формула n-го члена арифметической прогрессии

Формула n-го члена арифметической прогрессии

Соотношение между тремя соседними членами арифметической прогрессии:

Формула Соотношение между тремя соседними членами арифметической прогрессии

Формула суммы арифметической прогрессии:

Формула суммы арифметической прогрессии

Свойство арифметической прогрессии:

Формула Свойство арифметической прогрессии

 

Геометрическая прогрессия

К оглавлению…

Формулы n-го члена геометрической прогрессии:

Формула n-го члена геометрической прогрессии

Формула n-го члена геометрической прогрессии

Соотношение между тремя соседними членами геометрической прогрессии:

Формула Соотношение между тремя соседними членами геометрической прогрессии

Формула суммы геометрической прогрессии:

Формула суммы геометрической прогрессии

Формула суммы бесконечно убывающей геометрической прогрессии:

Формула суммы бесконечно убывающей геометрической прогрессии

Свойство геометрической прогрессии:

Формула Свойство геометрической прогрессии

 

Тригонометрия

К оглавлению…

Пусть имеется прямоугольный треугольник:

Прямоугольный треугольник

Тогда, определение синуса:

Формула Определение синуса

Определение косинуса:

Формула Определение косинуса

Определение тангенса:

Формула Определение тангенса

Определение котангенса:

Формула Определение котангенса

Основное тригонометрическое тождество:

Формула Основное тригонометрическое тождество

Простейшие следствия из основного тригонометрического тождества:

Формула Простейшие следствия из основного тригонометрического тождества

Формула Простейшие следствия из основного тригонометрического тождества

Формулы двойного угла

Синус двойного угла:

Формула Синус двойного угла

Косинус двойного угла:

Формула Косинус двойного угла

Тангенс двойного угла:

Формула Тангенс двойного угла

Котангенс двойного угла:

Формула Котангенс двойного угла

Тригонометрические формулы сложения

Синус суммы:

Формула Синус суммы

Синус разности:

Формула Синус разности

Косинус суммы:

Формула Косинус суммы

Косинус разности:

Формула Косинус разности

Тангенс суммы:

Формула Тангенс суммы

Тангенс разности:

Формула Тангенс разности

Котангенс суммы:

Формула Котангенс суммы

Котангенс разности:

Формула Котангенс разности

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Формула Сумма синусов

Разность синусов:

Формула Разность синусов

Сумма косинусов:

Формула Сумма косинусов

Разность косинусов:

Формула Разность косинусов

Сумма тангенсов:

Формула Сумма тангенсов

Разность тангенсов:

Формула Разность тангенсов

Сумма котангенсов:

Формула Сумма котангенсов

Разность котангенсов:

Формула Разность котангенсов

Тригонометрические формулы преобразования произведения в сумму

Произведение синусов:

Формула Произведение синусов

Произведение синуса и косинуса:

Формула Произведение синуса и косинуса

Произведение косинусов:

Формула Произведение косинусов

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для синуса

Формула понижения степени для косинуса:

Формула понижения степени для косинуса

Формула понижения степени для тангенса:

Формула понижения степени для тангенса

Формула понижения степени для котангенса:

Формула понижения степени для котангенса

Формулы половинного угла

Формула половинного угла для тангенса:

Формула половинного угла для тангенса

Формула половинного угла для котангенса:

Формула половинного угла для котангенса

 

Тригонометрические формулы приведения

Формулы приведения задаются в виде таблицы:

Таблица Тригонометрические формулы приведения

 

Тригонометрическая окружность

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

Тригонометрическая окружность

 

Тригонометрические уравнения

К оглавлению…

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Формула Решение простейшего тригонометрического уравнения для синуса

Формула Решение простейшего тригонометрического уравнения для синуса

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Формула Решение простейшего тригонометрического уравнения для косинуса

Для тангенса:

Формула Решение простейшего тригонометрического уравнения для тангенса

Для котангенса:

Формула Решение простейшего тригонометрического уравнения для котангенса

Решение тригонометрических уравнений в некоторых частных случаях:

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

 

Геометрия на плоскости (планиметрия)

К оглавлению…

Пусть имеется произвольный треугольник:

Произвольный треугольник

Тогда, сумма углов треугольника:

Формула Сумма углов треугольника

Площадь треугольника через две стороны и угол между ними:

Формула Площадь треугольника через две стороны и угол между ними

Площадь треугольника через сторону и высоту опущенную на неё:

Формула Площадь треугольника через сторону и высоту опущенную на неё

Полупериметр треугольника находится по следующей формуле:

Формула Полупериметр треугольника

Формула Герона для площади треугольника:

Формула Герона для площади треугольника

Площадь треугольника через радиус описанной окружности:

Формула Площадь треугольника через радиус описанной окружности

Формула медианы:

Формула медианы

Свойство биссектрисы:

Формула Свойство биссектрисы

Формулы биссектрисы:

Формула биссектрисы

Формула биссектрисы

Основное свойство высот треугольника:

Формула Основное свойство высот треугольника

Формула высоты:

Формула высоты

Еще одно полезное свойство высот треугольника:

Формула Свойство высот треугольника

Теорема косинусов:

Формула Теорема косинусов

Теорема синусов:

Формула Теорема синусов

Радиус окружности, вписанной в правильный треугольник:

Формула Радиус окружности, вписанной в правильный треугольник

Радиус окружности, описанной около правильного треугольника:

Формула Радиус окружности, описанной около правильного треугольника

Площадь правильного треугольника:

Формула Площадь правильного треугольника

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Формула Теорема Пифагора

Радиус окружности, вписанной в прямоугольный треугольник:

Формула Радиус окружности, вписанной в прямоугольный треугольник

Радиус окружности, описанной вокруг прямоугольного треугольника:

Формула Радиус окружности, описанной вокруг прямоугольного треугольника

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Формула Площадь прямоугольного треугольника

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Длина средней линии трапеции:

Формула Длина средней линии трапеции

Площадь трапеции:

Формула Площадь трапеции

Площадь параллелограмма через сторону и высоту опущенную на неё:

Формула Площадь параллелограмма через сторону и высоту опущенную на неё

Площадь параллелограмма через две стороны и угол между ними:

Формула Площадь параллелограмма через две стороны и угол между ними

Площадь квадрата через длину его стороны:

Формула Площадь квадрата через длину его стороны

Площадь квадрата через длину его диагонали:

Формула Площадь квадрата через длину его диагонали

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Формула Площадь ромба

Площадь прямоугольника через две смежные стороны:

Формула Площадь прямоугольника через две смежные стороны

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Формула Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Формула Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности

Свойство касательных:

Свойство касательных

Свойство хорды:

Свойство хорды

Теорема о пропорциональных отрезках хорд:

Формула Теорема о пропорциональных отрезках хорд

Теорема о касательной и секущей:

Формула Теорема о касательной и секущей

Теорема о двух секущих:

Формула Теорема о двух секущих

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Формула Теорема о центральном и вписанном углах

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство вписанных углов

Свойство центральных углов и хорд:

Формула Свойство центральных углов и хорд

Свойство центральных углов и секущих:

Формула Свойство центральных углов и секущих

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника

Сумма углов n-угольника:

Формула Сумма углов n-угольника

Центральный угол правильного n-угольника:

Формула Центральный угол правильного n-угольника

Площадь правильного n-угольника:

Формула Площадь правильного n-угольника

Длина окружности:

Формула Длина окружности

Длина дуги окружности:

Формула Длина дуги окружности

Площадь круга:

Формула Площадь круга

Площадь сектора:

Формула Площадь сектора

Площадь кольца:

Формула Площадь кольца

Площадь кругового сегмента:

Формула Площадь кругового сегмента

 

Геометрия в пространстве (стереометрия)

К оглавлению…

Главная диагональ куба:

Формула Главная диагональ куба

Объем куба:

Формула Объем куба

Объём прямоугольного параллелепипеда:

Формула Объём прямоугольного параллелепипеда

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Формула Трёхмерная Теорема Пифагора

Объём призмы:

Формула Объём призмы

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Формула Площадь боковой поверхности прямой призмы

Объём кругового цилиндра:

Формула Объём кругового цилиндра

Площадь боковой поверхности прямого кругового цилиндра:

Формула Площадь боковой поверхности прямого кругового цилиндра

Объём пирамиды:

Формула Объём пирамиды

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Формула Площадь боковой поверхности правильной пирамиды

Объем кругового конуса:

Формула Объем кругового конуса

Площадь боковой поверхности прямого кругового конуса:

Формула Площадь боковой поверхности прямого кругового конуса

Длина образующей прямого кругового конуса:

Формула Длина образующей прямого кругового конуса

Объём шара:

Формула Объём шара

Площадь поверхности шара (или, другими словами, площадь сферы):

Формула Площадь сферы

 

Координаты

К оглавлению…

Длина отрезка на координатной оси:

Формула Длина отрезка на координатной оси

Длина отрезка на координатной плоскости:

Формула Длина отрезка на координатной плоскости

Длина отрезка в трёхмерной системе координат:

Формула Длина отрезка в трёхмерной системе координат

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы):

Формула Координаты середины отрезка

 

Таблица умножения

К оглавлению…

Таблица умножения

 

Таблица квадратов двухзначных чисел

К оглавлению…

Таблица квадратов двухзначных чисел

 

Расширенная PDF версия документа «Все главные формулы по школьной математике»:

К оглавлению…

Оформление сертификатов соответствия продукции в Санкт-Петербурге от компании «Формула качества»

Добро пожаловать!

«Формула качества» предоставляет российскому бизнесу качественные услуги юридического, экспертного, лабораторного и организационного характера по сертификации продукции в России, которые призваны обеспечить:

  • Правомочность, а, следовательно, легальность
  • Гарантийность, а значит, стабильность
  • Соответствие качества, а значит, расширение возможностей и рынков
  • Надежность, а значит, статусность компании и имени

Очевидно, что ведение бизнеса во всех секторах рынка России становится прозрачнее, законнее и имеет четкие условия существования, например, с  обязательной сертификацией продукции в РФ. Так, нормами отечественного законодательства отчетливо прописаны:

  • порядок проведения продукции на рынок,
  • требования к безопасности и качеству продукта,
  • режимы и формы проверок,
  • условия ввоза, вывоза и трансграничного перемещения и проч.

 

Соблюдение всех установленных конвенций и оформление необходимого пакета разрешительных бумаг, сертификатов, деклараций, лицензий, паспортов – это юридические составляющие легального, надежного имиджа любой компании.

Наши эксперты   осуществляют

  • техническое сопровождение (лабораторные исследования) вашей продукции,
  • юридическое обоснование  и подтверждение ее соответствия требуемым техническим регламентам,
  • а также поддерживают ваши стремления роста, предоставляя услуги тендерного консалтинга.

 

Сфера сертификации продукции в СПб, в которой работают наши специалисты, охватывает все актуальные позиции, включая оформление разрешений от соответствующих надзорных органов страны и получение госрегистрации продуктов.

Лицензионная область нашей деятельности предусматривает работы по получению необходимых документов, требуемых для ведения бизнеса, связанного с транспортными перевозками товаров по территории ТС.

На самом деле, мы можем много больше и готовы предложить каждому нашему партнеру индивидуальные решения, связанные лишь с его потребностями, интересами и требованиями.  Наша компания во всех случаях предоставляет персонального  менеджера-специалиста, проводящего полный и грамотный консалтинг по всем необходимым вопросам  и курирующего процесс оформления и получения бумаг до его успешного окончания.

Таким образом, мы всегда обеспечиваем продуктивную результативность всех обращений!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *